
Cryptography As An Operating System
Service: A Case Study

ANGELOS D. KEROMYTIS

Columbia University

JASON L. WRIGHT and THEO DE RAADT

OpenBSD Project

and

MATTHEW BURNSIDE

Columbia University

Cryptographic transformations are a fundamental building block in many security applications and

protocols. To improve performance, several vendors market hardware accelerator cards. However,

until now no operating system provided a mechanism that allowed both uniform and efficient use

of this new type of resource.

We present the OpenBSD Cryptographic Framework (OCF), a service virtualization layer im-

plemented inside the operating system kernel, that provides uniform access to accelerator function-

ality by hiding card-specific details behind a carefully designed API. We evaluate the impact of the

OCF in a variety of benchmarks, measuring overall system performance, application throughput

and latency, and aggregate throughput when multiple applications make use of it.

We conclude that the OCF is extremely efficient in utilizing cryptographic accelerator func-

tionality, attaining 95% of the theoretical peak device performance and over 800 Mbps aggregate

throughput using 3DES. We believe that this validates our decision to opt for ease of use by applica-

tions and kernel components through a uniform API and for seamless support for new accelerators.

We are grateful to Global Technologies Group, Inc. for providing us with two XL-Crypt (Hifn 7811)

boards, one Hifn 6500 reference board, and one Hifn 7814 reference board. We are also grateful

to Network Security Technologies, Inc. for providing us with two Hifn 7751 boards, one Broadcom

5820 board, and two Broadcom 5805 boards. In addition, Network Security Technologies funded

part of the original development of the device-support software.

Part of this work was supported by DARPA and the Air Force Research Laboratory, Air Force

Material Command, USAF, under agreement number F30602-01-0537.

Part of his work appeared in Proceedings of the USENIX Annual Technical Conference, San

Antonio, TX, June 2003, pp. 165-178 and in Proceedings of the 11th IEEE International Conference

on Networks, Sydney, Australia, Sept.-Oct. 2003, pp. 455-460.

Authors’ addresses: A. D. Keromytis, Department of Computer Science, Columbia University, M.C.

0401, 1214 Amsterdam Avenue, New York, NY 10027; email: angelos@cs.columbia.edu; T. de Raadt,

812 23rd Avenue SE, Calgary, Alberta T2G 1N8, Canada; J. L. Wright, 3857 Beech Down Dr.,

Chantilly, VA 20151; M. Burnside, Department of Computer Science, Columbia University, M.C.

0401, 1214 Amsterdam Avenue, New York, NY 10027.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0734-2071/06/0200-0001 $5.00

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006, Pages 1–38.

2 • A. D. Keromytis et al.

Furthermore, our evaluation points to several bottlenecks in system and operating system design:

data copying between user and kernel modes, PCI bus signaling inefficiency, protocols that use

small data units, and single-threaded applications. We identify some of these limitations through

a set of measurements focusing on application-layer cryptographic protocols such as SSL. We offer

several suggestions for improvements and directions for future work. We provide experimental

evidence of the effectiveness of a new approach which we call operating system shortcutting. Short-

cutting can improve the performance of application-layer cryptographic protocols by 27% with very

small changes to the kernel.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Cryptographic Controls; D.4.8

[Operating Systems]: Performance—Measurements

General Terms: Security, Performance

Additional Key Words and Phrases: Encryption, authentication, hash functions, digital signatures,

cryptographic protocols

1. INTRODUCTION

Today’s computing systems are used for applications such as electronic com-
merce, tele-collaboration of various types, and evolving peer-to-peer systems
that often contain sensitive information. Security in these systems depends
on several mechanisms that utilize cryptographic primitives as a basic build-
ing block. Such cryptographic primitives can be very complex [Broscius and
Smith 1991] because the design of these systems is intended to impede sim-
ple, brute-force, computational attacks. This complexity drives the belief that
strong security is fundamentally incompatible with good performance which, in
turn, leads to favoring performance over cryptography by minimizing use of the
latter. However, the foundation for this belief is often software implementation
[Feldmeier and Karn 1990] of algorithms that were originally intended for effi-
cient hardware implementation. Although modern encryption algorithms such
as AES were designed with performance on general CPUs in mind, they remain
relatively heavyweight compared to other computational tasks typically found
on a server or workstation.

To address this issue, vendors have been marketing hardware accelera-
tion boards that implement several cryptographic algorithms used by secu-
rity protocols and applications. In some ways, this mirrors the evolution of
high-performance graphics processing units (GPUs) to match the needs of the
computer-gaming community. Note that, despite the increasing performance of
CPUs, GPUs are considered essential for serious gaming (or other graphics-
intensive applications), both because they often outperform the system pro-
cessor and, perhaps more importantly, because the CPU can be used to com-
plete other tasks while the GPU is handling the graphics-rendering part of the
application.

In this environment, GPUs and applications must conform to industry-
standard APIs such as DirectX and OpenGL. In the case of cryptography, mod-
ern operating systems lack the necessary support to provide efficient access to
similar functionality to applications and the operating system itself through
a uniform API that abstracts away hardware details. As a result, accelera-
tors are often used directly through libraries linked with applications typically

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 3

requiring device-specific knowledge by the applications and preventing the op-
erating system itself from easily utilizing such hardware.

We present the OpenBSD Cryptographic Framework (OCF), a service virtu-
alization layer implemented inside the operating system kernel, that provides
uniform access to accelerator functionality by hiding device-specific details be-
hind a carefully-designed API. The abstraction introduced allows us to easily
support new hardware accelerators and enables applications to use any such
accelerator without device-specific knowledge. Furthermore, this intermediate
layer does not unduly impact performance which is common when such abstrac-
tions are introduced.

The OCF has been in use with OpenBSD [de Raadt et al. 1999] for over
three years (since OpenBSD 2.8) and has proven stable and efficient in practice,
although it continues to evolve in response to new requirements1. The OCF has
also been ported to FreeBSD and NetBSD with a port under development for
Linux. It offers features such as load-balancing across multiple accelerators,
session migration, and algorithm chaining. We describe the changes we made
to the OpenBSD kernel and applications to take advantage of the OCF. This
article should serve as a good introduction to newcomers as well as veterans
of operating system design and development of the complexity of introducing a
major new mechanism to a relatively widely-used and stable operating system.

We evaluate the impact of the OCF in a variety of micro-benchmarks, mea-
suring overall system performance, application throughput and latency, and
aggregate throughput when multiple applications use the OCF. Our evaluation
shows that, despite its addition in the system as a device/service virtualization
layer, the OCF is extremely efficient in utilizing cryptographic accelerator func-
tionality, attaining 95% of the theoretical peak device performance. In another
configuration, we were able to achieve a 3DES aggregate throughput of over
800 Mbps, by employing a multithreaded application and load-balancing across
multiple accelerators.

A secondary observation from our work is that small data buffers should
be processed in software, if possible, freeing hardware accelerators to handle
larger requests that better amortize the system and PCI transaction costs. On
the other hand, multithreading results in increased utilization of the OCF, im-
proving aggregate throughput. We make recommendations for future directions
in architectural placement of cryptographic functionality, operating system pro-
visions, and application design, and discuss several improvements and promis-
ing directions for future work. We believe that our observations will be valuable
to operating system designers as they should be applicable to a large class of
application environments.

Perhaps more important than the micro-benchmarks, however, is the con-
firmation that the use of hardware accelerators can remove contention for the
CPU and thus improve overall system responsiveness and performance for un-
related tasks. Our experiments allowed us to determine that the limiting factor
for high-performance cryptography in modern systems is often data copying
and the PCI bus. Thus, when deciding what hardware accelerators to use in a

1Public-key algorithm support and the /dev/crypto interface were introduced in a later version.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

4 • A. D. Keromytis et al.

particular system, the best choice may be neither the fastest accelerator nor the
one with the best price/performance ratio. Instead, system designers need to
evaluate such additional hardware in the context of their system using real (or
at least realistic) workloads. Furthermore, we expect our findings to be applica-
ble in noncryptographic contexts, for example, in media stream processing, Web
server data flows, and so on. We believe that our approach offers an attractive
model for introducing similar new features and support for large classes of new
hardware devices in a legacy system and should thus be of practical interest to
developers and researchers.

Finally, we briefly evaluate one of our suggestions for future operating system
design which we call operating system shortcutting. This consists of introduc-
ing a small amount of application-specific logic in the operating system kernel
which allows the application to remove itself from the performance-critical data
path. Our proof-of-concept implementation of the scheme for an SSL-enabled
Apache Web server shows that performance of static pages and files can improve
by up to 27%.

The take-away lessons of our work are as follows.

—It is possible to introduce generic support for new classes of computation-
offload devices in legacy operating systems through carefully designed APIs
and abstractions as discussed in Section 3. Such APIs need to take into consid-
eration the limitations of the operating system (for example, lack of threading
support inside the OpenBSD kernel) and the underlying hardware to achieve
satisfactory performance.

—Implementing such an API inside the kernel allows for a wide variety of
protocols and applications to take advantage of the new facilities often with
minimal modifications. In the case of OCF, application-level support con-
sisted of implementing a pseudodevice (discussed in Section 4.2) and the
necessary interface in the OpenSSL library. Here, the existance and almost
universal use of a library such as OpenSSL allowed us to easily introduce
support for hardware accelerators to all user-level applications as discussed
in Section 4.2.1.

This approach allowed us to easily utilize such hardware both for in-kernel
security protocols (such as IPsec) and for applications (e.g., SSL/TLS). Con-
trast this to the way modern graphics cards are supported by windowing
systems (at least in unix-like systems), where all of the device-specific sup-
port is implemented as part of user-level drivers and libraries (e.g., as part
of the X server); in this environment, the operating system itself cannot eas-
ily take advantage of advanced graphics capabilities, for example, for data
stream processing [GPG 2003; Macedonia 2003; Thompson et al. 2002; Cook
et al. 2005].

—Despite the introduction of an intermediate layer between producers and con-
sumers of cryptographic services, it is possible to minimize the performance
impact (and, in fact, make the system much more efficient), at the cost of
increased complexity and extensive code reengineering (e.g., in the case of
IPsec as discussed in Section 4.1).

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 5

—If the resulting system is well designed and implemented, new performance
limitations will be exposed as a result of stressing different aspects of the
overall system architecture. In our case, the new limiting factors turned out
to be the memory and PCI bus throughput as shown in Section 5. Although
we had not planned ahead for this specific scenario, we were lucky to be
able to trivially augment the operating system kernel such that we could
achieve a considerable performance improvement for specific usage scenarios
by attempting to mitigate these limitations as discussed in Section 7.

—Finally, although we do not stress this point in this article, careful API design
allows for rapid, parallel development of the different system components.
Specifically for OCF, we developed the device drivers, core OCF functional-
ity, and IPsec modifications in parallel. Likewise, we were able to augment
OCF, develop /dev/crypto, and introduce the necessary code to OpenSSL in
parallel, bringing all the pieces together for debugging and integration at
the end of the development process. This approach is particularly useful in
an open-source environment where different developers may be contributing
to different aspects of the system at various times; partitioning of devel-
opment through clean APIs allows for a smoother, more efficient and more
fault-tolerant2 process.

1.1 Organization

Section 2 discusses related work. Section 3 describes the OCF’s design and
implementation, while Section 4 discusses its use by various subsystems and
applications. In Section 5, we evaluate the framework’s performance, and in
Section 6, we discuss some of the results and potential improvements and future
work. Section 7 discusses a prototype of OS shortcutting and its evaluation; this
is meant as a proof of concept rather than a complete validation of the approach.
Section 8 concludes the article.

2. RELATED WORK

As interest in security is currently in an upswing, recent work has focused
on examining the overall performance impact of security technologies in real
systems. Work by Coarfa et al. [2002] has focused on the impact of hardware
accelerators in the context of TLS Web servers using a trace-based methodology
and concludes that there is some opportunity for acceleration, but, given the
choice, one might prefer a second processor since it also assists with the sub-
stantial (and perhaps dominant) noncryptographic overheads. Miltchev et al.
[2002] provides some basic performance characterizations of IPsec as well as
other network security protocols, and the impact acceleration has on through-
put. The authors conclude that the relative cost of high-grade cryptography is
low enough that it should be the default configuration. In Gupta et al. [2004],
the authors examine the benefits of using elliptic curve-based public-key cryp-
tosystems which they show can improve HTTPS performance by 13%–30% in

2That is, a process that tolerates developers dropping out or disappearing for arbitrary amounts of

time often without warning.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

6 • A. D. Keromytis et al.

realistic workloads with more benefits to be had as servers move to larger key
sizes. The authors Shirase and Hibino [2004] present a hardware architecture
for accelerating elliptic curve operations.

Boneh and Shacham [2001] describe a technique for improving SSL hand-
shake performance. It demonstrates that it is faster to do n SSL handshakes as
a batch than n handshakes individually, based on a technique for batching RSA
decryptions. It also shows a speedup factor of 2.5 for n = 4. It is important to note
that this speedup only applies to the handshake portion of the SSL connection,
not to the data transport itself. By caching session keys, the authors of Goldberg
et al. [1998] demonstrate a reduction in download time of secure Web documents
of between 15% and 50%. Again, this technique only accelerates the handshake
portion of the SSL connection without reducing the data transport time.

There has been a considerable amount of work on the enhancement of system
performance through the addition of cryptographic hardware [Broscius and
Smith 1991]. This early work was characterized by its focus on the hardware
accelerator rather than its implications for overall system performance. Smith
et al. [1992] began examining cryptographic subsystem issues in the context of
securing high-speed networks and observed that the bus-attached cards would
be limited by bus-sharing with a network adapter on systems with a single I/O
bus. A second issue pointed out in that time frame [Pu et al. 1988] was the cost of
system calls, and a third [Traw and Smith 1993; Smith and Traw 1993; Druschel
et al. 1993; Kay and Pasquale 1993] the cost of buffer copying. These issues are
still with us and continue to require aggressive design to reduce their impacts.

Smyslov [1999] describes an API to cryptographic functions, the main pur-
pose of which is to separate cryptographic libraries from applications, thus
allowing independent development. Our service API is similar at a high level,
although several differences were dictated by the need to support actual hard-
ware accelerators and allow it to be used efficiently by protocols such as
IPsec and SSL as we discuss in Section 3. Other work includes the Microsoft
CryptoAPI [Microsoft Corporation 1998], GSS-API [Linn 1997], and IDUP-
GSS-API [Adams 1998], PKCS #11 [RSA Laboratories 1997], SSAPI [National
Security Agency 1997], and the CDSA [The Open Group 1999]. These are pri-
marily intended for use by applications that also require authentication, autho-
rization, key management, and other higher-level security services. Our work
focuses on low-level cryptographic operations, providing a simple abstraction
layer that does not significantly impact performance compared to a device-
specific approach.

Gutmann [2000] describes an open-source cryptographic coprocessor, focus-
ing on protecting keys and other sensitive information from tampering by unau-
thorized applications. The author extends the cryptlib library to communicate
with the coprocessor. While he discusses several options for hardware accel-
eration and identifies some potential performance bottlenecks, it is mostly a
qualitative analysis. This work is extended in Gutmann [1999] which presents
a comprehensive cryptographic security architecture, again focusing primar-
ily on preserving the confidentiality of users’ (and applications’) cryptographic
keys, similar work is discussed in McGregor and Lee [2004]. We are interested
in a much simpler problem: how to accelerate cryptographic operations in a

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 7

Fig. 1. The OpenBSD cryptographic framework structure.

general purpose operating system using hardware available in the market and
with minimal modifications to the kernel, libraries, and applications.

NetBSD uses the dmover facility which provides an interface to hardware-
assisted data movers. This can be used to copy data from one location in memory
to another, clear a region of memory, fill a region of memory with a pattern, and
perform simple operations on multiple regions of memory such as XOR without
intervention by the CPU.

3. THE CRYPTOGRAPHIC FRAMEWORK

The OpenBSD cryptographic framework (OCF), depicted in Figure 1, is an asyn-
chronous service virtualization layer inside the kernel that provides uniform
access to hardware cryptographic accelerator cards. The OCF implements two
APIs for use by other kernel subsystems, one for use by consumers (other ker-
nel subsystems) and another for use by producers (crypto-card device drivers).
The OCF supports two classes of algorithms: symmetric (e.g., DES, AES, keyed-
MD5, HMAC-SHA1) and asymmetric (e.g., RSA, DSA).

Symmetric-algorithm3 (e.g., DES, AES, MD5, compression algorithms, etc.)
operations are built around the concept of the session since such algorithms

3Technically, hash functions such as MD5 and compression algorithms such as LZS are not sym-

metric (key) algorithms. We group them with algorithms such as AES and DES for simplicity in

our discussion and because most hardware accelerators use the same API for all such algorithms.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

8 • A. D. Keromytis et al.

are typically used for bulk-data processing, and we wanted to take advantage
of the session-caching features available in many accelerators. Asymmetric
algorithms are implemented as individual operations: no session caching is
performed. Session creation and teardown are synchronous operations.

The producer API allows a driver to register with the OCF the various al-
gorithms it supports and any other device characteristics (e.g., support for al-
gorithm chaining, built-in random number generation, etc.). The device driver
also registers four callback functions that the OCF uses to initialize, use, and
teardown symmetric-algorithm sessions and to issue asymmetric-algorithm re-
quests. The drivers can also selectively deregister algorithms or remove them-
selves from the OCF (e.g., when a PCMCIA card is ejected). Any sessions using
the defunct driver (or algorithm) are migrated to other cards on an on-demand
basis (i.e., as the next request for that session arrives). Registration and dereg-
istration can occur at any time; typical device drivers do so at system initial-
ization time. Drivers notify the OCF as individual requests are completed by
the accelerators. A brief description of the API is given in Appendix A.

In addition to any hardware drivers, a software-crypto pseudodriver reg-
isters a number of symmetric-key algorithms when the system boots. The
pseudodriver acts as a last-resort provider of crypto services; any suitable hard-
ware accelerator will be treated preferably. However, the kernel does not im-
plement asymmetric algorithms in software for performance reasons; we shall
see in Section 4.2 how we handle these. Using a generic API for crypto drivers
allows us to easily add support for new cards. We briefly discuss these drivers
in Section 3.1.

To use the OCF, consumers first create a session with the OCF, specifying
the algorithm(s) to use, mode of operation (e.g., CBC, HMAC, etc.), crypto-
graphic keys, initialization vectors, and number of rounds (for variable-round
algorithms). The OCF supports algorithm-chaining, that is, performing encryp-
tion and integrity protection in one operation. Such combined operations are
used by practically all data transfer security protocols. At session-creation time,
the OCF determines which card to use based on its capabilities and creates a
session by calling its newsession method provided at device registration time.
When the session is not needed, the OCF frees any allocated resources.

For the actual encryption/decryption, consumers pass to the OCF the data to
be processed, a copy of the parameters used to initialize the session, consumer
provided opaque data, and a callback function. The data can be provided in
the form of mbufs (linked lists of data buffers used by the network subsystem
to store packets) or as a collection of potentially noncontiguous memory blocks
(which subsumes the case of a single contiguous data buffer). Although mbufs
are a special case of noncontiguous memory blocks, we added special support
to allow for some processing optimizations when using software cryptography.
Furthermore, the issuer of a request can specify whether encryption should be
done in place, or if the encrypted data must be returned on a separate buffer.
Various offsets indicate where to start and end the encryption, where to place
the message authentication code (MAC), and where to find the initialization
vector (if already present on the buffer) or where to write it on the output
buffer.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 9

The request is queued, and the OCF API routine immediately returns to the
consumer. The crypto kernel thread is periodically invoked by the scheduler
and dispatches all pending requests to the appropriate producers. It also han-
dles all completed requests by calling the specified callback functions. It then
returns to sleep, waiting for more requests. As a result of the OpenBSD kernel
architecture (common in most non-SMP kernels), the thread is not preemptable
by user processes, although hardware interrupts are still handled. Currently,
the thread must operate at a high priority to avoid synchronization problems.
When using the software pseudodriver, this can cause significant latency in ap-
plication scheduling and in low-priority kernel operations, although the same
problem manifested before the migration to OCF when encryption was done
in-band with IPsec packet processing.

Once the request is processed, the crypto thread calls the consumer sup-
plied callback routine. If an error has occurred, the callback is responsible for
any corrective action. Session migration is implemented by recreating the ses-
sion using the initial session parameters which accompany all requests as we
already mentioned. A specific error code4 is indicated to the callback routine
which reissues the request after recording the new session number to be used so
that subsequent requests are correctly routed. Including the initialization data
in each request also allows us to easily integrate cards that do not support the
concept of session: the driver simply passes all necessary information (data,
algorithm descriptions, and keys) to the card with each request. The opaque
data are simply passed back to the consumer unmodified by the OCF; they are
used to maintain any additional information for the consumer that is relevant
to the request. We shall see an example in Section 4.1.

Asymmetric operations are handled similarly, albeit without support for the
concept of session. The parameters in this case include an array of parameters,
containing the algorithm-specific big-integers.

When multiple producers implement the same algorithms, the OCF can load-
balance sessions across them. This is currently implemented by simply keeping
track of the number of sessions active on each producer. At session setup, the
OCF picks the producer with the smallest number of active sessions. The soft-
ware pseudodriver is currently never used in load-balancing. We evaluate the
effectiveness of this simple scheme in Section 5.4. We discuss possible future
improvements in Section 6.4.

3.1 Device Drivers

The drivers for the various crypto devices must be able to cope with a wide
variety of hardware design decisions (and bugs) made by the manufacturers.
These drivers register the algorithms supported by the device and export the
appropriate callback functions to the OCF.

The hifn driver supports the Hifn 7751, 7811, and 7951 chips and contains
around 3,000 lines of code and definitions. The driver supports the symmetric
operations and hashes available on all these chips. Additionally, it supports
the random-number generators available on the 7811 and 7951, but does not

4The symbolic code EAGAIN is used for this purpose.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

10 • A. D. Keromytis et al.

support the public key unit on the 7951; the latter was clearly designed for
SSL server implementations as it requires a large amount of CPU-intensive
initialization which can be precomputed and used repeatedly on a server but not
a client. All these chips support copying-through header and trailer data to the
destination buffer and include full support for scatter-gather I/O. Unfortunately,
there is no easy way to coalesce interrupts on this chip which generates one
interrupt per operation, resulting in considerable system overhead5.

The nofn driver supports the Hifn 7814, 7851, and 7854 chips (also known
as HIPP1 packet processors). Currently, there is no support for the symmetric
unit on these chips. Fitting these into the current framework is not currently
done because they are designed to replace almost all of the IPsec processing
(IV generation, MAC checking, replay window handling, etc.). In the future, we
intend to add support for the IPsec unit by adding a combined class algorithm
and checking for this in IPsec. On the other hand, the public-key unit is almost
exactly the same as the Hifn 6500 described in the following.

The lofn driver supports the Hifn 6500 chip which contains a public-key unit
and a random-number generator. This chip is essentially a simple big-number
arithmetic logic unit (i.e., it is an ALU capable of performing operations on
1024-bit registers). Unlike all of the other chips, the 6500 is not a bus-master
(i.e., has no support for DMA); instead, registers exist within its PCI memory-
mapped address space. Because of the expense of modular exponentiations,
the somewhat higher overhead of writes to these I/O addresses is still small
compared to doing the exponentiation in software.

The ubsec driver which supports the Broadcom 5801, 5802, 5805, 5820, 5821,
and 5822 chips, consists of slightly less than 3,000 lines of code and definitions.
The symmetric-crypto units on all of the chips are very similar, but the 580x
series and 582x series require different formatting for the big numbers on the
asymmetric unit. These chips support interrupt coalescing by chaining several
commands together and scatter-gather I/O. Unlike Hifn, these chips do not poll
main memory.

We have a variety of other device drivers in various stages of completion. We
are aware of other and more modern products from a variety of vendors which
we hope to support in the future.

4. USE OF THE OCF IN OPENBSD

In this section, we discuss how we extended parts of OpenBSD to make use of
the OCF services.

4.1 IPsec

The IP Security (IPsec) Architecture [Kent and Atkinson 1998], as specified
by the Internet Engineering Task Force (IETF), is comprised of a set of proto-
cols that provide data integrity, confidentiality, replay protection, and authenti-
cation at the network layer. The data encryption/authentication protocols, AH

5Another important detail is that all of the Hifn symmetric crypto chips poll their descriptor rings

in main memory for data to process.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 11

and ESP, reside at the lowest level of the IPsec architecture. These are the
wire protocols, used for encapsulating the IP packets to be protected. They sim-
ply provide a format for the encapsulation; the details of the bit layout are
not particularly important for the purposes of this article. Outgoing packets
are authenticated, encrypted, and encapsulated just before being transmitted,
and incoming packets are decapsulated, verified, and decrypted immediately
upon receipt. These protocols are typically implemented inside the kernel for
performance and security reasons.

IPsec was the first consumer of the OCF services. The original implementa-
tion of the OpenBSD IPsec was described in Keromytis et al. [1997]. Here, we
give a brief overview and then describe the modifications we had to make to it
to enable it to use of the OCF.

In the OpenBSD kernel, IPsec is implemented as a pair of protocols sitting
on top of IP. Thus, incoming IPsec packets destined to the local host are pro-
cessed by the appropriate IPsec protocol through the protocol switch structure
used for all protocols (e.g., TCP and UDP). The selection of the appropriate
protocol is based on the protocol number in the IP header. The SA needed to
process the packet is found in an in-kernel database using information retrieved
from the packet itself. Once the packet has been correctly processed (decrypted,
integrity-validated, etc.), it is requeued for further processing by the IP module
accompanied by additional information (such as the fact that it was received
under a specific SA) for use by higher-level protocols and the socket layer.

Outgoing packets require somewhat different processing. When a packet is
handed to the IP module for transmission, a lookup is made in the Security Pol-
icy Database (SPD) to determine whether that packet needs to be processed by
IPsec. The decision is made based on the source/destination addresses, trans-
port protocol, and port numbers. If IPsec processing is needed, the lookup will
also specify what type of SA(s) to use for IPsec processing of the packet. If
no suitable SA exists, the key-management daemon is notified to acquire one.
Otherwise, the packet is processed by IPsec and requeued for transmission.
The packet also carries an indication as to what IPsec processing has already
occurred to it in order to avoid processing loops. In the original IPsec implemen-
tation, all cryptographic operations were done in-band with packet processing.
This meant that a lot of time was spent performing symmetric-key encryption
in the kernel.

To make use of the OCF, we split the input and output processing paths. For
example, let us consider the case where the kernel determines (by consulting
the SPD) that a packet must be IPsec-protected. After handling generic IPsec
encapsulation issues, this routine calls the appropriate wire protocol output
routine. In the ESP protocol processing, the original processing routine was
broken up into two routines, esp output() and esp output cb(). The former does
all the data marshaling and ESP header manipulation, constructs a crypto
request, passes it to the OCF, and simply returns. Execution returns to the
network stack (where the decision to apply IPsec was made) with an indication
that the operation was successful.

Once the OCF processes the request, it calls esp output cb(), a pointer to
which is included in the request itself. The callback routine completes the ESP

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

12 • A. D. Keromytis et al.

protocol processing by checking for any errors in the crypto processing (requeu-
ing the request if the OCF indicated so), completes IPsec bookkeeping, and
requeues the packet for transmission. The network stack will then perform a
new SPD lookup (making sure no IPsec loops occur by examining the list of
SAs that have been already applied to the packet). If necessary, the output pro-
cessing cycle will occur again. Eventually, the kernel will pass the packet to a
network driver for actual transmission.

The cases for output AH and IPcomp processing are similar. Input process-
ing is also similar. The kernel first locates the appropriate SA in the kernel
SA database and calls the IPsec routine that validates the ESP header fields,
constructs a crypto request, passes it to the OCF and returns. Once the request
is processed, the OCF will call the corresponding callback routine which will
verify the packet integrity (by comparing the value on the packet with that com-
puted by the accelerator), remove the ESP header, perform further sanity and
security checks on the decrypted packet, and requeue it for further processing
by the IP layer. AH and IPcomp input processing is similar as is the case of
IPsec over IPv6.

Input ESP and AH processing offer one example of use of the opaque data
passed with each crypto request discussed in Section 3. All the cryptographic
accelerators that support message authentication (MAC) algorithms only offer
a forward-compute mode. That is, the card can only compute the MAC on the
packet, and it is up to the operating system to verify its validity by comparing
it with the received value. Thus, we use the opaque data to store the MAC
value from the packet and instruct the OCF to write the new MAC value in
the appropriate location in the packet—the operation is exactly the same as
the output case. In the callbacks, we simply do a bytewise comparison of the
computed value (stored on the packet) and the received value (stored as opaque
data in the request itself).

While the code was not very complicated, there were several minor headaches
as a result of this asynchronous processing model. For example, one problem
was communicating MTU information through arbitrarily many IPsec SAs to
the TCP layer so as to correctly fragment application data and avoid fragmenta-
tion at the IP layer. We could not simply update the appropriate data structures
with the correct MTU value after the packet had been encapsulated once since
we could not peek inside the encryption. Fortunately, we keep a record of which
SAs have been applied to a packet during input and output processing. Thus, on
receipt of the appropriate ICMP message, or when the IP layer indicates that the
packet is too large to be transmitted without fragmentation, the list of SAs is tra-
versed and each SA is updated with the correct MTU value based on its position
in the SA chain (i.e., the first SA on output will advertise a smaller MTU than
the last one, the difference is the ESP headers and encryption padding). The
next packet that tries to traverse the chain will encounter a correct MTU value.

4.2 /dev/crypto

Building on our experience with the IPsec implementation, we turn our at-
tention to exporting the OCF services to user-level applications. A /dev/crypto

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 13

device driver exists which abstracts all the OCF functionality and provides a
command set that can be used by OpenSSL (or any other software that uses
/dev/crypto directly).

The interface exported through /dev/crypto is based on ioctl() calls and is thus
fully synchronous (i.e., applications can only have one request pending)—in the
future, we intend to allow processes to issue multiple requests. Both symmetric
and asymmetric operations are permitted using this framework; we will first
describe the symmetric component.

Similar to the underlying OCF, this uses a session-based model since the
general case assumes that keys will be reused for a sequence of operations.
After opening the /dev/crypto device and gaining a file descriptor fd, the caller
requests that a new session be created for a certain cryptographic operation
and specifies all related parameters (e.g., keys). Similar to the OCF, a single
session supports both a cipher and a MAC as we are simply exporting the same
functionality available to the kernel. The kernel returns a session identifier that
can then be reused repeatedly for subsequent operations. When the session is
no longer needed, it can be revoked. Many sessions can be requested against
a single file descriptor fd; all sessions follow a particular fd through fork() and
exec() calls and are not otherwise visible to other processes. Obviously, the last
close() on fd destroys all the sessions.

If the request cannot be satisfied using hardware accelerators, the kernel
will return a specific error code6 so that the caller can fall back to a software
implementation. We considered adding an ioctl() that describes the abilities
of the available hardware, allowing an application to determine if the needed
algorithm is supported by looking at a list. However, numerous other variables
exist (key sizes, block sizes, alignment) which might be difficult to describe. For
the time being, we have punted on this issue. However, when first called, the
OpenSSL engine will enumerate all OCF-supported algorithms. It does so by
trying to create session for each algorithm it supports in software and caches
the result. If an algorithm is not provided by the OCF, the library will use
its software implementation (in reality, the kernel will admit that it supports
cryptographic algorithms that it implements in software, and OpenSSL will
make use of them as if they were implemented by hardware unless a system-
wide configuration variable is set to prohibit this which is the default setting).

Once a session is established, blocks can be encrypted or decrypted using
additional ioctl() calls. Each time this is used, the caller can specify a new IV
or MAC information that they wish to fold into the operation. Input and output
buffers are specified via separate pointers, but they can point to the same buffer
for in-place encryption. Naturally, the data size provided by the caller must be
rounded to the default block size of the algorithm being used. A data size limit
of 262,140 bytes exists at the moment to hide a similar limit found in some
chipsets. In the future, we may support larger blocks by splitting operations
into smaller chunks.

The user level data blocks are copied into memory allocated inside the ker-
nel address space. The OCF is then called to perform the operation using the

6The symbolic error code EINVAL is used.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

14 • A. D. Keromytis et al.

initialization information stored in the application’s /dev/crypto session. If the
operation is successful, the results are copied back to the application buffers.
Obviously, the cost of these two copies is higher for larger block sizes as we shall
see in Section 5.4. In the future, we hope to use page flipping for larger blocks
when the kernel memory subsystem supports this.

For asymmetric operations, no session is required. A different ioctl() is used
in an atomic fashion for each individual operation. Five operations are provided,
supporting different versions of modular exponentiation (a building block for
many public-key algorithms), DSA processing, and Diffie-Hellman computa-
tion. Each of these has an operation-specific number of input and output pa-
rameters which are always a packed byte array of big integers. The particular
format we chose for these parameters makes it easy to interface to OpenSSL
bignums and to most of the early hardware we had access to.

Presently, OpenBSD lacks cloning devices. Therefore a cumbersome proce-
dure for opening /dev/crypto must be followed. After the initial open() call, the
caller must use ioctl() to retrieve a file descriptor (fd) to use, then perform all
operations against this replacement fd. This replacement fd is a unique per-
process descriptor, while the initially-opened one would naturally be shared
between all callers. Without such semantics, the fork() and exit() system calls
do not exhibit the expected semantics with respect to file-descriptor inheritance
and closing. Just as bad, we would end up with all processes able to see and use
each other’s keys. When cloning devices are implemented in OpenBSD, we will
change the user-level code (mostly OpenSSL) to no longer use this complicated
procedure, but the kernel will retain it for backward compatibility. While writ-
ing this code, we ran into numerous strange and difficult resource management
issues for session teardown.

It should also be noted that applications using /dev/crypto must ensure they
use ioctl() with the F SETFD command on the crypto descriptor to ensure that
the close-on-exec flag is set. Otherwise, child processes will inherit unwanted
descriptors which is both a security and a resource exhaustion concern. re-
sources (OCF sessions and kernel memory) may also be held for arbitrarily
long periods of time, for example, when SSH spawns a new shell after a user
login. This would result in starvation for other applications and/or the kernel.

4.2.1 OpenSSL Enhancements. In the past, programmers using OpenSSL
(or its predecessor, SSLeay) directly called the generic crypto routines as they
existed for each algorithm. More recently, programmers have been encouraged
to use the EVP layer for dealing with symmetric algorithms. This provides a
session-based model much like the /dev/crypto layer described in the previous
section. Applications like OpenSSH, mod ssl (the Apache SSL module we use)
and sendmail have matured to use these interfaces.

Newer OpenSSL code bases contain an engine component. This allows asym-
metric algorithms to be directed to a hardware driver; a number of stub func-
tions are provided which typically interface with vendor-specific shared li-
braries to actually do the operation on the vendor’s accelerator. Many of these
subsystems interact badly and do not consider the effects of chroot() or other
strange Unix behaviors, resulting in weak security models. Since we run Apache

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 15

in a chroot()’ed environment in which there exists no /dev/crypto device, we
modified it to perform all necessary initializations prior to being sandboxed.
We wrote our own engine modules that interacts directly with /dev/crypto,
without any of these surprises. Symmetric operations from the EVP layer are
directly mapped into OCF requests. One major weakness is that the EVP layer
has no concept of bundling algorithms. Thus, protocols that use encryption and
MAC on a message, such as TLS and SSH version 2, sequentially issue two sep-
arate requests to /dev/crypto through the EVP layer, resulting in unnecessary
context switches, data copying, and DMA transactions. Thus, the EVP layer
currently does not pass MAC operations to the OCF.

Despite the existance of the direct /dev/crypto interface, we believe that li-
braries such as OpenSSL will remain the main mechanism through which OCF
is accessed for several reasons. First, the wide availability (and portability) of
OpenSSL means that application developers are not locked into any specific
operating system vendor interface. Second, developers need to anticipate that
their software may operate in different environments with or without hardware
accelerators. Using OpenSSL, such software can make use of cryptographic ac-
celeration where available, while maintaining the ability to easily and trans-
parently (for both developers and users) fall back on using the software imple-
mentation of the same algorithms. Finally, there exists considerable software
that has already been written for OpenSSL; it is unrealistic to expect such soft-
ware to be rewritten. Extending OpenSSL is a convenient way of allowing these
applications to use the OCF transparently.

4.3 Swap and Filesystem Encryption

While OpenBSD supports swap-space encryption [Provos 2000] and the Trans-
parent Cryptographic Filesystem (TCFS) [Gattaneo et al. 2001], neither of these
currently utilize the OCF. There is no fundamental reason why this is the case,
and we intend to convert them accordingly as time permits.

5. PERFORMANCE EVALUATION

In this section, we analyze the performance of the cryptographic framework. We
have ran a series of micro-benchmarks that allowed us to determine the limits
of the framework and potential directions for improvement. We use the OCF
for simple cryptographic tasks, comparing different cryptographic accelerators
with the case of pure software encryption, and provide a cost breakdown. We
also attempt to quantify the benefits to be had by the system at large when
offloading cryptographic operations to hardware accelerators. Furthermore, we
evaluate the load-balancing feature of OCF by simultaneously using multiple
accelerators on the same machine. Finally, we provide some indications on the
gain in performance for cryptographic protocols that make use of the OCF; a
more extensive analysis of the latter may be found in Miltchev et al. [2002].

5.1 Testbed

For our tests, we use two identical machines. The machines have 1.4Ghz
Pentium III processors on Tyan Thunder HEsl-T motherboards. These moth-
erboards have three independent PCI buses: 32bit/33Mhz/5V, 64bit/66Mhz/5V,

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

16 • A. D. Keromytis et al.

and 64bit/66Mhz/3.3V. The boards use 512MB of 133Mhz registered SDRAM
and are based on the ServerWorks HESL chipset. We placed the crypto card
being tested either on the 64bit/66mhz/3.3V bus or the 32bit/33Mhz/5V bus as
appropriate for the card. The crypto cards we used are:

—Broadcom 5805 reference design board (32bit),

—Broadcom 5820 reference design board (64bit),

—GTGI XL-Crypt (based on the Hifn 7811 chip) (32bit),

—NETSEC 7751 (based on the Hifn 7751 chip) (32bit),

—Hifn 6500 reference design board (32bit),

—Hifn 7814 reference design board (64bit).

The Hifn datasheet gives a peak performance for the 7751 chip of 62 Mbps for
encryption and 110 Mbps decryption when using IPsec with 3DES/SHA1/LZS
(LZS is a data compression algorithm). When the 3DES engine alone is used,
both encryption and decryption throughput are 83 Mbps. Broadcom’s Web site
places the peak performance of the 5820 chip at 310 Mbps of 3DES-SHA1 when
used in IPsec. Furthermore, they claim 800 1024-bit RSA signature computa-
tions per second. In mid-2003, the most expensive of these cards represented
an investment of less than 20% of overall system price.

For network testing, we used SysKonnect 9843 multimode fiber 1-Gigabit
Ethernet cards for all tasks except monitoring. No switches were used; instead,
we connected the two hosts directly with fiber.

We used vanilla OpenBSD 3.3, with the default compiler settings for the
kernel and applications. The GCC version we used (default with OpenBSD 3.3)
was 2.95.3.

5.2 OCF Throughput

To determine the raw performance of OCF, we use a single-threaded program
that repeatedly encrypts and decrypts a fixed amount of data with various
symmetric key algorithms, using the /dev/crypto interface. We run the test
against all the hardware accelerators listed in the previous section as well
as using the kernel-resident software implementation of the algorithms. We
vary the amount of data to be processed per request across experiments. To
measure the overhead of OCF without the cryptographic algorithms, we added
to the kernel a null algorithm that simply returns the data to the caller without
performing any processing. The results can be seen in Figure 2.

We can make several observations on this graph. First, even when no actual
crypto is done, the ceiling of the throughput is surprisingly low for small-size
operations (64 bytes). In this case, the measured cost consists of the overhead
of system call invocation, argument validation, and crypto-thread scheduling.
As larger buffers are passed to the kernel, the throughput increases dramati-
cally despite the increasing cost of memory-copying larger buffers in and out of
the kernel. When we use 1024-byte buffers, performance in the no encryption
case jumps to 420 Mbps; for 8192-byte buffers, the framework peaks at about
600 Mbps.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 17

Fig. 2. Crypto-hardware performance. The KERNEL-NULL bar indicates use of the null encryp-

tion algorithm. The KERNEL-DES and KERNEL-3DES bars indicate use of the software DES and

3DES implementations in the kernel. The remaining bars indicate use of the various hardware

accelerators. The vertical axis unit is Mbits/second.

Notice, however, that this peak corresponds to a single process issuing crypto
requests. This process is blocked after each request, the scheduler context-
switches to the crypto thread (which was blocked waiting for requests), the null
algorithm executes and the completed request is passed back to the /dev/crypto
driver which wakes up the blocked user-level process. If many processes are
issuing requests, the crypto thread’s request queue will contain multiple re-
quests. When we run multiple processes, each will queue a request (and be
blocked by /dev/crypto); the crypto thread will process all these requests in a
flurry of activity and cause all processes to wake up in synchrony. The crypto
thread will then go back to sleep, while each of the processes will issue another
request. This cycle repeats for the duration of the experiment. As a result, more
processes using the OCF result in increased aggregate throughput, simultane-
ously increasing the average processing latency.

These buffer sizes are close to the typical sizes of requests issued by some of
the most commonly used applications.

—SSH keyboard input results in many small requests (so we are close to the
64-byte case); responses from the server are larger, but not considerably so.
When X forwarding is used, we can occasionally get larger buffers.

—SCP/SFTP issue larger requests; OpenSSH, a popular implementation, uses
requests of 4KB.

—SSL/TLS also issue large requests. The maximum size of an SSL record is
16KB, but can be less if (optional) compression is used.

—IPsec processes packets at the network layer. Such traffic is trimodal [Claffy
et al. 1998]: about 40% of packets are 40–60 bytes (the vast majority of
these are being TCP acknowledgments), with the remainder split between

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

18 • A. D. Keromytis et al.

576 bytes (TCP MSS when no Path MTU Discovery is used) and 1460 bytes
(when Path MTU Discovery is used).

When we use real cryptographic algorithms, we notice that the performance of
DES done in software is close to that of no encryption for small packet sizes; even
3DES performance is just half of the no encryption case. If we use larger buffer
sizes, the performance of software crypto done in the kernel (the KERNEL-∗
labeled bars) degrades rapidly. When we use hardware accelerators, we notice
two different trends. For small buffers, the performance degrades with respect
to the software case. This indicates that the additive costs of system call invo-
cation, OCF processing, and the 2 PCI transactions (to/from the crypto cards)
dominate the cost of doing crypto. However, as we move to larger buffer sizes,
performance quickly improves as these overheads are amortized over larger
buffers despite the fact that more data has to be copied in and out of the kernel
and over the PCI bus. Thus, to improve the performance of the system when
applications issue large numbers of small requests, either request-batching
should be done, a faster processor should be used, or the number of user/kernel
crossings should be minimized. When larger buffers are being processed, it pays
to use some cryptographic accelerators, although not all such cards are equal
in terms of performance.

Notice that the performance of DES and 3DES is the same in each of the 5805
and 5820 cards these cards really implement only 3DES in Encrypt-Decrypt-
Encrypt (EDE) mode and emulate DES by loading the same key in one of the
Encrypt and the Decrypt engines (effectively canceling each other out). In con-
trast, the 7751 seems to implement two separate crypto engines for DES and
3DES, or uses a shortcut in its 3DES engine. The 7811 seems to implement
different engines as well, but the performance difference between the two is
not as pronounced.

Similarly, we measure the performance of OCF for public-key operations.
In this case, there are no kernel-resident software public-key algorithms. We
count the number of RSA signature generations and verifications per second,
for different accelerators and key sizes (512 to 4096 bits as supported by of
the each cards). The results are shown in Figures 3 and 6. Similar results are
shown for the DSA algorithm in Figures 4 and 5.

The Hifn 6500 and 7814 are geared more towards slower, embedded appli-
cations so the fact that their performance is considerably worse than software
is not surprising. The number of verifications is much larger than the num-
ber of signature generations in unit time. This is because, as with most crypto
libraries, OpenSSL opts for small values for the public part of the RSA key
(typically, 216 + 1) and correspondingly large values for the private key. This
causes the public-key operations (encryption and verification) to be much faster
than the private-key operations even though they are, in principle, the same
operation (modular exponentiation).

Another interesting observation is that the RSA sign throughput is higher in
the software case (see Figure 3). This happens because the CPU on the crypto-
card is slower than the host CPU and optimized for bit operations which is
as useful for public-key cryptography. So the anomaly in Figure 3 is actually

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 19

Fig. 3. RSA signature generation. The horizontal axis indicates the modulus size in bits. The verti-

cal axis indicates the number of operations per second. Note that none of the hardware accelerators

supports 4096-bit keys; we give the software case for completeness.

Fig. 4. DSA signature generation. For each cryptographic accelerator, we tested with two modulus

sizes, 512 and 1024 bits; respectively. The vertical axis indicates number of operations per second.

expected. However, as we mentioned in Section 5.1, Broadcom claims that the
5820 can perform 800 RSA signature operations per second with 1024-bit keys.
In our case, we only see slightly over 100. There are two explanations for this.
First, we are underutilizing the 5820: there is only one thread issuing RSA
sign operations which is blocked waiting termination of each request. Once the
card computes the signature, it has to wait for the crypto framework to wake
up the blocked process, then for the scheduler to context-switch to it and the
process to issue an ioctl() call to get the results and then another ioctl() call to
issue the next request which is placed on the crypto thread’s queue. Finally, the
scheduler has to context-switch to the crypto thread. During all this time, the
accelerator is idle since there is no other process using it. The second reason for
the higher vendor-stated performance is that the tests they performed used the

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

20 • A. D. Keromytis et al.

Fig. 5. DSA signature verification. For each cryptographic accelerator, we tested with two modulus

sizes, 512 and 1024 bits, respectively. The vertical axis indicates number of operations per second.

Fig. 6. RSA signature verification. The horizontal axis indicates the modulus size in bits. The

vertical axis indicates operations per second. Note that none of the accelerators supports 4096-bit

keys; we give the software case for completeness.

CRT parameters for the RSA operations which make RSA processing consid-
erably faster. However, for implementation reasons, our OpenSSL engine does
not use CRT parameters yet.

5.3 System-Wide Effects

To determine the system-wide benefits of offloading cryptographic processing,
we run multiple threads (up to 24) of the openssl speed benchmark with various
algorithms, while, at the same time, we run a simple CPU-intensive job. The
CPU hog process consists of a small program that performs 232 function calls,
each function call performing an integer-multiply operation. The elapsed time
for the CPU hog process was recorded for each (algorithm, number of threads)
tuple. As we see in Figure 7, the crypto accelerators very effectively eliminate

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 21

Fig. 7. Program execution time while multiple threads perform crypto operations in parallel. The

bars show the elapsed time in seconds for executing the CPU-bound process for different algorithms

and numbers of threads.

Table I. Crypto-Request Load-Balancing Using a Quad-Hifn 7751 Card on a PCI

64bit/66Mhz bus

Threads 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes 16384 bytes

1 3 Mbps 11.4 Mbps 33 Mbps 59 Mbps 79 Mbps 80 Mbps

2 5.5 Mbps 18.4 Mbps 56 Mbps 111 Mbps 154 Mbps 160 Mbps

3 6.4 Mbps 23.2 Mbps 71 Mbps 152 Mbps 229 Mbps 238 Mbps

4 6.8 Mbps 25.7 Mbps 81 Mbps 182 Mbps 292 Mbps 299 Mbps

32 7.3 Mbps 27.5 Mbps 94 Mbps 249 Mbps 313 Mbps 320 Mbps

contention for the otherwise shared resource, the CPU, whether the crypto
performed is symmetric (DES, 3DES) or asymmetric (DSA with 1024-bit keys).
The execution time for the hog process remains constant, regardless of the
number of threads of execution.

5.4 Load Balancing

We are also interested in determining how well the OCF can load-balance crypto
requests when multiple accelerators are available and the aggregate through-
put that can be achieved in that scenario. We use a custom-made card by Avaya
that contains four Hifn 7751 chips that can be used as different devices through
a PCI bridge resident on the card. We use multiple threads that issue encryption
requests for 3DES, and vary the buffer size across different runs. The results are
shown in Table I. As we can see, performance peaks in the case of 32 threads and
16KB buffers at 320 Mbps which is over 96% of the maximum rated throughput
of four Hifn 7751 chips. The card was installed on the 64bit/66Mhz PCI bus,
but because the chip is a 32bit/33Mhz device, the maximum bus transfer rate
is 1.056Gbps. At our peak rate, we use over 640 Mbps of the bus, 320 Mbps for
data in each direction (to and from the card), plus the transfer initialization

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

22 • A. D. Keromytis et al.

Table II. Crypto Request Load-Balancing Using Four 5820 Cards on a PCI 64bit/66Mhz bus

Threads 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes 16384 bytes

1 5.4 Mbps 18.9 Mbps 62 Mbps 152 Mbps 301 Mbps 255 Mbps

32 9.9 Mbps 37 Mbps 120 Mbps 410 Mbps 759 Mbps 802 Mbps

commands and descriptor ring probing, etc., thus utilizing over 60% of the PCI
bus. Notice that because the card uses a PCI bridge, a 2-cycle latency is added
on each PCI transaction.

The card was installed on the 64bit/66Mhz bus because the system’s
32bit/33Mhz bus exhibited surprisingly bad performance probably because
many other system components are found on that bus and likely cause con-
tention. Since the machine is operating as it normally would while this test
is being run, the scheduler is active, and two clock interrupts are received
at 100 and 128Hz, respectively. Other devices are also generating their own
interrupts.

Another possible cause is an artifact of the i386 spl protection method: a
regular spl subsystem disables the interrupts from a certain class of devices at
the invocation of an splX() call. For instance, calling splbio() blocks reception
of interrupts from all devices which are in the “bio” class of devices. On the
i386, the registers used to do interrupt blocking (found on the programmable
interrupt controller, also known as the PIC) are located on the 8Mhz ISA bus
which is what OpenBSD uses for interrupt management (as opposed to the
APIC).

Worse yet, some operations on this device require a 1 usec delay before tak-
ing effect. To partially mitigate this extremely high overhead, the i386 kernel
interrupt model instead makes the vectors for blocked interrupt routines point
to a single depth queuing function which does the actual interrupt blocking
at the time of reception. When the spl is lowered again, the original interrupt
handler is called. However, the 8Mhz ISA bus still had to be accessed. This
has the effect of further reducing the available bandwidth on the PCI bus. One
small buffer benchmark generated over 62,000 interrupts/sec; we believe that
the spl optimization is failing under such load.

Using four 5820 cards on a 64bit/66Mhz PCI bus allows us to achieve even
higher throughput as shown in Table II. We show only the 1 and 32-thread
tests; the rest of the measurements followed a similar curve as the quad-7751.
Performance peaked at over 800 Mbps of crypto throughput. Using the same
analysis as before, we are using in excess of 1.6Gbps of the fast PCI bus which
has a throughput of 4.22Gbps, achieving slightly over 38% utilization of the
bus. As we mentioned in Section 5.1, the vendor rates this card at 310 Mbps.
Thus, the maximum theoretical attainable rate would be 1.24Gbps. We achieve
64.5% utilization of the four cards in this case. A rough sampling of CPU utiliza-
tion during these large block benchmarks on both cards showed around 10,000
interrupts/second, which is substantial for a PC.

Investigating further, we determined that all four 5820 cards were sharing
irq 11. Thus, it is possible that the culprit is the spl optimization previously
mentioned, at least for the small buffer sizes: the vmstat utility shows us any-
thing from 50,000 to 60,000 interrupts/second when processing buffers of 16

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 23

to 1024 bytes. Furthermore, because of a quirk in the processing of shared
irq handlers, some cards experience slightly worse interrupt-service latency:
shared irq handlers are placed in a linked list. If multiple cards raise the in-
terrupt at the same time, the list will be traversed from the beginning for each
interrupt raised, and each irq handler will poll the corresponding card to de-
termine if the interrupt was issued by it. However, fixing this quirk or moving
the cards on different irq’s did not significantly improve throughput.

When we use 8192-byte buffers, the interrupt count drops to 12,000 which
the system can handle. In each of these cases, the system spends approximately
65% of its time inside the kernel. Most of this cost can be attributed to data
copying. However, as we move to larger buffer sizes, we find the system spend-
ing 89% of its time in the kernel and only 1.9% in user applications for the
case of 16KB buffers. The number of interrupts in this case is only 5,600 which
the system can easily handle. The problem here is that there is considerable
data copyin/copyout between the kernel and the applications. Aggravating the
situation, while such data copying is in progress, no other thread can execute,
causing a convoy effect: while the kernel is copying a 16KB buffer to the appli-
cation buffer, interrupts arrive that cause more completed requests to be placed
on the crypto thread’s completed queue. The system will not allow the appli-
cations to run again before all completed requests are handled which cause
more data copying. Thus, the queue will almost drain before applications will
be able to issue requests again and refill it. We intend to further investigate
this phenomenon.

Fundamentally, the data copyin/copyout limitation is inherent in the memory
subsystem. We measured its write-bandwidth to be approximately 2.4Gbps.
Using the crypto cards, we are in fact doing 3 memory-write operations for each
data buffer: one copyin to the kernel, one DMA from the card to main memory,
and one copyout to the application. Notice that data DMA’ed in from the card is
not resident in the CPU cache as all such data is considered suspect for caching
purposes. In addition, there is an equal amount of memory reads (copyin, DMA
in from the card, copyout). Each of these transfers represents an aggregate
of 800 Mbps. When we ran the same test with three 5820 cards, performance
improved slightly to 841.7 Mbps in the case of 16KB buffers, achieving over
90% utilization of the three cards. In this case, the memory subsystem is still
saturated, but the cards can more easily get a PCI-bus grant and perform the
DMA.

One interesting problem we ran into with this experiment was that the
openssl speed test was broken when used with many threads. Each block size
was run for 3 seconds by each thread, but it took several seconds for all 32
threads to start. By increasing the time for testing each block to one minute,
we amortized this thread startup overhead over a longer period of time.

5.5 File Transfer

Measuring the performance of the OCF outside the context of any specific ap-
plications allowed us to determine how effectively it can take advantage of
hardware accelerators. However, cryptography is often used in the context of a
real application whose workflow may not allow complete utilization of system

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

24 • A. D. Keromytis et al.

Fig. 8. File transfer using SSL. The bars show the elapsed time for transferring a 1GB file in

seconds.

resources. Thus, we need to also determine how suitable the OCF model is to the
needs of common cryptographic applications. Although this is an open-ended
question, it is possible to make some early observations by using some represen-
tative applications that make heavy use of cryptography. To that end, we used
TLS and SFTP to transfer a 1GB file between two hosts. A preliminary eval-
uation using OCF with IPsec can be found in Miltchev et al. [2002]. Figures 8
and 9 show the elapsed time for the transfer, for TLS and SFTP, respectively.

For the TLS test, we used the openssl utility from the OpenSSL 0.9.7-
beta3 release. We used the OpenSSH 3.5 protocol 2 SFTP implementation.
Both of these make use of the OpenSSL cryptographic library which uses the
/dev/crypto interface. Although the two protocols differ slightly in the number
and type of public-key operations performed during initialization, any differ-
ence in the overhead is amortized over the processing and transfer of such a
large file. We recorded wall-clock time spent in user mode and system time
(which includes system call handling and the /dev/crypto device driver process-
ing), spent in the crypto thread as well as time spent for each operation on
the crypto card (including the two DMA transfers over the PCI bus). We also
report miscellaneous time, which is the total wall clock time minus the system
and user time, spent in the crypto thread and time spent waiting on the crypto
operation to be performed in hardware. Miscellaneous costs primarily consist
of the cost of network communication itself.

For TLS, the following cipher suites were tested: EDH-DSS-DES-CBC-
SHA, EDH-DSS-DES-CBC3-SHA, and DHE-DSS-RC4-SHA. The symmetric
algorithms we used were DES, 3DES, and RC4, respectively. In all cases, SHA1
was used in the message authentication code. In addition, each exchange in-
volved a DSA signature/verification on either side and a Diffie-Hellman key

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 25

Fig. 9. File transfer using SFTP. The vertical bars show the elapsed time for transferring a 1GB

file in seconds.

exchange. For SFTP, we tested the following ciphers: AES128-CBC, AES192-
CBC, AES256-CBC, 3DES-CBC, and ARCFOUR (as RC4 is called in the SSH
protocol). Again, SHA1 was used for message authentication. The AES mea-
surements are only included here for completeness; although the OCF supports
AES in software, there are as of yet no commercially available hardware accel-
erators for AES for which the specifications are available to us. RC4 was also
included as a baseline for TLS performance: RC4 is a fairly lightweight stream
cipher which imposes very little performance overhead even when implemented
entirely in software.

The user-∗ bars indicate encryption done exclusively in user-level context; the
kernel-∗ bars indicate use of software encryption in the kernel (in this as well as
the hardware cases only the encryption is done by the OCF, per our discussion
in Section 4.2.1). The remaining bars indicate use of the various cryptographic
accelerators. We notice that the KCrypto slice (which indicates the amount of
time taken by the crypto thread itself) is noticeable in the kernel-* and hardware
accelerator tests. In the former, the bulk of the KCrypto processing is due to
algorithm execution; in the latter, most of the cost is in data marshaling and
unmarshaling, before and after sending to the crypto card.

Notice that kernel-des is slower than user-des (which can be explained in
terms of system call and data-copying overheads), but kernel-3des is faster
than user-3des. Although these same overheads apply here as well, 3DES is
approximately 3 times more expensive than DES (there are certain parts of
the DES computation that can be skipped in an optimized 3DES implemen-
tation). Because the OCF kernel thread is non-preemptable as we mentioned
in Section 3, once it starts processing a 3DES request, it is not interrupted by

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

26 • A. D. Keromytis et al.

another process (although it can be interrupted by hardware interrupts). Thus,
the difference in performance between the two bars shows the overhead of the
periodic scheduler invocation and context switching to other jobs in the ready
queue (the only other jobs in our system were daemons processes with little or
no work to do).

6. DISCUSSION

Following our evaluation of the OCF in the previous section, we give some
thoughts on improvements and future directions.

6.1 Cryptography in the Kernel

As we saw in the previous section, the influence of multithreading on perfor-
mance is strong which suggests that busy servers can make better use of hard-
ware cryptography than clients. This supports the observations of Dean et al.
[2001] that it may make sense to make cryptography a shared network service
to achieve the best cost/performance in a secure system. Notice that, within the
boundaries of one host (operating system instance), this is precisely what the
OCF does. We should also mention that use of a threaded model for applications
involves an obvious security vs. implementation complexity trade-off.

Although the performance of individual applications may not improve dras-
tically when using an accelerator, it appears that the aggregate performance of
a number of applications (as may be the case in a system with many remote
login sessions, a busy Web server, or a VPN gateway) does improve as a result
of increased utilization. Furthermore, hardware accelerators can give a perfor-
mance boost to the rest of the system as shown in Figure 7. Very simply, they
eliminate contention for the CPU which is a resource shared by all applica-
tions and the operating system itself. Thus, while throughput is not drastically
improved (and may in fact degrade in certain scenarios) with use of hardware
acceleration, overall system utilization improves because the main CPU is left
to perform other tasks.

6.2 System Architecture

As we saw in Section 5.4, data copying and the PCI bus quickly become the
limiting factors. In practice, the situation is even worse since cryptography is
used in conjunction with either network security protocols in which case the
network interface card (NIC) contends for a slice of the PCI bandwidth, or
with filesystem encryption in which case the storage device claims a portion of
the bus. This situation suggests that, for maximum performance, cryptographic
support must be provided by the individual devices (e.g., NICs, disk controllers,
etc.). Alternatively, cryptographic support must be located elsewhere in the sys-
tem architecture (e.g., attached to the main CPU7, the system “north bridge” as
the video subsystem is) or the memory subsystem. Any of these approaches, if

7As of late 2004, at least one vendor provided a proprietary extension through a new instruction

to the Pentium processor that used AES circuitry located inside the CPU. We believe this to be a

very promising direction for minimizing or even eliminating cryptographic processing overheads.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 27

implemented correctly, will improve application performance by reducing con-
tention for the PCI bus but, at the same time, will create new challenges for
operating systems that have to support these new devices such as session mi-
gration and fail-over (which the OCF supports by design as we discussed in
Section 3).

Although the OCF does not directly take advantage of NICs that support
IPsec-processing offloading since they are not general-purpose cryptographic
accelerators, we have extended the IPsec stack to use them. The cards of this
type we are familiar with are 100 Mbps full-duplex Ethernet, and it seems rea-
sonable to assume that they can achieve this performance given our results with
dedicated cryptographic processors. Unfortunately, at the time this article was
written, we did not have enough information to write a device driver that could
take advantage of such features. We are also not aware of any commercially
available hard drive controllers that provide built-in encryption services.

6.3 The Effect of Small Requests

The nature of the challenge for operating systems and their support for cryp-
tography is clear. On every measurement, without exception, small-sized oper-
ations fare much worse than those performed on large data buffers. In some
cases, buffer size influences performance more than the choice between hard-
ware or software cryptography. This suggests that the per-operation overhead
is very high, and this is clear from the larger data sizes which get close to
the throughput advertised by the board manufacturer that we presume is the
best-case. In this respect, our findings confirm those of Lindemann and Smith
[2001]. Since many cryptographic protocols are transactional in nature rather
than bulk transfers, these small data operations will be the common case.
Energy should be spent on reducing the overhead of such cases.

As we mentioned in Section 5.2, there are several possible approaches includ-
ing request-batching, kernel crossing, and/or PCI transaction minimization, or
simply use of a faster processor. These are more cost effective solutions than
deploying a hardware accelerator. In situations where bulk data transfer is the
norm (as may be the case in the various Storage Area Network technologies
currently under consideration), cryptographic accelerators can drastically im-
prove performance especially for the more expensive algorithms such as 3DES.
Unfortunately, there were no commercially available hardware accelerators for
AES supported by OpenBSD so we cannot compare the software and hardware
cases for that algorithm. However, recent attacks against AES make the con-
tinued use of 3DES in many environments likely.

6.4 Other Optimizations and Future Work

In our evaluation of OCF, we noticed a few inefficiencies and potential improve-
ments to the system.

Smarter load-balancing. The load-balancing currently done in OCF, as dis-
cussed in Section 3, is very simple. It performs load-balancing of sessions by
keeping a record of the active sessions per producer and selecting the least-
loaded one. However, not all sessions are equivalent in terms of processing

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

28 • A. D. Keromytis et al.

requirements: an FTP-over-IPsec session will use the OCF more heavily than a
telnet-over-IPsec one. Furthermore, the current scheme does not perform load-
balancing for public-key operations. Finally, all producers of crypto services
are considered equal in terms of performance. All these issues point to several
potential improvements that can be made to the OCF.

For example, drivers can state their peak performance (experimentally mea-
sured, using the vendor provided numbers or measured at system boot time),
and the OCF can keep a record of the number of operations actively pending on
each driver. However, this requires sessions to be simultaneously established
on all these cards, and since these cards have a limited amount of memory for
session caching, this approach is perhaps not optimal for a very busy system.
One potential solution is to allow the OCF to do dynamic load-balancing of ses-
sions, replicating and tearing them down on additional cards based on their
measured traffic by maintaining session information internally. Asymmetric
operations are easier to load-balance because they do not depend on the con-
cept of the session. An additional benefit of implementing load-balancing in
this way is that we can let the software driver handle small requests, reducing
latency, and use the hardware producers for larger requests. One complication
to this is that many cards (e.g., Hifn) do not export internal state such as IVs
or intermediate MAC results which makes such session sharing difficult.

Algorithm-chaining across cards. It is possible that an OCF consumer needs
to chain together a number of cryptographic algorithms but no hardware pro-
ducer implements all these. Currently, this would cause the session to be estab-
lished on the software pseudodriver (which implements all algorithms). How-
ever, by maintaining session information inside the OCF, it is possible to create
virtual sessions across multiple (hardware and software) producers. In this
case, the OCF will issue multiple sequential requests to the various producers,
invoking the consumer-specified callback routine at the end. We have a proto-
type of this, but we need to further evaluate the performance implications and
trade-offs of doing multiple PCI transactions.

Asymmetric Multiprocessing (AMP) support. There is an increasing number
of multiprocessor systems. Most of these underutilize the secondary processor
as many modern tasks are I/O-limited. Furthermore, it seems likely that the
first version of SMP support for OpenBSD will be very coarse grained: only
one processor (and process) can be inside the kernel at a time. An alternative
approach is to designate the secondary processor as a dedicated cryptographic
accelerator that registers with the OCF as such. No special support by the OCF
is necessary, and we are currently working toward an implementation of this.

OpenSSL support algorithm-chaining with OCF. As we mentioned in Sec-
tion 4.2, TLS and SSH use the OCF at the granularity of the algorithm. That
is, if both an encryption and a message authentication algorithm have to be
applied on an outgoing message, there will be two distinct calls to the OCF via
/dev/crypto. (The same situation holds for incoming messages.) Since the OCF
supports algorithm-chaining, there is no reason why OpenSSL cannot take ad-
vantage of this to reduce the number of user/kernel crossings. This requires
modification of the TLS implementation in OpenSSL and of OpenSSH to sup-
port this algorithm-chaining. While this is purely an implementation matter,

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 29

the complexity of the OpenSSL code is a significant deterrent to progress in
this direction.

Minimize the number of user/kernel crossings and data copying. In most
practical uses of the OCF (especially in protocols like TLS or SSH), an applica-
tion issues one or more crypto requests via /dev/crypto, followed by a write() or
send() call to transmit the data. Similarly, a read() or recv() call is followed by
a number of requests to /dev/crypto. This implies considerable data copying to
and from the kernel and potentially unnecessary context switching back and
forth. An alternative approach is to link some crypto context to a socket or file
descriptor (when doing application-level file encryption) such that data sent
or received on that file descriptor are processed appropriately by the kernel.
For example, a TLS implementation might construct a data record and simply
write() it to the socket (one data copy and kernel crossing) only to have the
kernel pass it to the OCF for processing before actually passing it on to TCP
for transmission. This requires some discipline by the application, which must
set the state on the socket and only write() an appropriately formatted record,
as well as some support in the kernel to decode incoming TLS or SSH frames
for processing by the OCF before passing them on to the application.

Another potential approach is to do page sharing of data buffers; when a
request is given to /dev/crypto, the kernel removes the page from the process’s
address space and maps it in its own. When the request is done, the kernel
remaps the page back to the process’s address space, avoiding all data copying.
This works well as long as /dev/crypto remains a synchronous interface. If
processes are allowed to have multiple pending requests, accesses to that page
while it is being shared with the kernel must be caught and handled similar to
the way copy-on-write of memory pages is handled. An alternative is to block
any process that tries to access such pinned-down pages until the crypto request
is completed. Obviously, pages that are shared between processes can cause
similar problems even in the current mode of operation. Operations that cross
page boundaries also have to be dealt carefully.

Minimize the number of DMA transfers. A similar situation to the multiple
kernel crossing scenario just described is present in the use of the PCI bus: a
node that is about to transmit an IPsec packet must first DMA it to the cryp-
tographic accelerator, DMA it back to main memory, and finally DMA it to the
NIC. This decreases the attainable PCI bandwidth to a third of the theoretical
maximum for the bus. The same situation holds in the case of file system en-
cryption. If the NIC (or the storage device) offers on-chip cryptography, we only
need one DMA transfer. However, it is possible to reduce the number of DMA
transfers to two (instead of three) even when we have a separate cryptographic
accelerator by doing card-to-card DMA from the accelerator to the NIC (and
the other way around, on packet receipt).

Doing this requires support from the IPsec stack—in particular, deferring
of cryptographic operations until right before the packet must be transmitted
to the network. Fortunately, this is the exact same functionality that the IPsec
stack must implement if it supports NICs with integrated crypto. Fortunately,
the OpenBSD IPsec stack supports this feature. We then need to modify the NIC
driver to first DMA the packet to the accelerator, and then (once the request

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

30 • A. D. Keromytis et al.

is completed) to arrange for a direct DMA transfer to the NIC itself. Again, we
believe this is feasible and should improve the performance of IPsec by more
than 30%. In Section 7, we describe a similar optimization for application-level
cryptographic protocols that achieves a similar speedup.

Emulation of NIC-level TLS/SSH support. Finally, it may be possible to
combine the socket with crypto support and the DMA reduction scheme dis-
cussed in the previous two items to improve the performance of TLS and SSH
by deferring crypto processing until the packet reaches the NIC. In this case,
output TCP checksumming must be deferred until after the accelerator has pro-
cessed the packet. Fortunately, the OpenBSD IP stack supports offloading this
computation to the NIC and many modern NICs offer this option. Furthermore,
the NIC must receive a jumbo packet with the complete application-layer
frame (TLS or SSH record) not just individual TCP-fragmented packets.
This will considerably complicate the situation as the TCP and IP layers
will try to fragment the packet based on the connection or interface MTU,
respectively.

We have two potential solutions to this. One approach is to allow TCP to do
the fragmentation and have all the packets that contain a record marked as
such and shepherded through the network stack in a bundle. Since most cryp-
tographic accelerators support scatter-gather I/O, it may be possible to combine
the data portion of these packets for crypto processing and then perform scatter-
DMA to the NIC for multiple packets. The second approach is to prevent TCP
and IP from doing fragmentation; the NIC driver will receive a jumbo frame
which it can pass to the crypto accelerator for processing. When that is done, it
can do scatter-DMA to the NIC, while fixing up the TCP and IP headers on the
fly (or have them precomputed) and have the NIC do the TCP and IP header
check-summing. Whether either of the two approaches is feasible depends on
the capabilities of the DMA engine, the NIC, and the cryptographic accelerator.
We will avoid speculation on their performance or complexity of implementation
at this point.

7. OPERATING SYSTEM SHORTCUTTING

It is becoming increasingly common for modern system designers to enhance
system performance by separating the system control and data planes. The
intuition is that an application defines its control requirements, and the oper-
ating system or hardware mechanisms implement the requested movement or
transformations of the data. This keeps the data in the fast path at all times.
For example, the Apache Web server uses the sendfile() system call which takes
a file descriptor and a network socket and transfers the file directly over the
socket, keeping all the data in kernel space. Apache makes a control decision,
(send this file to this socket), and the OS performs the data transfer without the
file ever reaching the user-level process.

The cryptographic requirements of secure protocols often lead to a deviation
from this fast path. An Apache server responding to HTTPS requests cannot
use sendfile() because the SSL/TLS libraries are implemented in user space.
Even if the Web server has a crypto accelerator card the file must be copied

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 31

Fig. 10. Apache’s default file transfer behavior with no crypto.

into user space, dispatched to the accelerator card, and returned to user space
before it is passed to the network.

Our approach is conceptually straightforward: integrate network and cryp-
tographic processing in the kernel so that there are no diversions from the fast
data path. The result is minimization of data copying between the user-level ap-
plication (e.g., the Web server) and the kernel. This has great advantages over
similar proposals such as zero-copy I/O, whereby the kernel uses the MMU to
remap user-process memory pages in the kernel address space and vice versa,
thus reducing data copying and memory bus contention. Unfortunately, imple-
menting zero-copy I/O has great implications for the entire operating system,
and it requires extensive modifications to applications to achieve the best per-
formance. Furthermore, zero-copy by itself cannot be used to take advantage of
integrated network/crypto cards.

7.1 Design

When a user-level process like Apache receives an HTTP request for a particular
file, it issues a sendfile() system call to efficiently service the request as shown
in Figure 10. The Web server cannot use sendfile(), though, if the request is
HTTPS since the SSL/TLS libraries are in shared libraries in user memory. In
this case, when the Web server process receives a request for a file, the file has
to be read from disk into kernel memory and then copied into a buffer in user
space. The buffer is then written to the cryptographic accelerator card using the
/dev/crypto interface to the OCF (so it is transfered back into kernel space).
When the crypto operations are complete, the buffer is sent back into user space.
Finally, the application writes the buffer to the network card, so again the buffer
is transfered into kernel space. Figure 11 summarizes the data movement. The
problem with this approach is that the data are copied unnecessarily into user-
memory space, and there are two context switches associated with each copy.

We eliminate the copying and context switching by transferring the data di-
rectly from disk to the crypto card, and then directly from the crypto card to the
network card. In this case, the buffer is read from disk into kernel memory and
written directly to the cryptographic accelerator card using the OCF’s kernel

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

32 • A. D. Keromytis et al.

Fig. 11. Current mechanism for encrypting and transfering a file. Note the four user/kernel space

crossings, each also encompasses two context switches.

Fig. 12. Encrypting and transfering a buffer with sendfile() and SO CRYPT.

API. When the OCF signals completion of the crypto operations, the buffer is
passed to sosend() and then to the network. The result is the initial and final
context switches and no data copies as shown in Figure 12.

When the file is larger than the buffer, our improvement is even greater.
Consider a buffer of size n bytes and a file of size p bytes. The current state of
affairs requires 4p/n data copies and 8p/n context switches. For p = 10n, this
means the n-byte buffer will get copied 40 times, and there will be 80 context
switches. In our scheme, the buffer is copied zero times, and there are only two
context switches.

7.2 Implementation

Our implementation consists of two relatively simple modifications to the
OpenBSD kernel. The first is the addition of a system call similar to Linux’s
sendfile. The system call takes a file descriptor fd and a socket sck and copies
data from fd to sck. Note this copying is all done within the kernel so the system
call does not waste time copying the data to and from user space.

The second modification changes the socket layer of the OpenBSD network
stack. We add a new socket option, SO CRYPT, that allows a crypto-consumer to

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 33

define cryptographic transforms for each packet sent over a socket (e.g., where
the encryption should start and end, where the MAC should be placed, etc.).
When sosend() is called with the SO CRYPT flag set, sosend() passes the data (in
the form of an mbuf) to the OCF. Then sosend() calls tsleep() and waits for OCF
to indicate the completion of the cryptographic operations. When the operation
completes, the new encrypted data are substituted into the mbuf and control
flow returns to the default network processing. By passing sendfile() a socket
with SO CRYPT set, all network and crypto processing takes place within the
kernel, and the data are never copied into user space.

When an application such as a Web server responding to HTTPS requests
receives a request for a file (with a descriptor fd) over a socket (with a descriptor
so), the Web server enables SO CRYPT on the socket and sets the necessary
transforms and keying material for TLS or SSL as required. Then it calls send-
file(fd, so). The file fd is read into a buffer buf and each time the buffer fills,
sendfile() calls sosend(so, buf). Since SO CRYPT has already been set on so, the
cryptographic operations are handled seamlessly. The file which would have
been copied to and from user space repeatedly is now never copied into or out
of user space.

7.3 Evaluation

We evaluate our system by comparing it with the traditional approach. In the
traditional approach, we read() the file from disk, use the /dev/crypto interface
to the OCF to perform the cryptographic transforms, and then write() the file to
the network socket (each data buffer is copied between user space and kernel
space four times). Our approach uses sendfile() with SO CRYPT and eliminates
all user-kernel space crossings.

Figure 13 shows the results for the two schemes operating on files of size
1MB, 10MB and 100MB. We ran the tests between two Dell PowerEdge 2650s,
each with 1GB of RAM, over Gigabit Ethernet. The sending machine was
equipped with a Soekris Engineering vpn1201 cryptographic accelerator card
and encrypted each file using 3DES. Each test case was run multiple times, and
the first run of case was discarded so that only those runs on a hot cache were
included. As the figure demonstrates, by partitioning the application-level data
plane from the control plane, performance gains approach 27% for all size file
transfers. This gain is due entirely to the elimination of data copies between
kernel and user-memory space.

7.4 Further Discussion

The current implementation does not handle incoming data decryption. Such
data are passed on directly to the application. Implementing this feature is rel-
atively simple: once the application turns on socket encryption, we start exam-
ining the first few bytes of the incoming data stream, depending on the protocol
type (e.g., TLS or SSH as indicated by the application). These include the total
length of the incoming security protocol frame. The kernel will then wait until
all the packets carrying data of that frame have arrived before passing them
to the OCF for decryption and validation. Once the request is processed, the
decrypted frame is passed on to the application.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

34 • A. D. Keromytis et al.

Fig. 13. Comparison of files transfers using our scheme vs. the traditional scheme. The improve-

ment over the traditional scheme on all three file sizes is approximately 27%.

A similar situation to the multiple kernel crossing scenario is present in
the use of the PCI bus. A host that is about to transmit a TLS, SSH, or IPsec
packet must first DMA it over the PCI bus to the cryptographic accelerator,
DMA it back to main memory, and finally DMA it to the NIC. This decreases
the attainable PCI bandwidth to one-third of the theoretical maximum for the
bus. If the NIC offers on-chip cryptography, we only need to perform one DMA
transfer. However, it is possible to reduce the number of DMA transfers to two
(instead of three), even when using a dedicated cryptographic accelerator, by
doing card-to-card DMA from the accelerator to the NIC (and the other way
around, on packet receipt) as shown in Figure 14.

Doing this requires support from the network stack, in particular, deferring
of cryptographic operations until right before the packet must be transmitted
to the network. In OpenBSD, we developed the mbuf tags as a way of attaching
ancillary information to packets. This can be used as a signaling mechanism
between the socket layer and the NIC driver or other kernel subsystem. We
then need to modify the NIC driver to first DMA the packet to the accelerator,
and then (once the request is completed) to arrange for a direct DMA transfer
to the NIC itself. In the extreme case, we can include the hard drive to the DMA
chain such that data are simply DMA’ed between devices as shown in Figure 14.
In this case, the operating system’s role becomes that of a flow-controller.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 35

Fig. 14. DMA chaining across multiple devices.

8. CONCLUSIONS

We presented the OpenBSD Cryptographic Framework (OCF), a service virtu-
alization layer implemented inside the kernel, that provides uniform access to
cryptographic hardware accelerator cards by hiding card-specific details behind
a carefully designed API. Other kernel subsystems and user-level processes can
use the API with symmetric and asymmetric algorithms. The OCF offers sev-
eral other features such as load-balancing, session migration, and algorithm-
chaining.

Our performance evaluation demonstrated the OCF’s ability to utilize avail-
able accelerators to within 95% of their peak performance. This validates our
decision to design for ease of use by applications and seamless support for new
accelerators over a device-specific approach which should be able to fully uti-
lize that device’s capabilities. In addition, we demonstrated aggregate (across
several concurrent applications) throughput for 3DES encryption in excess of
800 Mbps. Furthermore, use of hardware accelerators can remove contention
for the CPU and thus improve overall system responsiveness and performance
for unrelated tasks.

Our evaluation also allowed us to determine that the limiting factor for high-
speed cryptography in modern systems is data copying and the PCI bus. Fur-
thermore, small data-buffers should be processed in software, freeing hardware
accelerators to handle larger requests that better amortize the system and PCI
transaction costs. On the other hand, multithreading results in increased uti-
lization of the OCF, improving aggregate throughput. We made recommenda-
tions for future directions in architectural placement of cryptographic func-
tionality, operating system provisions, and application design, and discussed
several improvements and promising directions for future work.

We evaluate one of our recommendations, operating system shortcutting
which eliminates all unnecessary data copies between the kernel and the
user-level process with minimum modifications to both the kernel and the appli-
cation. The implementation was straightforward with little in the way of pitfalls

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

36 • A. D. Keromytis et al.

or hurdles. Our evaluation of the prototype shows an improvement in the data
transfer performance of TLS of 27%. Additionally, only incremental changes
are required to extend our scheme to include use of network cards with inte-
grated cryptographic acceleration. We intend to extend our scheme to handle
transparent data decryption and exploit the conceptual parallels between the
user/kernel space crossings and the use of the PCI bus.

APPENDIX A: OCF KERNEL API

— int32 t crypto get driverid();
int crypto register();
int crypto kregister();
int crypto unregister();
Used by device drivers to register and unregister symmetric and asymmetric
algorithm support with the OCF.

—void crypto done();
void crypto kdone();
Called by device drivers on completion of a request (symmetric and asym-
metric, respectively).

— int crypto newsession();
Called by consumers of cryptographic services (such as the IPsec stack) that
wish to establish a new session with the framework. On success, the first
argument will contain the Session Identifier (SID). The second argument
contains all the necessary information for the driver to establish the session
(keys, algorithms, offsets, etc). The third argument indicates whether only
hardware acceleration is acceptable.

— int crypto freesession();
Called to disestablish a previously-established session.

— int crypto dispatch();
Called to process a request, encapsulated in its only argument. The various
fields in that structure contain:

(1) The SID.
(2) The total length in bytes of the buffer to be processed,
(3) The total length of the result which for symmetric crypto operations will

be the same as the input length.
(4) The type of input buffer as used in the kernel malloc() routine. This will

be used if the framework needs to allocate a new buffer for the result (or
for reformatting the input).

(5) The routine that the OCF should invoke upon completion of the request
whether successful or not.

(6) The error type, if any errors were encountered. If the EAGAIN error code
is returned, the SID has changed. The consumer should record the new
SID and use it in all subsequent requests. In this case, the request may
be resubmitted immediately. This mechanism is used by the framework
to perform session migration (move a session from one driver to another
because of availability, performance, or other considerations).

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

Cryptography As An Operating System Service: A Case Study • 37

(7) A bitmask of flags associated with this request. Currently, the only flag
defined is CRYPTO F IMBUF which indicates that the input buffer is
an mbuf chain.

(8) The input and output buffers. The input buffer may be an mbuf chain or
a contiguous buffer (as identified by the flags). The output buffer will be
of the same type.

(9) A pointer to opaque data. This is passed through the crypto framework
untouched and is intended for the invoking application’s use.

(10) A linked list of operation descriptors which indicate what operations
should be applied, and in what sequence, to the input data. The descrip-
tors indicate where each operation should start, the length of the data to
be processed, where on the output buffer the results should be placed, the
key material to be used, and various operation-specific flags (e.g., what
Initialization Vector to use for CBC-mode encryption).

— int crypto kdispatch();
Similar to crypto dispatch(), for public-key operations.

ACKNOWLEDGMENTS

Bob Beck and Markus Friedl helped with numerous OpenSSL integration is-
sues we faced, since the engine code we required was unreleased. Bob also wrote
the first working OpenSSL engine interfacing with /dev/crypto. Markus helped
with regression tests to ensure that /dev/crypto operation was correct. Jonathan
Smith and Sotiris Ioannidis provided valuable comments and insights. Sam
Leffler adapted the OCF to the FreeBSD kernel. We would also like to thank
Patrick McDaniel for providing high-quality shepherding of this article.

REFERENCES

ADAMS, C. 1998. Independent data unit protection generic security service application program

interface (IDUP-GSS-API). RFC 2479. (Dec).

BONEH, D. AND SHACHAM, N. 2001. Improving SSL handshake performance via batching. In Pro-
ceedings of the RSA Conference.

BROSCIUS, A. G. AND SMITH, J. M. 1991. Exploiting parallelism in hardware implementation of the

DES. In Proceedings of the Crypto Conference (Santa Barbara). 367–376.

CLAFFY, K., MILLER, G., AND THOMPSON, K. 1998. The nature of the beast: Recent traffic measure-

ments from an Internet backbone. In Proceedings of the ISOC INET Conference.

COARFA, C., DRUSCHEL, P., AND WALLACH, D. 2002. Performance analysis of TLS Web servers. In

Proceedings of the Network and Distributed Systems Security Symposium (NDSS) San Diego,

CA.

COOK, D., IOANNIDIS, J., KEROMYTIS, A., AND LUCK, J. 2005. CryptoGraphics: Secret key cryptography

using graphics cards. In Proceedings of the RSA Conference, Cryptographer’s Track (CT-RSA).
334–350.

DE RAADT, T., HALLQVIST, N., GRABOWSKI, A., KEROMYTIS, A. D., AND PROVOS, N. 1999. Cryptography

in OpenBSD: An overview. In Proceedings of the USENIX Annual Technical Conference, Freenix
Track. 93–101.

DEAN, D., BERSON, T., FRANKLIN, M., SMETTERS, D., AND SPREITZER, M. 2001. Cryptology as a network

service. In Proceedings of the Network and Distributed System Security Symposium (NDSS).
DRUSCHEL, P., ABBOTT, M. B., PAGELS, M. A., AND PETERSON, L. L. 1993. Network subsystem design.

IEEE Network 7, 4 (July) 8–17.

FELDMEIER, D. C. AND KARN, P. R. 1990. UNIX password security—Ten years later. In Proceedings
of the Crypto Conference. 44–63.

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

38 • A. D. Keromytis et al.

GATTANEO, G., CATUOGNO, L., SORBO, A. D., AND PERSIANO, P. 2001. The design and implementa-

tion of a transparent cryptographic filesystem for UNIX. In Proceedings of the USENIX Annual
Technical Conference, Freenix Track.

GOLDBERG, A., BUFF, R., AND SCHMITT, A. 1998. Secure Web server performance dramatically im-

proved by caching SSL session keys. In Workshop on Internet Server Performance (held in con-
junction with SIGMETRICS’98).

GPG 2003. Available at www.gpgpu.org.

GUPTA, V., STEBILA, D., FUNG, S., SHANTZ, S. C., GURA, N., AND EBERLE, H. 2004. Speeding up secure

Web transactions using elliptic curve cryptography. In Proceedings of the Network and Distributed
System Security (NDSS) Symposium. 231–239.

GUTMANN, P. 1999. The design of a cryptographic security architecture. In Proceedings of the 8th
USENIX Security Symposium.

GUTMANN, P. 2000. An open-source cryptographic coprocessor. In Proceedings of the 9th USENIX
Security Symposium.

KAY, J. AND PASQUALE, J. 1993. The importance of non-data touching processing overheads in

TCP/IP. In Proceedings of the ACM SIGCOMM Conference. 259–269.

KENT, S. AND ATKINSON, R. 1998. Security architecture for the Internet protocol. RFC 2401 (Nov).

KEROMYTIS, A. D., IOANNIDIS, J., AND SMITH, J. M. 1997. Implementing IPsec. In Proceedings of
Global Internet (GlobeCom). 1948–1952.

LINDEMANN, M. AND SMITH, S. W. 2001. Improving DES coprocessor throughput for short opera-

tions. In Proceedings of the 10th USENIX Security Symposium. 67–81.

LINN, J. 1997. Generic security service application programming interface. RFC 2078. (Jan).

MACEDONIA, M. 2003. The GPU enters computing’s mainstream. IEEE Computer. 106–108.

MCGREGOR, J. P. AND LEE, R. B. 2004. Protecting cryptographic keys and computations via virtual

secure coprocessing. In Proceedings of the Workshop on Architectural Support for Security and
Anti-virus (WASSA). 11–21.

Microsoft Corporation 1998. Microsoft Cryptographic Application Programming Interface
(CryptoAPI), 2nd Ed. Microsoft Corporation.

MILTCHEV, S., IOANNIDIS, S., AND KEROMYTIS, A. D. 2002. A study of the relative costs of network

security protocols. In Proceedings of the USENIX Annual Technical Conference, Freenix Track,

Monterey, CA. 41–48.

NATIONAL SECURITY AGENCY. 1997. Security Service API: Cryptographic API Recommendation.

Updated and Abridged Ed. Cross Organization CAPI Team (July).

PROVOS, N. 2000. Encrypting virtual memory. In Proceedings of the USENIX Security
Symposium.

PU, C., MASSALIN, H., IOANNIDIS, J., AND METZGER, P. 1988. The synthesis system. Computing
Syst. 1, 1.

RSA LABORATORIES. 1997. PKCS #11: Cryptographic token interface standard, version 2.01.

TRAW, C. B. S. AND SMITH, J. M. 1993. Hardware/software organization of a high-performance ATM

host interface. IEEE J. Select. Areas Comm. (Special Issue on High Speed Computer/Network

Interfaces) 11, 2 (Feb). 240–253.

SHIRASE, M. AND HIBINO, Y. 2004. An architecture for elliptic curve cryptograph computation.

In Proceedings of the Workshop on Architectural Support for Security and Anti-virus (WASSA).
120–129.

SMITH, J. M. AND TRAW, C. B. S. 1993. Giving applications access to Gb/s networking. IEEE (Net-
work) 7, 4 (July), 44–52.

SMITH, J. M., TRAW, C. B. S., AND FARBER, D. J. 1992. Cryptographic support for a gigabit network.

In Proceedings of INET. 229–237.

SMYSLOV, V. 1999. Simple cryptographic program interface (Crypto API). RFC 2628. (June).

THE OPEN GROUP 1999. Common Data Security Architecture (CDSA), 2nd Ed. The Open Group.

THOMPSON, C., HAHN, S., AND OSKIN, M. 2002. Using modern graphics architectures for general-

purpose computing: A framework and analysis. In Proceedings of the 35th Annual IEEE/ACM
International Symposium on Micro Architecture (MICRO-35). 306–317.

Received September 2004; revised July 2005; accepted August 2005

ACM Transactions on Computer Systems, Vol. 24, No. 1, February 2006.

