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Abstract

Large scale distributed applications combine network ac-
cess with multiple storage and computational elements.
The distributed responsibility for resource control creates
new security issues, caused by the complexity of the oper-
ating environment. In particular, policies at multiple lay-
ers and locations force conventional mechanisms such as
firewalls and compartmented file storage into roles where
they are clumsy and failure-prone. Our approach relies
on two functional divisions. First, we split policy specifi-
cation and policy enforcement, providing local autonomy
within the constraints of the global security policy. Sec-
ond, we create virtual security domains each with its own
security policy. Every domain has an associated set of
privileges and permissions restricting it to the resources
it needs to use and the services it must perform. Vir-
tual private services ensure security and privacy policies
are adhered to through coordinated policy enforcement
points.

Keywords: Distributed access control, security policy,
trust management

1 Introduction

Security is an application-defined property, with some ap-
plications requiring very little assistance, while others re-
quire considerable infrastructure to support their privacy,
integrity and availability requirements. When applica-
tions were confined to a single computer, the application
programmer relied on the host operating system to sup-
port these requirements, but the addition of networking,
and particularly the Internet, has introduced new chal-

lenges for applications with even moderately complex ac-
cess control requirements. In particular, various network
access control mechanisms such as firewalls are largely
oblivious to applications (and vice versa), while file ac-
cess privileges associated solely with users may not cope
adequately with untrusted active content. Our proposed
solution (introduced in [25]) is virtual private services
(VPS), which captures the complete access control re-
quirements of a service in a policy specification. This sin-
gle policy specification can then be used by enforcement
mechanisms in hosts, routers, firewalls and elsewhere to
produce a coherent consistent environment for the service.

Before elaborating further on virtual private services,
we believe an example application of the idea will help
make the problem being addressed more concrete. Web
services are often implemented with a medium to large-
scale Web server, consisting of tens to hundreds of ma-
chines in a server “farm”, with co-located auxiliary ser-
vices such as a database, credit card transaction support,
and Web mail service. Figure 1 shows the components of
an example system, without elaborating on the replicas
of each component used in a full scale implementation
(for example, hundreds of servers per physical location,
and replicated physical locations, each with a database
replica and a credit card support system).

Other than what the administrator of such a system
has configured manually, there is neither coordination
among the nodes in the system, nor is there any coherent
relationship between the network access control (achieved
with firewalls and routers) and the node access control.
The application components thus become very difficult to
manage effectively, and misconfigurations and other ad-
ministrative errors creep in. The causes can range from
the difficulty of managing local components, the difficulty
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Figure 1: Current general architecture of distributed ap-
plication clusters

of managing local scale, or the difficulty of coordinating
across sites and administrators. Such systems call for an
approach which can ensure consistent access control poli-
cies, as well as meet application-specific requirements us-
ing shared resources such as hosts and the network.

Virtual private services are distributed applications
which require coordination amongst client, servers and
networks to deliver a reliable, secure service to clients. We
feel that the name captures the fact that we are combining
ideas from the virtual private networks used to segregate
groups of nodes, and the virtual machine models used
to control resources in host operating systems. Our new
contribution to this problem is designing and building a
system architecture for a single ubiquitous security pol-
icy, which will be enforced everywhere (nodes, networks,
etc.) to meet the service’s access control requirements.
Thus, in the Web server sketched earlier, network access
and host resource access are managed consistently. For
example, if an application or user are not permitted to
access a service locally, they are prevented from accessing
the same service remotely.

Organization The next section elaborates on the need
for virtual private services. Sections 3 and 4 describe
our approach, and a design and implementation for the
OpenBSD operating system. Section 5 evaluates the sys-
tem using both micro-benchmarks and in its application
to the Flash Web server [39]. Section 6 discusses related
work and Section 7 concludes the paper.

2 Motivation

Large distributed systems cannot be administered one
machine at a time. This is not, of course, news to system
administrators. Many tools (i.e., ASD [26]) have been
built to ease the task of administering multiple comput-
ers. But for the most part, these tools have been con-
cerned with files, rather than policies. Policy configura-
tion files can be centrally administered, but this is more a
side-effect than a basic premise of the distribution tools.

The problem is that complex policies must be expressed
in a variety of different ways. For example, consider again
the network shown in Figure 1. Assume that there is a
security policy barring “improper” access to the credit
card database. How can this be implemented?

The first obvious step is a firewall rule blocking access
from the outside. But more needs to be done to guard
against attacks from the inside, either by insiders or from
inside machines that have been compromised. Accord-
ingly, the credit card database may have its own con-
figuration and/or policy rules blocking most access from
“inside” machines. Indeed, it may be protected by its own
packet filter or firewall.

Even from machines authorized to connect to it, not all
users can be trusted. Accordingly, other access rules may
be needed as well. These may be lists of cryptographic
credentials to be accepted, or they may be distributed fire-
wall rules [5, 23], or both. For that matter, the database
system may itself have access control mechanisms that
need to be configured.

It is clearly impractical to try to configure each of these
systems separately. While current tools can easily dis-
tribute policy files, the deeper problem—ensuring con-
sistent access policies, across many different systems—is
far more difficult. It is this problem that we are trying
to solve. It is especially problematic when enforcement
must be split across different layers. A rule that says
“user A may access database column B on server C when
coming from machine D via IPsec” should be specified in
one place. Enforcement, however, could be split between
a firewall that permits access to the database port from
D, a distributed firewall rule on D that recognizes A’s
credentials, and enforcement of access to particular fields
must be in the database server itself.

One attempt to solve this problem in a limited domain
is the Firmato [4] firewall language. Firmato is a high-
level language for specifying firewall policies. The admin-
istrator specifies a policy and a network topology; the
policy is then compiled into rule-sets for different models
of firewalls, and distributed to each firewall protecting the
domain described in the topology.

While this is certainly a step in the right direction—a
single policy statement can simultaneously control several
different type of firewalls—it is limited to a single class
of application. As noted above, complex—i.e., realistic—
security polices need to control many different types of
applications. Furthermore, the policies must be enforce-
able without the co-operation of the applications, since
they may be subverted.

We can thus list our requirements for an effective,
multi-layer security mechanism:

1) The input language must be rich and extensible, in
order to be able to express a wide variety of policies,
for a wide variety of devices.

2) The input language must be high-level, to avoid un-
necessary device-specific semantics.
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Figure 2: Policy flows from a central specification point
to various services. Only the policy rules relevant to a
specific service are pulled to that service. No redundant
policy state is kept at the access points.

3) There must be a reliable compilation and distribution
mechanism that will send the policy to all relevant
network nodes.

4) The policy must be completely enforceable by trusted
components alone (i.e., dedicated nodes, operating
system kernels, etc.), without the co-operation of
user-level processes on marginally-trusted machines.

The system we describe here accomplishes all of these
goals.

3 A Multi-layer Architecture

A security system which can scale with Internet applica-
tions must handle growth in the number of clients, en-
forcement points, and rules pertaining to both, as well
as an ability to support a variety of applications, ser-
vices, and protocols. Policy updates must be as cheap as
possible, since these are common and often-used opera-
tions in any system (adding/giving privileges to a user,
removing/revoking privileges from a user). Security poli-
cies for a particular application should be specified in an
application-specific language, and a single specification
should be able to control the behavior of any needed se-
curity mechanism. Finally, administrators should be able
to independently specify policies over their own domain:
this should be true whether the administrator manages
particular applications within a security domain, or man-
ages a sub-domain of a larger administrative domain.

3.1 Separation of Management and En-

forcement

The problems we discussed in the previous two sections
are exhibited by practically all existing security archi-
tectures, and originate from the independent nature of
each service. The components/applications that com-
prise these systems are viewed as independent pieces and
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Figure 3: With virtual private services clients are granted
access only to the resources they require to accomplish
their task. In this example a CGI script running as part
of a Web server is only given access to specific subtrees
of a local and a remote file system, a part of a database,
and can form network connections only to the machines
that host the remote file system and data base.

are managed as such. Administrators have to configure
a number of services e.g. Web servers, databases, and
compute farms, each with its own security requirements.
Conventional mechanisms such as firewalls and compart-
mented file storage lead to ad hoc solutions that often
prove inadequate.

The problems originate from the independent nature
of each service. Every application has a private notion
of a security policy, performs access control according to
that specification, and is oblivious to the security poli-
cies of other applications. This often causes configuration
problems which lead to security violations.

Virtual private services are a promising approach to
these challenges. Global security policies are specified for
services, while enforcement of these policies remains dis-
tributed, local to the resource access points. Figure 2
shows how policy is managed in this scheme. The pol-
icy flows from a central specification point to the various
services. Only the policy rules that are relevant to each
specific service are pulled to that service, so no unneeded
policy state is maintained at the various access points. In
our architecture we implement policy management with
the KeyNote [7, 8] trust-management system to express
and distribute low-level security policy. Policy creden-
tials are signed by the issuer and self-protected. Policy
enforcement is carried out by an augmented host operat-
ing system (see Section 4).

In Figure 3 we demonstrate virtual private services in
the context of a Web server application. A CGI script
running as part of a Web server is only given access to
specific subtrees of local and remote file systems, a part of
a database, and can form network connections only to the
machines that host the remote file system and database.

Four benefits accrue:

Scalability: Policy enforcement is distributed to lo-
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Authorizer: ADMINISTRATOR_KEY

Licensees: USER_A Conditions:

((app_domain == "db access") &&

(db_column == "column B") &&

(permissions == "FULL_ACCESS") &&

(dst_addr == "Server C") &&

(src_address == "Host D") &&

(ipsec_result == "YES"))

-> "permit";

Figure 4: A simplified representation of the policies for
the virtual private services of the database example from
Section 2

cal access points, avoiding bottlenecks.

Flexibility: Addition and removal of policies is
centralized. The modifications automatically prop-
agate to the enforcement points making administra-
tion highly flexible.

Simplicity: Individualized administration of config-
uration is eliminated, simplifying management.

Consistency: Every service added remains consis-
tent with the central security policy. New services
cannot diverge from old policies.

3.2 Policy Translation and Composition

For our architecture to operate on multiple layers, and
policy to be enforceable globally we include “referral”
primitives; this is simply a reference to a decision made
by another enforcement point (typically lower in the pro-
tocol stack). This primitive allows us to perform policy
composition at enforcement time; decisions made by one
enforcement mechanism (e.g., IPsec) are made available
to higher-level enforcement mechanisms and can be taken
into consideration when making an access control deci-
sion.

To accomplish this, all that is necessary is a channel
to propagate this information across enforcement layers.
In our system, this is done on a case-by-case basis. For
example, in our present system IPsec information can be
propagated higher in the protocol stack by suitably mod-
ifying the Unix getsockopt(2) system call; in the case
of a Web server and SSL, the information is readily avail-
able through the SSL data structures (since the SSL and
the Web access control enforcement are both done in the
context of a single process address space).

3.3 Sample Policies

In Section 2 we described an example of a policy for a
user accessing a specific column in a database with some
additional network constraints. Figure 4 shows how such
a policy is described in our system. In this example, the
administrator authorizes user A to have full access to the

Authorizer: ADMINISTRATOR_KEY

Licensees: ANY_USER Conditions:

((app_domain == "net access") &&

(src_addr == "ALICE") &&

(dst_addr == "BOB")) -> "permit";

Figure 5: Sample policy for allowing network connections
between two machines from Alice to Bob

Authorizer: ADMINISTRATOR_KEY

Licensees: ANY_USER Conditions:

((app_domain == "ftp access") &&

(directory == "/ftpdir/*") &&

(permissions == "READ") &&

(dst_addr == "BOB")) -> "permit";

Figure 6: Specification for an FTP policy

database column B, provided they access it on server C
coming from host D over IPsec.

In Section 3.1 we gave a brief example of a service pro-
vided by a CGI script (Figure 3). The script requires lim-
ited access to the file system (remote and local) and the
database, and should not get all the privileges of the Web
server. We accomplish this by setting up a distributed
policy as seen in Figure 9. The first part of the policy
guarantees that the script can only connect to either host2
or host3 from host1, the second part will limit file accesses
to directories that only contain data for the script, and
last part guarantees will only allow the script to access
its own database records. The combination of these sim-
ple policies assures the properties of the service provided
by the CGI script. These sub-policies are independently
enforced by the firewall, filesystem, and database server
respectively.

Finally, in Figures 5, 6, 7, and 8 we give examples
of simple policies that define virtual private services for
different users and applications. Administrators can cus-
tomize services in their system by specifying such policies
and guarantee consistency across all system components.

4 Implementation

Our architecture for virtual private services might appear
somewhat complex. We have added a trust management

Authorizer: ADMINISTRATOR_KEY

Licensees: WEB_ADM Conditions:

((app_domain == "fs access") &&

(directory == "/www*") &&

(permissions == "FULL_ACCESS"))

-> "permit";

Figure 7: Policy giving the Web administrator full access
to the www directories
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Authorizer: ADMINISTRATOR_KEY

Licensees: ANY_USER Conditions:

((app_domain == "Web access") &&

(directory == "/www/webpages/*") &&

(permissions == "READ") &&

(dst_addr == "WEB_SERVER")

(dst_port == "80")) -> "permit";

Figure 8: Policy allowing any user to access the Web-
server pages

Authorizer: ADMINISTRATOR_KEY

Licensees: CGI1 Conditions:

((app_domain == "net access") &&

(src_addr == "Host1") &&

((dst_addr == "host2") ||

(dst_addr == "host3")))

-> "permit";

Authorizer: ADMINISTRATOR_KEY

Licensees: CGI1 Conditions:

((app_domain == "fs access") &&

(directory == "/www/cgi1data/*") &&

(permissions == "FULL_ACCESS"))

-> "permit";

Authorizer: ADMINISTRATOR_KEY

Licensees: CGI1 Conditions:

((app_domain == "db access") &&

(records == "cgi1records) &&

(permissions == "FULL_ACCESS"))

-> "permit";

Figure 9: Set of polices that apply to the CGI script ex-
ample from Section 3.1
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Figure 10: A graphical representation of the system, with
all its components. The core of the enforcement mecha-
nism lives in kernel space. Each service e.g. (file systems,
network layer, etc.), has its own filtering routines as well
as rule cache for storing policy rules. The policy specifi-
cation and processing unit lives in user space inside the
policy manager process. The two units communicate via
a loadable pseudo device driver interface. Messages travel
from the system call layer to the user level manager and
back using the policy context queue.

system, modified host operating systems to control access
rights using a policy specification, and added network ac-
cess control using the same policy specification. We would
argue in principle that, since policy dissemination occurs
only when needed and the result is cached locally, that
the overhead of the trust management system is low. The
additional overhead for local enforcement of global pol-
icy, however, must be quantified. We used a prototype
implementation of virtual private services to perform this
evaluation, and were able to limit unwanted unknowns by
using a well-understood operating system (4.4 BSD) as a
starting point. Section 4 describes the implementation
and Section 5 the measurements and evaluation.

We used the OpenBSD operating system [46].
OpenBSD provides well-integrated security features and
libraries (an IPsec stack, SSL, KeyNote, etc.). Imple-
mentations of virtual private services are possible under
other operating systems.

Our system has three components: (1) a set of ker-
nel extensions, which implement the enforcement mecha-
nisms at the various access points; (2) a user level daemon
process, which implements the centralized policy man-
ager; and (3) a device driver, which is used for two-way
communication between the kernel and the policy man-
ager.

Figure 10 shows a graphical representation of the sys-
tem, with all its components. In the following three sub-
sections we describe the various parts of the architecture,
their functionality, and how they interact with each other.
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4.1 Kernel Extensions

In the UNIX operating system users create outgoing and
allow incoming connections, and access the file system us-
ing a number of provided system calls. Since any user has
access to these system calls, some “filtering” mechanism
is needed. This filtering should be based on a policy that
is set by the administrator, and every incoming or out-
going packet as well as file system operation should be
subject to it.

Network Access Points: To enforce our policy per-
packet, we intercept network traffic at the IP layer and
pass the packets to our filtering code, we have created two
data structures to assist us in this process.

The first data structure, or rules cache, contains a set
of rules that packets are compared against. If a match
is found, the rule is followed to either accept or drop the
packet. The second data structure is the policy context
queue. A policy context is a container for all the informa-
tion related to a specific packet. We associate a sequence
number to each such context and then we start filling it
with all the information the policy manager will need to
make an access control decision. A request to the policy
manager is comprised of the following fields: a sequence
number uniquely identifying the request, the ID of the
client the connection request belongs to, the number of
information fields that will be included in the request, the
lengths of those fields, and finally the fields themselves.
This can include source and destination addresses, trans-
port protocol and ports, etc. Any credentials acquired
through IPsec may also be added to the context at this
stage. There is no limit as to the kind or amount of in-
formation we can associate with a context. We can, for
example, include the time of day or the number of other
open connections of that user, if we want them to be con-
sidered by our decision–making strategy.

As we mentioned already every packet is intercepted
at the IP layer and checked against the rules cache. If
a match is found then the rule is enforced. If no match
is found, we enqueue a new request to the policy context
queue. If we have already enqueued a request for the same
class of packets, no further action is necessary. Each entry
in the context queue also contains the last packet from
that packet flow; if a positive decision is received from the
policy manager, the packet is re-queued for processing by
the IP stack.

File System Access Points: File system access con-
trol works in a very similar fashion to network access con-
trol. We intercept file system requests and redirect them
to our filtering code.

As in the network case we have another data structure
that will hold a set of rules that apply to file accesses.
When calls are intercepted we enqueue new requests in
the policy context queue. The policy manager will receive
the request and respond accordingly. Using this technique
we can create arbitrary views of the file system, depending

on the security policy. This is very much like chroot(2)

but more like pruning the directory tree of the file system
than plainly setting a new root.

Other Access Points: There are a number of other
resources that can be easily managed using our architec-
ture, for example memory management and CPU time
allocation. However such controls are beyond the scope
of this work and have not been implemented in the current
prototype. To enable them, hooks require to be added in
the memory manager as well as the CPU scheduler, and
of course appropriate policies need to be specified in the
security manager.

In the next section we discuss how messages are passed
between the kernel and the policy manager.

4.2 Policy Device

To maximize the flexibility of our system and allow for
easy experimentation, we decided to make the policy man-
ager a user level process. To support this architecture, we
implemented a pseudo device driver, /dev/policy, that
serves as a communication path between the user–space
policy manager, and the modified system calls in the ker-
nel. Our device driver, implemented as a loadable mod-
ule, supports the usual operations (open(2), close(2),
read(2), write(2), and ioctl(2)).

The policy manager reads the device for pending re-
quests in the policy context queue. It then handles the
request and returns a new rule to the kernel by writing it
to the device, as a result of which the appropriate entry
is entered in the rules cache.

The ioctl(2) call is used for “house–keeping” tasks.
This allows the kernel and the policy manager to re–
synchronize in case of any errors in creating or parsing
the request messages, and to also flush entries from the
rule cache.

4.3 The Policy Manager

The last component of our system is the policy manager.
The policy manager is part of the trusted computing base
of our system. It is a user-level process responsible for
making decisions, based on policies that are specified by
some administrator and credentials retrieved remotely or
provided by the kernel, on whether to allow or deny con-
nections.

Policies are initially read in from a file. Addition and
removal of policies can be done dynamically. The man-
ager can simply flush one or more entries from the rules
cache in the kernel. This way subsequent request will
not match the existing rule set and the policy manager
will be queried for the new policy. The manager receives
each request from the kernel by reading the policy de-
vice. The request contains all the information relevant to
that connection as described in Section 4.1. Processing of
the request is done by the manager using our trust man-
agement system, and a decision to accept or deny it is
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Figure 11: Experimental setup

reached. The decision is sent to the kernel, and the man-
ager waits for the next request. While the information
received in a particular message is application-dependent,
the manager itself has no awareness of the specific appli-
cation. Thus, it can be used to provide policy resolution
services for many different applications, literally without
any modifications.

4.4 Policy Revocation

In an evolving system security demands and constraints
change over time. New users and applications are added,
old ones are removed, and services are often moved from
one host to another.

As we briefly mentioned in the previous section our
systems offers policy revocation. Individual or sets of en-
tries can be flushed from the rule cache associated with
each access point. Subsequent requests will fail to match
the cache resident rule set and will be redirected to the
policy manager to acquire the new policy. The revocation
functionality is provided by the ioctl(2) driver calls.

5 Evaluation

While the architectural discussion is largely qualitative,
some estimates of the system performance are useful. To
accomplish this we tested our system with the services for
network connection, file system access and Web access,
defined by the sample policies presented in Section 3.3.
Even though the sample services are simple, small scale
cases, we believe they provide an adequate picture of the
base performance of the system. We are currently work-
ing on more complex and larger scale scenarios for a more
complete evaluation. We performed several experiments,
both micro-benchmarks and macro-benchmarks, to get a
quantitative evaluation. The experiments are focused on
any possible performance overheads introduced by our se-
curity features.

Our test machines are x86 architecture machines run-
ning OpenBSD 2.8 and interconnected by 100 Mbps Eth-
ernet. More specifically, in the two-host tests that explore
the network performance of our system, Alice is an 850

Table 1: Average connection overhead measured in ms for
100 TCP connections between Alice and Bob

Network connect Time (ms)
OpenBSD - Base 50.4
VPS - Cold cache 61.7
VPS - Warm cache 51.8
OpenBSD - IPF 63.1

Table 2: Average round-trip time (in ms) for 200 ICMP
ECHO REQUEST messages

Ping Time (ms)
OpenBSD - Base 0.273 ± 0.091
VPS - Cold cache 0.283 ± 0.089
VPS - Warm cache 0.282 ± 0.077
OpenBSD - IPF 0.283 ± 0.124

Mhz AMD K7 Athlon with 768MB of memory. Bob, is
a 400 Mhz Intel PII with 256MB of memory (see Fig-
ure 11). The single host tests, that explore the storage
performance of our system were performed on Bob.

In the following tables, OpenBSD - Base means that
the measurements were taken on a standard OpenBSD
system, where our policy management and enforcement
architecture was inactive. VPS - Cold cache means that
the system is active but the rules cache at the various en-
forcement points is empty, forcing a query of the policy
manager to get the rules. VPS - Warm cache means that
the rules are in the caches at the enforcement points. Fi-
nally OpenBSD - IPF means that ipf(8), a standard IP
packet filter was active. This represents the case where
hosts are protected by firewalls.

5.1 Micro-benchmarks

In Table 1 we have a server application running on Alice;
Bob runs a client which connects to the server 100 times
using different ports. This generates 200 rules (for incom-
ing and outgoing packets). In the OpenBSD - IPF case,
those 200 rules are pre-loaded in the filter list. In the sec-
ond experiment, Bob sent 200 ICMP ECHO REQUEST
messages to Alice; the results are shown in Table 2. We
include the standard deviation, as the measurements did
vary slightly. These two experiments show us that the
cost of compliance checking in our architecture is very
small (within 3% of an insecure system, except for the
TCP cold cache case which is 20% more expensive), and
typically better than OpenBSD - IPF. The reason we out-
perform IPF is due to our simpler design, e.g. no logging,
IPv6 support, etc., however IPF provides us with an up-
per bound on packet filtering. This means that an archi-
tecture with decentralized enforcement does not unduly
affect end-system latency.

The previous experiments investigate network access
overheads. In Table 3 we explore how our architecture
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Table 3: Open of 100 files in the file system
File system open Time (ms)
OpenBSD - Base 2.739 ± 0.011
VPS - Cold cache 5.592 ± 0.032
VPS - Warm cache 2.821 ± 0.003

Table 4: Transfer of a 100MB file over TCP, measured in
ms

FTP Time (ms)
OpenBSD - Base 11,131
VPS - Cold cache 11,196
VPS - Warm cache 11,178
IPF 11,151

performs when handling file system accesses. In the case
of the cold cache, where no policy rules have yet been
cached by the access points we notice a dramatic penalty
in performance. This is expected since we have to pay for
the additional cross domain call to the policy manager.
As described in Section 4.1 when there is no applicable
rule at the access point the operating system kernel en-
queues a request to the policy manager and waits for the
response. Once however the decision is cached, the over-
head is minimal (less than 2%).

5.2 Macro-benchmarks

The measurements of Table 4 have a server application
running on Alice; a client running on Bob connects to
Alice and transfers 100MB, similar to FTP-ing a large
file. It is clear that our system does not significantly affect
network throughput (the difference is ca. 0.5%).

In the previous section, in Table 3, we identified a large
disparity in performance, when file access rules are in
place or not. To compose a more accurate picture we
performed a more realistic experiment, running make(1)

in the distribution of the Flash Web server. The distribu-
tion consist of 23 .c files and 22 .h files for a total of 12373
lines of code (including comments and white space), about
402KB total. The results are presented in Table 5. Thus,
in a more realistic usage of the system than illustrated
in Table 3, our architecture imposes very low overhead,
as it benefits from the caches purposely frustrated in the
micro-benchmark.

To simulate the usage of a search engine we designed
a CGI script that performs file intensive operations. The

Table 5: Compilations and linking of the Flash Web server
Make Time (sec)
OpenBSD - Base 10.4 ± 0.49
VPS - Cold cache 10.6 ± 0.49
VPS - Warm cache 10.6 ± 0.48

Table 6: CGI script counting the number of lines, words
and bytes in the .c and .h files of the OpenBSD kernel

CGI query Time (sec)
OpenBSD - Base 30.31
VPS - Cold cache 32.49
VPS - Warm cache 31.44

Table 7: Apache HTTP server benchmarking tool in two
configurations, concurrency of 1 and 50. We report the
number of requests per second that were serviced. Since
the benchmark always makes the same connection and
fetches the same file we only report the results for the
warm cache case.

Apache benchmarking tool Requests per second
ab -n 500 -c 1

OpenBSD - Base 938 ± 31
VPS - Warm cache 930 ± 37
ab -n 500 -c 50

OpenBSD - Base 1507 ± 97
VPS - Warm cache 1484 ± 83

script goes through every .c and .h file of the OpenBSD
kernel and counts the number of lines, words and bytes.
We executed the CGI script as part of the Flash Web
server and we present the results in Table 6. Even in
this intensive file processing script our warm cache per-
formance falls within 4% of the ideal case.

For our final experiment we used ab(8), the Apache
HTTP server benchmarking tool. We run it for 500 re-
quests with concurrency 1 and 50, the file transferred was
1024 bytes of static HTML. Since the benchmark always
makes the same connection and fetches the same file in
Table 7 we report the results for the warm cache case.
We notice only a slight degradation in performance, ap-
proximately 1%, imposed by the additional access control
performed at the network and file system layer.

6 Related Work

System security for large scale distributed applications
is driven by the rapidly changing nature of those applica-
tions. Some distributed application environments propose
use of type-safe languages [16, 17, 29, 32, 53], fault iso-
lation [50] and code verification [36]. Other systems use
operating system-specific permission mechanisms [30, 43],
system call interception [1, 6, 13, 15], and firewalls [5, 9].
The use of firewalls, for example, illustrates our point
about heterogeneity and loose autonomy; firewalls are to
a large degree motivated by our inability to secure user
hosts. Yet they have become essential tools in each system
manager’s toolbox. The environment we examine in this
paper is one of heterogeneous systems, multiple layers of
security mechanism, and great complexity; in that sense
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it differs from research focused on single nodes, homoge-
neous nodes making up a distributed system, or single
protocols.

The Flask system [43] extends the idea of capabilities
and access control lists by the more generic notion of a
security policy. The Flask micro kernel system relies on a
security server for policy decisions and on an object server
for enforcement. Every object in the system has an as-
sociated security identifier, requests coming from objects
are bound by the permissions associated with their secu-
rity identifier. However Flask does not address the issue
of cooperation amongst clients, servers and networks to
deliver reliable and secure services to clients. Its notion
of the security identifier is very limiting, in our system
we require any number of conditions to hold before we
provide a service, for example user identification might
not be enough to grant access to a service, the user might
also be required to access the service over a secure chan-
nel. As a minor issue, we have demonstrated that our
prototype can be implemented as part of a widely used,
commodity operating system, as opposed to a more fluid
experimental micro-kernel.

A different approach relies on the notion of call inter-
position. Systems like Janus [15], Consh [2], Mapbox [1],
and the Mediating Connectors [3], operate at user level
and confine applications by filtering access to system calls.
To accomplish this they rely on ptrace(2), the /proc file
system, and special shared libraries. Another category of
systems like SubOS [22, 24], Tron [6], SubDomain [10] and
others [13, 14, 34, 52], goes a step further. They intercept
system calls inside the kernel, and use policy engines to
decide whether to permit the call or not. These systems
present a number of ways to accomplish access control.
Our architecture focuses on separation of policy enforce-
ment and specification, and support for distributed com-
partmentalized services.

Capabilities and access control lists are the most com-
mon mechanisms operating systems use for access control.
Such mechanisms expand the UNIX security model and
are implemented in several popular operating systems,
such as Solaris and Windows NT [11, 12]. The Hydra
capability based operating system [28, 55] separated its
access control mechanisms from the definition of its secu-
rity policy. Follow up operating system such as KeyKOS
[19, 40, 45] and EROS [41] divide a secure system into
compartments. Communication between compartments
is mediated by a reference monitor. Our system creates
distributed compartments using a centralized policy spec-
ification.

The methods that we mentioned so far rely on the op-
erating system to provide a mechanism to enforce secu-
rity. There are, however, approaches that rely on safe
languages, [21, 29, 44, 27] the most common example
being Java [32]. In Java applets, all accesses to unsafe
operations must be approved by the security manager.
The default restrictions prevent accesses to the disk and
network connections to computers other than the server
the applet was down-loaded from. Our system is not re-

stricted to users of a limited set of type safe languages.
We can secure any service running on any host in the
system.

Traditional firewall work [9, 18, 33, 35, 37, 42] has fo-
cused on nodes and enforcement mechanisms rather than
overall system protection and policy coordination. There
are however proposed firewall architectures [5, 23] that
identify the need for flexible policy specification and dis-
tribution. Our system reaches beyond networking, ex-
tending the set of services that participate in the security
domain.

Trust-based systems like Akenti [47, 48, 49], TPL [20],
and others, use certificates to control access to resources.
While this is similar to our credential-based approach
built on KeyNote, VPS goes beyond simple access con-
trol It offers a way for multiple services to work together
under a global security policy in a secure and consistent
manner.

Our system assumes that the security policies are de-
fined under a single administrative domain. Work by Mc-
Daniel et al., on security policy reconciliation, has shown
how multiple organization can agree on a common policy
that controls their interactions [31, 54]. By using their
proposals, it is possible to extend our framework to make
it apply on multiple administrative domains.

A security issue we do not address in this paper is
Quality of Service (QoS) [38, 51]; here we have focused
on resource access control. QoS is ultimately necessary
as a defence against denial-of-service attacks; using our
architecture it is possible to set up policies that address
QoS issues. More specifically, we could use our framework
to define policies that will place limits of resource usage
at every participating access point, such as rate limits in
network traffic, or upper bound in CPU usage.

7 Concluding Remarks

We have argued in this paper that an increasing number
of applications are composed from heterogeneous software
components interconnected by a network, and that this
model introduces new security problems not easily ad-
dressed with a conventional set of tools such as compart-
mented file systems and firewalls. We proposed a new ap-
proach, Virtual Private Services, which unifies the man-
agement of all access control under a single global policy.

Our system copes with scale and heterogeneity, at a
low cost in usability, by converting this global policy
into a form in which it can be enforced locally. The re-
maining question was the impact on performance, which
we addressed by implementing a prototype system un-
der OpenBSD and then performing a set of micro- and
macro-benchmarks selected to cover the space of uses of
the server side in a distributed application setting. We
used the Flash Web server for macro-benchmark measure-
ments.

Highlights of the measurements (detailed in Section 5)
were:
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1) The performance effect of decentralized enforcement
on end-system latency is small, discounting cache ef-
fects.

2) If the policy manager is called frequently, file ac-
cess can be slowed considerably. When decisions are
cached (a common case, as demonstrated by a build
of the Flash system), overheads are less than 3%.

3) Large network file transfers are slowed ca. 0.5%,
whereas small ones ca. 1%.

4) Execution of a file-access intensive Web script showed
less than 10% overhead in the cold cache case and less
than 5% overhead in the warm cache case.

The performance analysis ignored the security advan-
tages of virtual private services. We believe that our hy-
potheses, that is that the cost of the centralized policy
specification was low, and that the policy enforcement
cost was low, have been demonstrated. More performance
could be gained through recoding and better cache man-
agement. Our prototype was only deployed on two hosts
as a proof of concept of our proposal, we are however inter-
ested in deploying the system in a realistic environment.
The main goal of this deployment would be investigat-
ing the larger-scale (and unfortunately more qualitative)
question of the value of a consistent global policy in real
systems.
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