
Band-aid Patching∗

Stelios Sidiroglou
stelios@cs.columbia.edu

Columbia University

Sotiris Ioannidis
si@cs.stevens.edu

Stevens Institute of Technology

Angelos D. Keromytis
angelos@cs.columbia.edu

Columbia University

Abstract

Testing vendor-issued patches remains one of the major
hurdles to their speedy deployment. Studies have shown
that administrators remain reluctant to quickly patch their
systems, even when they have the capability to do so, partly
because security patches in particular are often incomplete
or altogether non-functional.

We propose Band-aid Patching, a new approach for con-
currently testing application patches. Using binary runtime
injection techniques, we patch binaries such that when pro-
gram execution reaches a program segment that has been
affected by an issued patch, two (or more) program ex-
ecution threads are created. These threads speculatively
execute both parts of the code (patched and unpatched).
Our system then retroactively selects one of the execution
threads based on a variety of criteria, including obvious
faultiness, prior history, and user input. We believe this ap-
proach to offer significant advantages to accelerating de-
ployment of hot fixes while providing some assurance to
system administrators. In this paper, we describe our ini-
tial thoughts on the system architecture, and provide some
preliminary indications on the feasibility and performance
impact of our scheme.

1 Introduction

Despite considerable efforts in software reliability, soft-
ware bugs account for more than 40% of system failures
[8]. Even more disheartening is that retroactively dealing
with bugs, e.g., with software patches, reveals latent bugs
70% of the time [4, 12] leaving system administrators stuck

∗This research was sponsored by the Air Force Research Laboratory
under agreement number FA8750-06-2-0221, and by NSF grants CNS-06-
27473, CNS-04-26623, CCR-0331584 and DUE-0417085. We authorize
the U.S. Government to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the
NSF or the U.S Government

between a rock and a hard place .
Given that many system bugs often lead to system vul-

nerabilities, system administrators need to perform the
highly dextrous task of juggling between system down-time
and installing updates. Unfortunately, in many cases the
cost or complexity of launching another machine to test the
effects of patches is non-trivial.

Currently, the safest option available to system adminis-
trators, even with dynamic software updating [2, 10], is to
test patches on non-production machines and mirror traffic
to the application. Since the machines are disjoint, compar-
ison of two or more machines with mirroring requires some
level of cross-system synchronization, adding considerable
overhead. Problems arise with the use of encryption and
protocol non-determinism in the mirrored systems. What
we need is the ability to test patches on running systems
with impunity and little cost.

With these constraints in mind, we present Band-aid
Patching, a new approach for testing application patches
prior to definitive deployment. Using binary runtime injec-
tion techniques, we modify binaries so that when program
execution reaches a program segment that has been affected
(modified) by an issued patch, the program “forks” specula-
tive execution threads that cannot interfere with each other.
The output of these threads is examined to discover misbe-
havior. Our system contains the effects of any misbehav-
ior by unrolling their execution results, and selecting from
among the non-misbehaving execution threads. Often, iden-
tifying the misbehaving thread is easy: based on its actions
(e.g., causing a program crash). Such problems may occur
in either the original or the updated version of the code (or,
if we are unlucky, in both).

The main advantage of our approach lies in its ability
to allow for simple dynamic patches to be tested side-by-
side with production-level application state. The output cre-
ated by these “patch threads” can be then compared, to pro-
vide some guarantee over the correctness of the computa-
tion. Since there is a cost associated with our approach, our
scheme works best when the patches are relatively small in
size, or when they affect code that is not in the critical path

1



of the application. Generally, security and stability patches
fall in this category. Although our scheme could be ap-
plied against any type of patch (e.g., large patches introduc-
ing new functionality), the cost and complexity associated
would likely be too high.

As a preliminary validatation of our approach, we de-
veloped a proof-of-concept implementation of Band-aid
Patching using source-to-source transformations and the
dyninst [3] runtime instrumentation tool. Specifically, we
use dyninst to insert instrumentation trampolines that point
to the different versions of the patches under test, and instru-
mentation that examines and compares the output of these
patches. The type of patches that can be applied can range
from simple logic bug fixes to testing new vulnerability pro-
tection mechanisms. For more complex updates, i.e., where
changes to function prototypes and type definitions are re-
quired, our approach could be combined with more sophis-
ticated dynamic software update techniques [5, 10]. Other
promising recent work in this space [6] uses virtual ma-
chines combined with vulnerability-specific predicates that
are executed in the context of the vulnerable process to test
whether a flaw is being exercised (or was exercised at some
point in the past, if such logs are available). However, these
predicates must be generated manually, and require intimate
knowledge of the application and the patch (or the vulner-
ability). In contrast, our technique uses only the vendor-
issued patch and can be applied with little or no interven-
tion by users or administrators. In this preliminary work,
we expose some of the issues associated with our approach
and identify areas for future investigation.

2 Approach

Conceptually, our approach can be described by two
components: an execution module and a decision module.

The execution module provides the speculative execu-
tion environment where patches can be applied to service
instances. It is possible that multiple such instances run in
parallel while being monitored by the execution environ-
ment for successful termination or for exception failures.
The module provides a recovery mechanism to maintain
non-stop service execution in the presence of faults.

The decision module consists of a set of detection ele-
ments that examine the output (state changes) generated by
individual executions, process the results, and reach a deci-
sion. The module must be invoked whenever parallel run-
ning instances of services reach predefined points in their
execution, or when an exception is generated.

In the remainder of this section, we outline the functional
requirements for these two modules.

2.1 Execution Module

The execution module designates the mechanism for the
application of patches to service instances. Ideally, the
patching mechanism should be able to: (i) apply patches
to running service instances with little or no down-time, (ii)
allow for the application of arbitrary patches (i.e., not just
binary-compatible), (iii) have the ability to apply patches
even in the absence of source code, (iv) provide the ability
to insert multiple patches at specific program locations, and
(v) monitor multiple speculative executions for successful
completion or faults.

There are a few instrumentation injection techniques that
can be employed for the purposes of our approach.

• Binary translation, where the tool adds instrumentation
to a compiled binary, e.g., ATOM [15]

• Runtime instrumentation, where the code is instru-
mented just prior to execution, e.g., PIN [7]

• Runtime injection. This is a more light-weight ap-
proach than runtime instrumentation, where the code is
modified at runtime by inserting jumps to helper func-
tions, e.g., dyninst [3]

Runtime instrumentation provides the most flexible plat-
form, at the cost of higher performance overhead. For ex-
ample PIN [7], a runtime injection tool, uses a dynamic
translation to intercept and make changes to runtime code,
which typically adds a 2x overhead. Dyninst [3] uses a run-
time injection approach that adds minimal overhead to the
application but requires that patches maintain binary com-
patibility. The issue of binary compatibility is of minor
importance given the fact that the majority of vulnerabil-
ity patches usually involve minimal changes to the under-
lying source code. In fact, in order to provide any sort of
type-safety on dynamic software updating, one would have
to use a language that is dynamic-update aware [16]. The
overhead of executing the inserted instrumentation is com-
parable to that of a function call and primarily depends on
how efficiently registers can be saved and restored during
execution.

Numerous approaches on supporting dynamic software
updating (DSU) have been proposed in the literature [5,
2, 10]. The most flexible, in terms of the kind of updates
that are supported, are popcorn [5] and ginseng [10]. Both
of these systems use a compiler-based approach to ensure
type-safety and data integrity for software updates. In gin-
seng, source-to-source transformations are used to handle
the transformation of data whose type changes as a result of
the update and to allow for the dynamic update of infinite
loops. Unfortunately, the cost of update flexibility is per-
formance. Ginseng exhibits a performance overhead that is

2



in the order of 30%. Furthermore, since the base applica-
tion needs to be compiled using the ginseng system prior to
software updates deployment, this performance overhead is
paid at all times. Ideally, a system should suffer no perfor-
mance overhead when patches are not being tested.

While the ability to support complex software updates
will always require complex DSU systems to ensure update
safety, support for simple security patches is less involved.
The majority of released security patches are composed of
minimal changes to the logic of the application, often con-
sisting of single-line changes to the source code. This type
of update is easily handled using runtime injection, since
it typically maintains binary compatibility at the function
level.

Input Input

foo()

bar()

bad()

bar() bar()

good() good()

Band-aid Patch Decision 

Figure 1. Overview: The service is logically replicated
and multiple instances run concurrently in the execution
environment. At the end of executing the patches, the
system must decide which execution path to use.

2.2 Decision Module

At a high level, the decision module is responsible for de-
tecting variations, and subsequently violations of execution
state. Determining the correctness of the resulting execution
is based on a combination of policy and heuristics. Work-
ing under the assumption that the base implementation is
an instance of “correct” execution, we can derive deviations
from this model as potentially problematic. The following
two example scenarios illustrate the range of policies that
can be used by our approach:

1. Correct base instance: In this context, the assump-
tion is that the base implementation defines the mea-
sure of “correctness” for the system. There are numer-
ous ways to determine correctness, one being empiri-
cal observation. For example, telephony switches are

periodically retrofitted with vulnerability patches that
should not alter their normal operation (e.g., how calls
are routed). Patches to such systems must characterize
functional deviation as potentially problematic.

2. Well defined end-state: In cases where well defined in-
variants and specifications of the result state are avail-
able, execution output can be checked against those
constraints. For example, database systems have well-
defined data constraints, such as the range of values in
fields.

Several mechanisms can be combined as part of our
Band-aid Patch architecture. Our goal is to identify differ-
ences in state that might occur during different executions
and to detect violations to system policy as defined above.
The two primary candidates for measuring deviation in ex-
ecution state are memory traces and I/O transactions.

A number of techniques can be applied to memory views
generated by the different executions depending on the char-
acteristics of the application and the granularity of infor-
mation we are trying to extract. Comparing the full mem-
ory layout is the simplest approach, but generates copious
amounts of information. Context-aware memory “diffs” can
be used to filter out superfluous memory information. Mem-
ory management at the library/system-call level [14] can be
used to fingerprint each execution. Finally, measuring vari-
ation in inter/intra–function call-graphs can provide addi-
tional hints on the effects of program semantics [1].

When considering I/O transactions, the basic concept is
to fork filesystem views for each execution. At completion
time, it is possible compare file system views for inconsis-
tencies, e.g., using mechanisms such as the versioning file
system [9]. Discrepancies and inconsistencies can be han-
dled as indications of anomalous execution. Similarly, for
network I/O, operations can be filtered and compared with
the anticipated behavior, defined by the appropriate policy
or by an external anomaly detector.

The decision component can be injected at specific lo-
cations in the code, similar to the patch insertion described
earlier. Figure 1 illustrates the concept. In the example, the
execution module is invoked at function foo(), allowing
for the simultaneous deployment of two patches. At that
time, two more instances of the service are created. Exe-
cution continues normally for all instances until we reach
(i) a predefined point in the execution or (ii) an exception is
raised.

3 Exploratory Prototype

To determine the feasibility and identify technical hur-
dles of our proposed approach, we developed a preliminary
prototype. For this particular implementation, we chose to

3



use runtime injection for patch insertion. We use dyninst
[3] due to its low runtime overhead and its ability to attach
and detach from already running processes.

The updates supported by our prototype happen at
function-level granularity, and come into effect on the next
invocation of the replaced function. The different versions
of the patches to be tested are created as a dynamic library
that can be linked to the application at runtime. The func-
tion where the Band-aid Patching will be initiated in is in-
strumented to include calls to the patches to be tested on
function entry.

Unfortunately, the obvious choice of “forking” a differ-
ent process for each execution threat carries the stigma asso-
ciated with changing process information; to avoid breaking
program semantics, special care needs to be placed on pro-
grams that rely on process ID information. Using dyninst,
we can intercept calls to getpid and its derivatives to re-
turn the appropriate process ID. However, this solution is
no panacea as the process ID might have been communi-
cated to other parts of the application prior to the patch de-
ployment. A possible solution is to add a thin virtualization
layer that maps all process IDs to virtual values [11]. An
alternative approach would be to execute the different ver-
sions of a patch in succession. While this approach is ele-
gant in its simplicity, it means that we can only explore the
effects of a patch within the confines of the function, i.e., we
would not be able to examine possible side-effects exhibited
by a patch farther down in program execution. We also can-
not take advantage of hardware facilities, such as multiple
processors/cores, that could minimize the overhead of our
scheme. For this particular implementation we employ the
sequential patch approach using a tool we have previously
developed, STEM [13]. The decision component is cur-
rently implemented as an application-specific component
that can be injected at particular program locations using
the mechanism described previously. For our prototype, we
use STEM to detect general faults and memory violations.
If a patch does not introduce a failure during execution, ex-
ecution is allowed to continue. If the patch causes a fail-
ure, execution continues with the un-patched version of the
code.

4 Conclusions

We have proposed a new approach for dynamically test-
ing multiple patches on long-running service instances. To
gain some insight into the issues associated with our ap-
proach, we have developed a prototype implementation.
This proof-of-concept system has addressed and identified a
set of practical issues pertaining to this new approach. How-
ever, we feel that this set of issues represents only the tip of
the iceberg. Further research will need to focus on these

pressing issues like gaming attacks, semantic correctness
and efficient state comparisons.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM conference on Computer
and Communications Security (CCS), pages 340–353, 2005.

[2] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz. OPUS: Online
Patches and Updates for Security. In Proceedings of the 14th USENIX
Security Symposium, August 2005.

[3] B. Buck and J. K. Hollingsworth. An API for runtime code patching.
The International Journal of High Performance Computing Applica-
tions, 14(4):317–329, Winter 2000.

[4] C. Cowan, H. Hinton, C. Pu, and J. Walpole. The Cracker Patch
Choice: An Analysis of Post Hoc Security Techniques. In Pro-
ceedings of the National Information Systems Security Conference
(NISSC), October 2000.

[5] M. W. Hicks, J. T. Moore, and S. Nettles. Dynamic Software Up-
dating. In SIGPLAN Conference on Programming Language Design
and Implementation, pages 13–23, June 2001.

[6] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting Past
and Present Intrusions through Vulnerability-Specific Predicates. In
Proceeding of the ACM Symposium on Operating Systems Principles
(SOSP), October 2006.

[7] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Program-
ming Language Design and Implementation, pages 190–200, June
2005.

[8] E. Marcus and H. Stern. Blueprints for high availability: designing
resilient distributed systems. John Wiley & Sons, Inc., 2000.

[9] K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and E. Zadok. A
Versatile and User-Oriented Versioning File System. In Proceed-
ings of the 3rd USENIX Conference on File and Storage Technologies
(FAST), pages 115–128, March/April 2004.

[10] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic
software updating for c. In Proceedings of the ACM SIGPLAN
conference on Programming language design and implementation
(PLDI), pages 72–83, 2006.

[11] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and imple-
mentation of Zap: A system for migrating computing environments.
In Proceedings of the 5th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 361–376, December
2002.

[12] E. Rescorla. Security holes... Who cares? In Proceedings of the 12th
USENIX Security Conference, August 2003.

[13] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis.
Building a Reactive Immune System for Software Services. In Pro-
ceedings of the USENIX Technical Conference, pages 149–161, April
2005.

[14] A. Somayaji and S. Forrest. Automated response using System-Call
delays. In Proceedings of the 9th USENIX Security Symposium, pages
185–198, August 2000.

[15] A. Srivastava and A. Eustace. Atom: a system for building cus-
tomized program analysis tools. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 196–205, June 1994.

4



[16] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis
mutandis: safe and predictable dynamic software updating. In Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Princi-
ples of Programming Languages (POPL), pages 183–194, 2005.

5


	Introduction
	Approach
	Execution Module
	Decision Module

	Exploratory Prototype
	Conclusions

