
SSARES: Secure Searchable Automated Remote Email Storage∗

Adam J. Aviv(aja2002@columbia.edu), Michael E. Locasto (locasto@cs.columbia.edu),
Shaya Potter (spotter@cs.columbia.edu), and Angelos Keromytis (angelos@cs.columbia.edu)

Abstract

Many users store their email on a central remote email servers.
While they gain the benefit of regular backups and remote ac-
cess, they must trust the server to protect the confidentiality and
integrity of their email. Since most email is stored in plaintext,
a server compromise implies the compromise of the users’ email.
Although users can employ an encryption scheme like PGP, this
protection is not a complete solution since the headers remain
unencrypted, and it requires action on behalf of the sender.

We propose an alternative solution that begins with the server

using public-key encryption for incoming email, including head-

ers, body, and attachments. Doing so protects stored email from

attackers but also prevents users from remotely searching their

email (a feature which both IMAP and POP services permit). To

solve this problem we present Secure Searchable Automated Re-

mote Email Storage (SSARES), a novel system that completely

encrypts incoming messages and allows the email to be searched

securely. By using a combination of Identity Based Encryption and

Bloom Filters, SSARES does not reveal any information about ei-

ther search keywords or queries and remains largely transparent

to both the email sender and receiver.

1 Introduction

Most email is both sent and stored in a plaintext for-
mat. During transmission, known encryption standards
such as SSL can protect a message from eavesdroppers,
but email “at rest” (stored on the mail server) remains at
risk. Servers that store email and provide remote access
to a mailbox must be trusted by the user to protect the
email’s contents; a compromised server also implies the
compromise of the user’s email. All unencrypted content
would then be exposed to the attacker.

The contents of an email can be secured using a public-
key encryption standard such as PGP. In this case, PGP
preserves the headers of the email so that the message
can be properly delivered. Consequently, an attacker who
has access to the headers but not the content can still
partially compromise the users’ privacy by determining
who the user is communicating with. PGP-style protec-
tion also relies on the correspondents actively employing
the encryption, and unfortunately, the use of PGP is not
widespread among the general public.

The first step toward a solution to this problem involves
the construction of an email system that provides confi-
dentiality and integrity protection without the direct in-

∗This work was partially supported by the National Science Foun-
dation through Grant ITR CNS-04-26623.

teraction of the user. We can automate the process of
encryption on the remote email server (thus making it
transparent to the end user). By doing so, we can assure
that, no matter who the sender is, the contents will be
protected once it arrives at the server. The users’ normal
email practices do not need to change, nor do they need
to convince their correspondents to change theirs.

Our ideal system would protect the entire message,
headers included, on the remote server upon arrival of
new email. This requirement implies that the server can-
not access any content in the email once the message is
encrypted. Consequently, it cannot perform searching as
in current remote email systems like IMAP or POP. The
search process could occur on the client side, but that
would require extraneous processing and bandwidth, since
every message must be transferred, decrypted, and then
searched. If the client is working from a mobile device or
has a large amount of email, this choice involves serious
time delays.

A simple solution would be to use some sort of hash ta-
ble to reference keywords within a message. A user would
send a hash of the keyword, and the server would use the
hash table to determine which messages match the request
without the need to decrypt any messages nor know what
the keyword is. But, an attacker would also have access to
the hash table if the server is compromised and can per-
form a dictionary attack using known or guessed keywords
that are relevant to the victim. The attacker could also
watch the user perform searches live as the user requests
emails, and perform a dictionary attack against the hash
requests. Not only do the emails need protecting, but the
searching technique does as well.

Our threat model focuses on an attacker who can break
into the server and download the contents of the mail-
box for offline analysis, or observe the system in action,
watching how messages are matched to try and determine
the contents. Of course, once the server becomes compro-
mised, all newly arriving unencrypted messages are triv-
ially exposed to the attacker.

To solve the problem of protecting email “at rest” and
allowing for keyword searching while minimizing the in-
formation exposure, we present Secure Searchable Au-
tomated Remote Email Storage (SSARES). Our system
completely encrypts incoming messages but also allows a
user to search their email securely on remote servers with-
out revealing any information about the keywords of the
messages or the search queries. The system is built using
a combination of Identity Based Encryption (IBE) and

1



Bloom Filters [1]. We discuss the design of SSARES in
Section 2, and present a preliminary evaluation based on
our prototype implementation in Section 3.

2 Design

SSARES is composed of three distinct parts. The first
part handles newly arriving email, encrypting it on the
mail server. The second part operates on the user side,
and handles the formation of search requests to the server.
The third part handles searching on the mail server. All
parts make use of IBE and Bloom Filters.

The IBE encryption used by SSARES is called PEKS
(Public-Key Encryption with Keyword Searching) [2].
PEKS uses a public-key style of encryption. New emails
are completely encrypted and the keywords are encrypted
using PEKS public-key encryption. The user can create
a “trapdoor,” an encryption form of a keyword the user
wishes to search for, using the user’s PEKS private-key
and can relay the trapdoor to the server. The server can
use this trapdoor and the encrypted keywords (stored as
part of each encrypted message) to perform a test that will
reveal if there is a match, and the matching (encrypted)
messages can be returned to the user.

PEKS meets our goal of an automated and transparent
process, but because each keyword is encrypted individ-
ually and thus must be tested individually, the speed of
searching can become an issue. For example, a mailbox
with 100 emails that average 450 keywords each would re-
quire 450,000 PEKS tests to perform an exhaustive search.
To improve performance without compromising security,
we combined PEKS encryption with Bloom Filter stor-
age and probing. As a result, an encrypted message in
SSARES, in addition to the list of PEKS-encrypted key-
words, contains a Bloom Filter. When the user sends the
trapdoor for each keyword, he also sends a query filter.
On the server, the searching component first checks that
the query filter matches the message’s Bloom Filter before
testing the PEKS.

Bloom Filters have a corresponding error value, or false-
positive rate, which needs careful consideration. A filter
with a low false-positive rate would be vulnerable to a
dictionary attack that would reveal with high certainty to
an attacker whether a keyword is contained in a particular
message. To combat the dictionary attack, we choose to
use filters with a high false-positive rate (25%) to reduce
this certainty, but would still eliminate the majority of
the messages without having to use PEKS, thus improving
search speed. We call this filter an “error prone filter.”

3 Evaluation and Results

We evaluated each of the three components of SSARES:
email production, query generation, and search. We used
a sample set of 100 emails from the Enron Data Set [3]
(most of which were very small in size). All tests were run
on a Linux RedHat Enterprise PC with a Pentium 3 CPU.
To test email production, we converted 100 emails into

SSARES form and measured the speed of the process and
the size of the resulting (encrypted and keyword/Bloom
Filter-augmented) messages. We recorded an average in-
crease between the unencrypted and encrypted formats
of 37 times, and an average speed of encryption of 17.2
seconds/message, with a maximum of 2 minutes. As ex-
pected, the key factor is the number of keywords contained
in a message.

To test query production, we created test queries with
various numbers of keywords. The speed and resulting
size of the queries are well within reasonable standards,
never taking more the 2 seconds to produce queries with a
size max of 3 KB. Using the produced queries we searched
the encrypted emails and measured the searching speed.
The overall searching speeds were shown to be reasonable
but not efficient enough for use. Search speeds ranged
from 4 seconds to over a minute for a mailbox of just 100
emails. On the other hand, the error prone filters had
a clear impact on searching speed. When a query failed
the filter, we were able to eliminate the emails in under
a second, and on average we were able to eliminate 76 of
the 100 emails per search by using the filter. Without the
error prone filter, it is clear that searches could have taken
hours not minutes.

4 Conclusion and Future Work

We have presented SSARES, a novel system that can store
email in encrypted form on the mail server while still per-
mitting a user to search their email archive. SSARES does
so without exposing information about the queries or the
email contents (keywords). The combination of a Bloom
Filter and PEKS encryption provides an automated and
transparent process. Although the initial performance re-
sults for SSARES are encouraging, some work remains to
improve the performance of the search procedure. In par-
ticular, we plan to investigate an optimal balance between
speed and security for the false-positive rate of the filter.
Another approach would be the use of a third layer of
keyword organization between the filter and PEKS. For
example, sorting the PEKS by the first letter of the (un-
encrypted) word could, with a well-distributed set of key-
words, reduce per message searching speed by a factor
of up to 26, but the usefulness of the extra information
gained by an attacker needs further consideration.

References

[1] B.H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, July 1970.

[2] D. Boneh, G.D. Crescenzo, R. Ostrovsky, and G. Per-
siano. Public key encryption with keyword search. EU-
ROCRYPT 2004, LNCS 3027:506–522, 2004.

[3] <Enronmail.com>. Enron data set, 2004.

2


