
Global Information
Technologies:
Concepts, Methodologies,
Tools, and Applications

Felix B. Tan
Auckland University of Technology, New Zealand

Hershey • New York
InformatIon ScIence reference

Assistant Executive Editor: Meg Stocking
Acquisitions Editor: Kristin Klinger
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Sara Reed
Typesetter: Sara Reed, Larissa Vinci, and Cindy Consonery
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Library of Congress Cataloging-in-Publication Data

Global information technologies : concepts, methodologies, tools and applications / Felix Tan, editor.
 v. cm.
 Summary: "This collection compiles research in all areas of the global information domain. It examines culture in information systems,
IT in developing countries, global e-business, and the worldwide information society, providing critical knowledge to fuel the future work
of researchers, academicians and practitioners in fields such as information science, political science, international relations, sociology, and
many more"--Provided by publisher.
 Includes bibliographical references and index.
 ISBN 978-1-59904-939-7 (hbk.) -- ISBN 978-1-59904-940-3 (ebook)
 1. Information technology. 2. Management information systems. 3. Information society. I. Tan, Felix B., 1959-
 T58.5.G548 2008
 303.48'33--dc22
 2007039589

Copyright © 2008 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

 1587

Chapter 4.28
Experiences Enhancing Open

Source Security in the
POSSE Project

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Ben Laurie
AL Digital, Ltd., USA

Douglas Maughan
Defense Advanced Research

Projects Agency, USA

Dale Rahn
University of Pennsylvania, USA

Jason Wright
University of Pennsylvania, USA

Jonathan M. Smith
University of Pennsylvania, USA

Michael B. Greenwald
University of Pennsylvania, USA

Sotiris Ioannidis
University of Pennsylvania, USA

Angelos D. Keromytis
Columbia University, USA

AbstrAct

This chapter reports on our experiences with
POSSE, a project studying “Portable Open Source
Security Elements” as part of the larger DARPA
effort on Composable High Assurance Trusted
Systems. We describe the organization created to
manage POSSE and the significant acceleration in
producing widely used secure software that has
resulted. POSSE’s two main goals were, first,
to increase security in open source systems and,
second, to more broadly disseminate security
knowledge, “best practices,” and working code
that reflects these practices. POSSE achieved these

goals through careful study of systems (“audit”)
and starting from a well-positioned technology
base (OpenBSD). We hope to illustrate the advan-
tages of applying OpenBSD-style methodology
to secure, open-source projects, and the pitfalls
of melding multiple open-source efforts in a
single project.

IntroductIon

Posse: A group of people summoned by a sheriff
to aid in law enforcement.

1588

Experiences Enhancing Open Source Security in the POSSE Project

A variety of reasons, ranging from marketplace
ignorance to a perceived trade-off between us-
ability and security, have driven modern operating
systems into the undesirable role of a potential
lever with which system security can be breached.
The use of any common operating system platform
across an organization can make this lever effec-
tive, independent of the organization, its security
policy, and security practices.

This problem has been exacerbated by the
commercial success of the Internet over the last
decade, as the Internet’s “end-to-end” (Clark,
1988; Saltzer, Reed, & Clark, 1984) design
implicitly relies on host security as the basis of
security for the overall system. An example of
this reliance and its consequence is the advent of
Distributed Denial of Service (DDoS) attacks,
effected by multiple computers bombarding one
or more target hosts with traffic and disabling
these targets.

As the commercial marketplace, and to a
large degree the government marketplace, have
converged towards a common platform (the
dominant commercial operating system, Micro-
soft Windows), these organizations increasingly
rely on the platform to be trustworthy, whether
it is so or not. Further, the use of the Internet
and computer systems in the functions of all of
these organizations has made systems software,
as a whole, “critical infrastructure.” At the same
time, a single point of vulnerability and failure
has been created for systems dependent on this
software.

the open source Alternative

Concurrent with the growth of the Internet, an
alternative software development paradigm began
emerging. This paradigm had roots in the research
UNIX community and its USENET, with some
philosophical roots later added with the “Free
Software” principles of Stallman. The mid-1960s
MULTICS (Daley & Dennis, 1968; Organick,
1972) project, part of the U.S. Defense Advanced

Research Projects Agency (DARPA)-supported
Project MAC (Fano & David, 1965) at MIT,
gave rise to the original UNIX system (Ritchie
& Thompson, 1974, 1978; Thompson, 1978) (the
name UNIX is in fact a pun on MULTICS) as a
reaction to MULTICS system complexity. Un-
fortunately, in rejecting much of MULTICS, the
UNIX system was not able to avail itself of the
extensive effort devoted to developing protection
models and security kernels (Schroeder, 1975;
Schroder, Clark, & Saltzer, 1977) for MULTICS.
McKusick, Bostic, Karels, and Quarterman (1996)
provide historical details on the emergence of
UNIX.

UNIX, as an important consequence of its
university base, boasted platform portability
of much of the software and easy availability.
These, in turn, meant that UNIX became the
dominant platform for experimental operating
systems research, and the availability of sev-
eral good books explaining the system internals
(Bach, 1986; Lions, 1977a, 1977b; McKusick et
al., 1996) meant that the system could be taught.
The result, entering the 1990s, was a substantial
number of people who understood the ins and outs
of most of the operating system. Thus, as the PC
became the dominant platform in the mid-1990s,
UNIX became the dominant model for “open
source” operating systems projects, where system
source was fully available for examination and
modification. The dominant commercial platform,
Microsoft’s Windows, is not UNIX based; it has
accreted (Cusumano & Selby, 1997) features and
technologies starting with a simple microcomputer
software platform.

UNIX-based platforms have presumed “shared
use” since their inception, were early platforms
for network software deployment and refinement,
have sizeable and talented user communities, and
are available to all for scrutiny. There is a belief
in this community (Raymond, 1999) that “many
eyes” lead to faster discovery and repair of flaws
in software. While “open source” enables scrutiny
(Raymond, 1999), it does not cause it.

 1589

Experiences Enhancing Open Source Security in the POSSE Project

The following (quoted with permission) was
posted to the “Robust Open Source” mailing list
by Peter Gutmann:

I can provide a data point on this based on a disk
encryption device driver I wrote about 8-9 years
ago. For various reasons too boring to go into
here, I never released the source code (AFAIK it’s
the only thing I’ve ever written where I haven’t
published the source). At various times I’d get
people sending me mail asking me why I hadn’t
released the code so it could be reviewed. When
I offered to send it to them, they replied that they
didn’t want to review it themselves, they expected
someone else to review it for them. That is, even
the people who went so far as to express an inter-
est in the source code admitted they’d never look
at it (and furthermore that they’d be quite happy
to have some complete stranger tell them it was
OK based on the claim that they’d reviewed it)...
As an experiment I also planted a comment which
should raise eyebrows in some code I released
years ago and which is fairly widely used just
to see if I’d get any reaction from anyone... No
one has ever asked me about this, from which
I assume that no one’s ever looked at the code
they’re using. That’s kind of scary, because the
comment isn’t in there just to annoy people, you
really could build a rather nasty backdoor in
there. There may actually be products out there
which are released in binary-only form where
the vendor has built in a backdoor at that point,
although I saw a posting from foo@anon.org in
alt.2600 saying he’d looked at the product and it
was fine, so it must be OK.”

That is, many eyes do not help if they are all
looking at something else.

The most important contribution, therefore,
is the fact that discoveries are shared and can, in
some domains (such as networking code), influ-
ence commercial code whether these influences
are visible or not.

the marketplace

Concurrent with the emergence of open source
has been a drive by some portions of the U.S.
Government (notably the U.S. Department of
Defense) to develop and/or procure a “trusted”
operating system. A major problem with modi-
fied commercial operating systems has been the
difference in priorities between the marketplace
and a knowledgeable, specialized consumer such
as the U.S. Government. In particular, the security
features and development processes and documen-
tation required have resulted, when the vendors
have been engaged, in multiple development ef-
forts—one driven by commercial considerations
and the other(s) driven by specific considerations
such as security, an audit process, etc.

Separate development of the secure version in-
evitably results in a TOAD (Technically Obsolete
At Delivery) version of the operating system, since
the audit process, among other factors, inhibits
introduction of new features while underway.
The obvious and only cost-effective way to solve
these problems is to ensure that no separation
occurs, requiring that security considerations be
“mainstreamed.”

As open source systems are developed by
volunteers and often driven by aesthetics (such
as a desire for a “secure” system) rather than
market considerations, a potential opportunity
was identified by author Douglas Maughan of
the U.S. Defense Advanced Research Projects
Agency and embodied in a smallish (by DARPA
standards) program called Composable High As-
surance Trusted Systems (CHATS). The goal,
at a high level, is to introduce required security
features into open source operating systems such
as Linux, FreeBSD, and OpenBSD such that they
will be in whatever mainstream version exists
and that they will be present in commercially
supported versions of these operating systems,
allowing their procurement by governments and
other interested parties.

1590

Experiences Enhancing Open Source Security in the POSSE Project

The initial goals of the DARPA Compos-
able High Assurance Trusted Systems program
included adding new security functionality to
existing open source operating systems, as well
as the political/community effect of demonstrat-
ing the value of useful security and analysis tools
and techniques to the open source community.
This approach by DARPA to work “directly”
with the open source community was seen as a
risky endeavor by both parties. The open source
community was leery of DARPA’s commitment
to open source, and DARPA was unsure of this
new role of research partner and the uncertainty
of product delivery. However, DARPA felt that
these open source technologies are critical for
systems of the future to be protected from im-
minent attack. The CHATS program has focused
on developing the tools and technology that en-
able core information infrastructure systems and
network services to protect themselves from the
introduction and execution of malicious code and
other attack techniques and methods (Sullivan &
Dubik, 1994). These tools and technologies are
intended to provide the high assurance trusted
operating systems need to achieve comprehen-
sive, secure, highly distributed, mission critical
information systems. The CHATS program
intended to fundamentally change the existing
approach to development and acquisition of high
assurance trusted operating systems technology
by dramatically improving the state of assurance
in current open source operating systems and,
further, developing an architectural framework for
future trusted operating systems. Such technolo-
gies have broad applicability to many programs
within DARPA and the DoD (MITRE, 2003).

A most important consequence of the CHATS
approach is that technologies developed under
the program are demonstrated and evaluated on
a large number of open source system platforms,
for all to see and use. The open source develop-
ment model provides a conduit for technology
transition directly into products and services
that will employ and support trusted operating
system technology.

posse:
toWArd An open source
securIty communIty

The Portable Open Source Security Elements
(POSSE) Project at the University of Pennsylvania
is an example of a DARPA Composable High
Assurance Trusted Systems (CHATS) project.
In this section, we will describe the goals of the
POSSE project (such as supporting widespread
availability of high quality cryptographic systems)
and the project organization we have used to ac-
complish these goals. The project organization
has generally worked, although several challenges
have arisen over time. Nonetheless, as we detail
here, the project has been successful both in
its internal goals and in its goals of influencing
both other open source projects and commercial
vendors.

A major goal of POSSE is the development of
a (growing) community of individuals interested
in and capable of enhancing the security of oper-
ating systems. Open source systems serve three
purposes towards achieving this goal:

1. They provide a natural diversity, avoiding
the “single point of failure” noted above.

2. They provide a basis through which a com-
munity of developers can express their
knowledge about secure systems.

3. The “open source” characteristic of the
software allows the knowledge to be freely
shared, even with those who might not
themselves choose to share knowledge.

Our model is illustrated in Figure 1. What the
model shows is that the POSSE project not only
generates its own portable security technologies,
but takes a stronger social engineering stance
than the “chuck wagon” approach of putting the
technologies out and shouting “come and get it.”
Rather, meetings of developers (at the “waist” of
the diagram) build up the strengths of the security
community, cutting across project boundaries,
and raise all boats on the same tide.

 1591

Experiences Enhancing Open Source Security in the POSSE Project

posse project goals

An abstract view of the overarching project
goal is to create and grow a community of open
source developers with security as a major focus.
Without getting into debates of software engi-
neering “religion,” our team studied open source
operating projects and found that the OpenBSD
project had many of the properties we desired. In
particular, it had a very strong focus on security
issues, had a small but extremely capable group
of developers—several of whom were extremely
interested in the technical contributions we wanted
to make—and the project leader, Theo de Raadt,
was interested in the basic proposition of com-
munity building.

Much of the project focus beyond the tech-
nological developments has, in fact, been on
community building. Important sub-goals have
been:

a. Propagating technologies such as the
OpenSSH secure shell, which is now distrib-
uted with, among other platforms, the Apple
Macintosh OS-X, as well as maintaining the
multiplatform portability of the OpenBSD
system itself (see OpenBSD.org).

b. Exporting methodologies such as OpenBSD
audit to multi-OS security infrastructures
such as OpenSSL, and investigating the
strength of tool-based versus expert audit
in this task.

c. Collaborating with other open source and
free software efforts on security projects
of common interest, such as an Extended
Attribute File System with TrustedBSD
(part of FreeBSD), an open source secure
bootstrap with the University of Maryland,
and an IPSEC for Linux (Keromytis, Ioan-
nidis, & Smith, 1997).

d. Large face-to-face developer meetings,
typically before or after major conferences
that attract developers such as USENIX.
These meetings have proven surprisingly
successful, resulting in, for example, a
new packet-filtering firewall for OpenBSD,
called “pf.”

e. Collaborating with security hardware ven-
dors to rapidly generate support software
for their devices, such as cryptographic
acceleration hardware.

While we will say more in the section in this
chapter on POSSE outcomes, in the Spring of

Figure 1. The POSSE synchronize and synthesize process model

FreeBSD
TrustedBSD OpenBSD

LinuxTrusted
Linux

SE Linux

POSSE Methods/Interactions

Portable
Software

Security Training/
Audit Training

Development of a
Security Community

1592

Experiences Enhancing Open Source Security in the POSSE Project

2003 we feel that, on the whole, these goals have
been and continue to be met.

posse project organization

One of the first questions is how one would orga-
nize such a project. While the usual challenges
of distributed organizations were all present
(decision-making, personnel changes, control of
resources, etc.) some particular challenges we
faced were raised by the combination of goals
and the fact that the CHATS program was funded
by DARPA, an agency that is part of the United
States Department of Defense.

a. Many of the OpenBSD volunteers were
working on their own time but were em-
ployed by commercial enterprises.

b. The work we envisioned for POSSE de-
manded essentially full-time commitments
for the OpenBSD and OpenSSL developers
responsible for certain sub-projects.

c. Many of the OpenBSD and OpenSSL par-
ticipants are non-U.S. nationals.

d. Open Source projects do not have a corporate
or non-profit corporate structure with which
contracts can be negotiated.

We have worked out a solution that has largely
been successful. The University of Pennsylvania
has contracted to DARPA to perform the items in
a statement of work more or less coveri here in
the section on POSSE Project Management Chal-
lenges. Several U.S.-based, OpenBSD developers
became Penn employees. Subcontracts were used
for one other U.S.-based developer, and subcon-
tracts were created for Columbia University, as
well as subcontracts in Canada and the U.K.

Universities in general, and the University of
Pennsylvania in particular, provide an ideal struc-
ture with which to carry out such arrangements,
since it is a U.S. entity with a structure capable
of contracting, has many modes and methods for
employing and contracting, and has intellectual

property policies for software that are extremely
attractive for a funded open source project.
DARPA’s only request has been an acknowledge-
ment that DARPA funding was used to create the
software; the BSD license rights are completely
preserved. It is interesting to note how frequently
DARPA is acknowledged in the OpenBSD source
tree—many of the acknowledgments are in the
original Berkeley source, but more and more (53
in OpenBSD 3.3) are showing the POSSE agree-
ment number!

Our project takes a broader view of what we
must do than technology alone. We see that the
important tech transition is first among the small
number of individuals in each open source effort
who are security-focused and second among the
core teams of each effort. While these groups are
one and the same in the OpenBSD effort, and it is
unique in this respect, the important intellectual
“customers” are developers who should have
their “security” thinking caps stapled to their
“developer” thinking caps, so that security is a
first-class consideration in every open source ef-
fort. Our effort to document the OpenSSL auditing
process, to involve many people in development
activities, and our aggressive outreach to other
projects, enabled by the DARPA resources, raised
everyone’s standards by several notches.

posse project management
challenges and solutions

We outline here four major challenges we faced
and our approaches.

1. Decentralized development. The Open-
BSD and OpenSSL development commu-
nities are worldwide and mainly volunteer.
POSSE hired two developers (authors Rahn
and Wright) at Penn as senior software en-
gineers, residing in the Midwest and Middle
Atlantic regions of the U.S., and structured
a subcontract with AL Digital, Ltd., a UK
firm through which Ben Laurie’s services

 1593

Experiences Enhancing Open Source Security in the POSSE Project

(Laurie is an OpenSSL developer and an
author of this chapter) were made available.
Such geographic distribution means there
must be good communication channels (for
example, Internet Relay Chat and Instant
Messaging), people must be familiar with
and trust each other (frequent communica-
tion for trivial matters can be annoying), and
tasks must be neatly separated so people can
work independently as much as possible.

2. Integration with existing working meth-
ods. There are already cultural mechanisms
and protocols to build consensus among
members of the developer community. These
mechanisms and protocols can be leveraged
by using developers who are already aware
of the processes and culture (e.g., Keromytis,
Rahn, and Wright), although a certainly
degree of friction will always occur because
of potentially conflicting goals—this is the
overhead of developing a consensus.

3. Minimize administrative overheads. We
used the structure and specialized skills
effectively. In particular, the university has
significant resources for purchasing, sub-
contracting, and reporting. As academics
must typically both perform and report on
research, it was natural for the academ-
ics on the project (Smith, Greenwald, and
Keromytis) to write quarterly reports, ag-
gressively report on technical progress in
the academic literature, and inject scientific
rigor where appropriate. This had the ben-
efit of focusing the developer’s attention on
development.

4. “Light-touch” management. From the start
of POSSE, we worked very hard to identify
capable and highly motivated people and
gave them interesting problems to work on.
Not surprisingly, they have implemented
clever solutions with a great degree of au-
tonomy.

Management of the project, as anticipated, has
been challenging. As we noted in the original
POSSE proposal,1 there are the challenges of
distributed management, strong personalities,
and knitting together of sometimes quite distinct
development cultures. For example, the OpenSSL
system must work across many operating systems
and its collaboration is much looser, less struc-
tured, etc., than the OpenBSD development team,
which is tightly integrated and led by Theo de
Raadt. In some ways, the development culture
of OpenBSD resembles the “Surgical Team”
model of hierarchy developed by Brooks (1975),
while the OpenSSL development model is more
analogous to the “Programming Group” model
of Weinberg (1974). The OpenBSD methodology
is driven by biannual releases that incorporate
whatever software is ready for “prime time,”
while the OpenSSL releases are more event-driven
than periodic release-driven. Thus, the Open-
BSD model for what OpenSSL should look like
and when it should look that way is clear, while
achieving larger scale consensus for OpenSSL
took more time, leading to some tension.

In particular, one focus of our work had been
the support of hardware cryptographic accelera-
tion, as discussed in the next section, and, fur-
ther, its integration with SSL to accelerate use of
cryptography. Our belief was that cryptographic
operations should be perceived by users to be fast
(as we have recounted elsewhere—see Miltchev,
Ioannidis, and Keromytis, 2002, for example),
as this would encourage their use. OpenSSL
modifications were necessary to accommodate
some of these changes and, based on discussions
at an early developer meeting, these changes
were undertaken by the OpenSSL community.
However, the pace and development style of the
two teams clashed, as the OpenSSL release and
consensus model did not mesh smoothly with the
aggressive release cycles of OpenBSD, and some
tempers flared, with many telephone exchanges to
and from the University of Pennsylvania people
acting as intermediaries.

1594

Experiences Enhancing Open Source Security in the POSSE Project

The seriousness of the culture clash should not
be underestimated, and dealing with such potential
clashes must be dealt with in any management plan
intending to meld multiple open source projects.
During the lifetime of the POSSE project, an
unhealthy and somewhat permanent rift opened
up between the OpenBSD and OpenSSL commu-
nities. Major management effort was required to
prevent a “fork” of OpenSSL (one for OpenBSD
and one for the rest of the world), and this effort
was and continues to be successful. Within the
POSSE project, this rift was smoothed by proj-
ect-level successes. These included the many
OpenSSL fixes, patches, and enhancements that
have emerged from both the OpenSSL auditing ef-
forts and the OpenBSD cryptographic framework
as well as cryptographic accelerator support, and
modifications to OpenSSL to run on OpenBSD.
These features are discussed next.

posse:
outcomes And success
eXAmples

The next three sections provide examples of the
progress made as a result of the POSSE project.
The first of these covers the cryptographic frame-
work, the basis of hardware cryptography support
in OpenSSL. The second covers the extended
attribute file system, intended to provide con-
trols similar to those of security enhanced Linux
(www.nsa.gov/selinux). The third covers audit of
the OpenSSL system and some of the important
consequences for Internet security.

hardware cryptography support

The OpenBSD cryptographic framework (OCF)
(Keromytis, Wright, & de Raadt, 2003) uses a
service virtualization model that provides access
to cryptographic services while hiding details
of specific cryptographic hardware accelerator

cards (cryptographic providers) behind a kernel-
internal API. User-level applications such as the
OpenSSL library or the SSH daemon can access
the hardware through the /dev/crypto device,
which acts as another kernel application to the
framework. While the implementation details of
the framework are outside the scope of this chapter,
we provide sufficient detail to both understand
the measurement methodology and at least to first
order, reproduce our experiments.

Inside the operating system kernel, the frame-
work presents two interfaces: one to device
drivers, which register with the framework and
specify what algorithms and modes of operations
they support; and one to applications (e.g., IPsec
or /dev/crypto), which create “sessions.” Ses-
sions create context in specific driver instances
selected by the framework based on a best-match
basis with respect to the algorithms used. Ap-
plications queue requests on sessions, and the
cryptographic framework, running as a kernel
thread and periodically processing all requests,
routes them to the appropriate driver. Once the
request has been processed, a callback func-
tion provided by the application is invoked that
continues processing. A software pseudo-driver
registers with the framework as a default when
no hardware acceleration is available. Public key
operations are modeled in the same way, although
no session is created.

In summary, the framework provides asyn-
chronous operation, load balancing, application
and cryptographic provider independence, and
support for both symmetric and public key op-
erations. For our discussion, the most important
attribute of the framework is that it provides
an identical common path to the cryptographic
providers available in the system, regardless of
their nature (hardware vs. software) or other
characteristics (performance, details of the card
interface, etc.).

The framework is implemented and has been
in use with IPsec since OpenBSD 2.8, although
it continues to evolve in response to new require-

 1595

Experiences Enhancing Open Source Security in the POSSE Project

ments. Public key support and the /dev/crypto
API were introduced in subsequent versions of
OpenBSD. The OpenSSL crypto library uses this
API by default since OpenBSD version 3.1. The
OCF has also been ported to FreeBSD, and we are
working on Windows and Linux versions.

extended Attribute File system

The Extended Attributes work from TrustedBSD
is an extension to the BSD UFS layer that allows
new meta-data to be persistently associated with
filesystem objects (files and directories). These
meta-data are arbitrary (name, value) pairs and
can be used to implement Access Control Lists,
Sensitivity Labels, POSIX process capabilities,
SubOS user IDs (Ioannidis, Bellovin, & Smith,
2002), etc. Besides the obvious extensions to UFS,
there are API modifications to accommodate
handling of Extended Attributes, as well as the
necessary userland tools to manage them.

This work was introduced for TrustedBSD
(Watson, 2000), but given the similarity of the
kernels, it was believed to be fairly straightforward
to import it to OpenBSD and integrate it with the
rest of our security architecture. The combination
of the /dev/policy interface (Ioannidis, Keromytis,
Bellovin, & Smith, 2000), Security-enhanced
Linux features, and Extended Attributes should
result in a very flexible security enforcement
mechanism.

The enhanced file system has been designed
and implemented by author Dale Rahn in concert
with Robert Watson of NAI Labs/TrustedBSD.
The implementation effort has been kept com-
pletely synchronized with that of TrustedBSD.

The /dev/policy policy device has been imple-
mented for OpenBSD and continues to be refined.
As a major goal of this work was support for
SE-Linux, we also undertook an effort (by Tom
Langan of Penn) to provide SE-Linux features.
For example, the extensions included checking
permission on every I/O system call related to
files, networks, etc. Conventional BSD systems
check just once on open or equivalent. This ex-

tension was successful and is available, but not in
the OpenBSD release. The /dev/policy notions,
including the use of advanced policy specification
languages, were applied directly.

openssl Audit

OpenSSL is used as a technical building block
of the secure Apache (Laurie & Laurie, 1999)
web server. Web servers are, with considerable
accuracy, considered the operating systems of
the WWW. Apache is the dominant web server,
widely used by commercial and industry sites,
and has a greater than 70% market share. Apache
provides an operating environment for concur-
rent transaction processing, script execution, and
any other requests that arrive on an HTTP (80)
or HTTPS (443) port. The server keeps multiple
threads running concurrently to overcome disk
and other latencies and provide high performance.
A number of services are provided, such as perl
scripting, that can help process client PUTs and
GETs. When secure Apache is used, the SSL
protocol ensures that the transactions with the
server are authenticated and encrypted; this be-
havior is selected, for sites which support it, by
prefacing the site name with https: to indicate that
the security features are to be used.

The OpenSSL Project is a collaborative effort
to develop a robust, commercial-grade, full-fea-
tured, and open source toolkit implementing the
Secure Sockets Layer (SSL v2/v3) and Transport
Layer Security (TLS v1) protocols as well as
a full-strength general purpose cryptography
library. The project is managed by a worldwide
community of volunteers that uses the Internet
to communicate, plan, and develop the OpenSSL
toolkit and its related documentation.

A major research issue addressed by POSSE
was the portability of the effective OpenBSD
audit methodology to other open source efforts.
As an experiment, applying the audit methodol-
ogy to OpenSSL seemed appropriate, given the
importance of the OpenSSL software and Apache
to electronic commerce. OpenSSL had never been

1596

Experiences Enhancing Open Source Security in the POSSE Project

audited, had accreted code from many program-
mers, and had many patches, and thus was an ideal
candidate for the careful scrutiny of a code audit.
The strategy we chose was to start the audit with
tools, to see what “low-hanging fruit” could be
picked by these tools and eliminated in the code
base. For example, John Viega’s RATS tool (Viega
& McGraw, 2001) can help with fixed-size buffers
and detected over 500 instances of fixed-size buf-
fers (which can be exploited for buffer overflow
attacks). After some poor initial experiences with
RATS, we found that creating search patterns was
reasonably powerful. While we looked at Splint
(Larochelle & Evans, 2001), we did not end up
using it. We were able to detect some errors us-
ing a tool supplied by David Wagner (Wagner,
Foster, Brewer, & Aiken, 2000).

An important observation about the OpenSSL
auditing process is that publicized holes in other
systems (for example, on security mailing lists)
suggested analogous code in OpenSSL to check,
and a variety of problems were identified in this
fashion. This suggests that experience can play
a large role in code auditing, since problematic
code will often follow a pattern, which can both
be exploited by an experienced attacker and re-
paired by an experienced auditor. The conclusion
at this stage is that tools are an effective way of
both pruning low-hanging fruit and identifying
chunks of code that need attention. However,
many problems still require insight and experi-
ence in the auditor.

The OpenSSL audit discovered and fixed holes
in OpenSSL identified on the Internet. The holes
in OpenSSL were fixed just before Defcon and
were totally due to CHATS funding. A patch of
over 3,000 lines of code secures a host of prob-
lems of lesser severity and generally hardens
OpenSSL against future attacks. The OpenSSL
audit was largely performed by Ben Laurie of AL
Digital, Ltd. AL Digital’s auditing efforts proved
prescient; the fixes in OpenSSL illustrated a po-
tential hole in other systems that was exploited to

write the Sapphire/Slammer worm.2 The worm
exploited people who had failed to patch a per-
sistent problem with available security updates
(Arbaugh, Fithen, & McHugh, 2000).

A large body of auditing notes and an outline of
a book on the OpenSSL audit have been produced,
but it is unclear what the final disposition of this
information will be. Our operating assumption is
that some cleanup and publication on the WWW
would extract the maximum value from these
unique notes describing both the use of audit
tools (such as John Viega’s RATS) as well as the
manual audit.

dIscussIon

Almost 37,000 lines of new code are directly at-
tributable to this project (as measured by a scan
of the OpenBSD 3.2 source tree), and the POSSE
project has directly contributed to the 3.0, 3.1, 3.2
and 3.3 releases of OpenBSD.

In addition, a variety of creative new work has
been done. An example of this is the W^X (for
Write XOR eXecute) project. This goal of this
project is to modify the executable and shared
library layout so that the a typical program had
no regions of memory that were both writable
and executable.

This change prevents one of the common
attacks where a buffer overflow is used to write
code into the address space of a program, then
execute that code. This change was introduced
with OpenBSD 3.3 on several architectures: alpha,
sparc, sparc64. Changes are in progress to add
support for this protection to i386 and macppc
(PowerPC) architectures with OpenBSD 3.4.

In addition, a modification to GCC called
ProPolice written by Etoh was integrated.
ProPolice rewrites the layout of stack allocated
data including a logical “canary” to detect buf-
fer overruns. This change, coupled with W^X
mappings and a randomized stack gap, greatly

 1597

Experiences Enhancing Open Source Security in the POSSE Project

reduces the chance of a buffer overrun attack
being successful.

conclusIon

The freedom of open source development has led
to a plethora of UNIX-derived and UNIX-like
source trees. Each tree has, at best, partially in-
stantiated security features, although OpenBSD
has the advantage of audited code. Inadequate
resources, insufficient motivation for portable
solutions, and too few security experts for all
trees have been major barriers. POSSE helps to
surmount these barriers and more closely match
the resources to the requirements.

We have created a project that has been having
a substantial impact on the open source commu-
nity, and beneficiaries have included a variety of
commercial vendors who examine or incorporate
features from open source systems directly in
their own systems. For example, many security
appliance vendors use OpenBSD or a minimized
version of OpenBSD as the platform for their
systems. OpenSSH is shipped with Apple’s ma-
chines and is extremely widely used.

This has proven a challenging project to man-
age. There are distributed developers, many
distractions, and strong personalities. Nonethe-
less, we continue to believe that the university is
an ideal model for a management entity for this
type of effort. By design, its “loose coupling” and
open style of discourse provide an easy means
by which the long-term goals addressed in the
CHATS program can be effectively addressed.
Producing a new generation of security-conscious
(and capable) developers is a natural enterprise
for a university.

AcknoWledgment

This work was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) and

Air Force Research Laboratory, Air Force Mate-
riel Command, USAF, under agreement number
F30602-01-2-0537. Statements made herein are
neither explicit nor implied positions of the U.S.
Government.

The authors thank Theo de Raadt, the founder
and leader of the OpenBSD Project, for his per-
sistence and technical vision.

reFerences

Arbaugh, W. A., Fithen, W. L., & McHugh, J.
(2000). Windows of vulnerability: A case study
analysis. IEEE Computer, 33(12), 52-59.

Bach, M. J. (1986). The design of the UNIX op-
erating system. Englewood Cliffs, NJ: Prentice
Hall.

Brooks, F. P. (1975). The mythical man-month.
Reading, MA: Addison-Wesley.

Clark, D. D. (1988). The design philosophy of
the DARPA Internet protocols. In Proceedings
of SIGCOMM 1988, 106-114.

Cusumano, M. A. & Selby, R. W. (1997). How
Microsoft builds software. Communications of
the ACM, 40(6), 53-61.

Daley, R. C. & Dennis, J. B. (1968). Virtual
memory processes and sharing in MULTICS.
Communications of the ACM, (5), 306-312.

Fano, R. M. & David, E. E. (1965). On the social
implications of accessible computing. In AFIPS
Conference Proceedings 27, 243-247.

Ioannidis, S., Keromytis, A., Bellovin, S., & Smith,
J. (2000). Implementing a distributed firewall. In
Proceedings of Computer and Communications
Security (CCS) 2000, 190-199.

Ioannidis, S., Bellovin, S., & Smith, J. M. (2002).
Sub-operating systems: A new approach to ap-
plication security. In Proceedings of the 10th
SIGOPS European Workshop, pp. 108-115.

1598

Experiences Enhancing Open Source Security in the POSSE Project

Keromytis, A., Wright, J., & de Raadt, T. (2003).
The design of the OpenBSD cryptographic frame-
work. In Proceedings of the USENIX Conference,
pp. 181-196.

Keromytis, A. D., Ioannidis, J., & Smith, J. M.
(1997). Implementing IPsec. In Proceedings of
Global Internet (GlobeCom) ’97, 1948-1952.

Larochelle, D. & Evans, D. (2001). Statically
detecting likely buffer overflow vulnerabilities.
In Proceedings of the 2001 USENIX Security
Symposium.

Laurie, B. & Laurie, P. (1999). Apache: The de-
finitive guide. Sebastopol, CA: O’Reilly.

Lions, J. (1977a). A commentary on the UNIX
operating system. Bell Laboratories.

Lions, J. (1977b). UNIX operating system source
code, Level Six. Bell Laboratories.

McKusick, M. K., Bostic, K., Karels, M. J., &
Quarterman, J. S. (1996). The design and imple-
mentation of the 4.4 BSD operating system. Read-
ing, MA: Addison-Wesley.

Miltchev, S., Ioannidis, S., & Keromytis, A. (2002).
A study of the relative costs of network security
protocols. In Proceedings of USENIX Annual
Technical Conference (Freenix track), 41-48.

MITRE (2003). Use of Free and Open-Source Soft-
ware (FOSS) in the U.S. Dept of Defense. MITRE
Report MP 02 W0000101, Version 1.2.04.

Organick, E. I. (1972). The MULTICS system.
Cambridge, MA: MIT Press.

Raymond, E. S. (1999). The cathedral and the
bazaar: Musings on Linux and open source by
an accidental revolutionary. Sebastopol, CA:
O’Reilly and Associates.

Ritchie, D. & Thompson, K. (1974). The UNIX
operating system. Communications of the ACM,
17, 365-375.

Ritchie, D. M. &Thompson, K. L. (1978). The
UNIX Time-Sharing System. The Bell System
Technical Journal, 57(6), 1905-1930.

Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984).
End-to-end arguments in system design. ACM
Transactions on Comp. Systems, 2(4), 277-288.

Schroder, M. D., Clark, D. D., & Saltzer, J. H.
(1977). The MULTICS kernel design project. In
Proceedings of the 6th ACM SOSP, 43-56.

Schroeder, M. D. (1975). Engineering a security
kernel for MULTICS. In Proceedings of the 5th
ACM SOSP, 125-132.

Sullivan, G. R. & Dubik, J. M. (1994). War in
the information age. U.S. Army War College:
Strategic Studies Institute (SSI), (23 pages).

Thompson, K. (1978). UNIX Implementation.
The Bell System Technical Journal, 57(6),
1931–1946.

Viega, J. & McGraw, G. (2001). Building secure
software. Reading, MA: Addison-Wesley.

Wagner, D., Foster, J. S., Brewer, E. A., & Aiken,
A. (2000). A first step towards automated detection
of buffer overrun vulnerabilities. In Proceedings
of the Symposium on Network and Distributed
Systems Security, 3-17.

Watson, R. (2000). Introducing supporting infra-
structure for trusted operating system support in
FreeBSD. In the Proceedings of BSDCon 2000.

Weinberg, G. (1974). The psychology of computer
programming. New York: Van Nostrand.

endnotes

1 See http: //www.cis.upenn.edu/~dsl/POS-
SE/

2 See http: //www.cs.berkeley.edu/~nweaver/
sapphire/

This work was previously published in Free/Open Source Software Development, edited by S. Kock, pp. 242-258, copyright
2005 by IGI Publishing, formerly known as Idea Group Publishing (an imprint of IGI Global).

