
e-NeXSh: Achieving an Effectively Non-Executable Stack and Heap via
System-Call Policing

Gaurav S. Kc
�

Google, Inc.
gskc@google.com

Angelos D. Keromytis
Columbia University

angelos@cs.columbia.edu

Abstract

We present e-NeXSh, a novel security approach that
utilises kernel and LIBC support for efficiently defending
systems against process-subversion attacks. Such attacks
exploit vulnerabilities in software to override its program
control-flow and consequently invoke system calls, caus-
ing out-of-process damage. Our technique defeats such at-
tacks by monitoring all LIBC function and system-call in-
vocations, and validating them against process-specific in-
formation that strictly prescribes the permissible behaviour
for the program (unlike general sandboxing techniques that
require manually maintained, explicit policies, we use the
program code itself as a guideline for an implicit policy).
Any deviation from this behaviour is considered malicious,
and we halt the attack, limiting its damage to within the
subverted process.

We implemented e-NeXSh as a set of modifications to the
linux-2.4.18-3 kernel and a new user-space shared
library (e-NeXSh.so). The technique is transparent, re-
quiring no modifications to existing libraries or applica-
tions. e-NeXSh was able to successfully defeat both code-
injection and libc-based attacks in our effectiveness tests.
The technique is simple and lightweight, demonstrating no
measurable overhead for select UNIX utilities, and a negli-
gible 1.55% performance impact on the Apache web server.

1 Introduction

In recent years, the issue of process-subversion attacks
has become very important, as is evidenced by the number
of CERT advisories [2]. These are attacks that exploit pro-
gramming errors in software to compromise running sys-
tems. Such errors allow the attacker to override the pro-
gram’s control logic, causing the program to execute code
of their choosing. This code is either malicious executable

�
This work was carried out while author was at Columbia University.

code that has been injected into the process’ memory, or
existing functions in the Standard C library (LIBC) or else-
where in the program code. In either case, the attacker is
able to compromise the process, and generally can gain con-
trol of the whole system if the attacked process was running
with root privileges (this is often the case with server dae-
mons).

To cause any real damage outside of the compro-
mised process, e.g., to spawn a shell or to open the
/etc/passwd file for editing, the attacker needs to access
kernel resources via system calls. There has been signif-
icant research in recent years resulting in a wide range of
process-sandboxing techniques that monitor applications’
system-call invocations [27, 31, 32, 33, 48, 49, 50, 58].
These systems generally require manual effort to specify
explicit sandboxing policies, except when such policies can
be automatically generated from application code or train-
ing runs. Then, the policies are often either imprecise, pro-
ducing a large number of false positives, or involve signif-
icant (� 2 �) overheads — these are described in more de-
tail in � 5. Other techniques prevent the execution of code
in data memory [3, 5, 10, 13, 38, 40, 55] to defeat code-
injection attacks, randomise the addresses of functions in
the Standard C library (LIBC) [3, 14, 20] to deter libc-
based attacks, use static analyses to remove vulnerabilities
from software [12, 19, 21, 35, 44, 46, 59], or instrument ap-
plication code to detect run-time attacks [22, 47, 28, 57].
There exist problems and/or limitations of these systems
too, including large overheads or breaking of applications,
the possibility of mimicry or brute-force attacks that can
bypass the defence mechanisms, and the inability to specify
or protect all vulnerabilities, respectively. These limitations
are also covered in � 5.

In this paper we present e-NeXSh, a simple and
lightweight technique that uses process-specific informa-
tion — this information consists of disassembly data indi-
cating the memory boundaries of all functions in the pro-
gram, as well as the call sites for system-call invocations
in the program code — to defeat both code-injection and
libc-based attacks. The technique’s novelty lies in how it

builds on the system-call interception model used by Intru-
sion Detection Systems (IDS), and extends the idea to user-
space code to monitor invocations of LIBC functions. We
utilise the program code and its disassembly information
as guidelines for an implicit policy to prescribe normal pro-
gram behaviour, rather than manually defining explicit poli-
cies. We show that e-NeXSh creates an “effectively” non-
executable stack and heap that permit the execution of all
code except system-call invocations (even via LIBC func-
tions). This makes our technique practical even for applica-
tions that have a genuine need for an executable stack. We
have evaluated a prototype implementation of our technique
on x86/Linux, and have demonstrated efficacy at defeating
both libc-based and code-injection attacks, including 100%
effectiveness against Wilander’s benchmark test-suite [64],
in our evaluations. We provide further discussion in � 5.

Our implementation consists of two parts: a user-space
component to intercept and validate LIBC function invoca-
tions, and a kernel component to do the same for system-call
invocations. The user-space component (implemented as
a shared library: e-NeXSh.so) intercepts invocations of
LIBC functions, and validates the call chain against the pro-
gram’s binary code and its disassembly information. This
component can detect libc-based attacks that redirect the
targeted program’s control-flow into LIBC functions, to in-
directly issue system calls. If an invocation has a legiti-
mate call chain (i.e., one that matches the program code
and disassembly data), we indicate this to the kernel com-
ponent, and then forward the call on to the appropriate func-
tion in LIBC. Our kernel component extends the system-call
handler in the Linux kernel to intercept and verify that all
system-call invocations are made from legitimate locations
in the program (or LIBC) code. These components collec-
tively block all paths that an attacker may take to invoke
system calls.

An important advantage of our technique is the low over-
head added to system execution — we report negligible
run-time overheads for both Apache benchmarks and com-
mon UNIX utilities. By implementing our technique within
LIBC and kernel call handlers, we have managed to cap-
italise on the relatively large execution time required to
process most system calls (including time spent in LIBC),
versus normal procedure calls. Our design also permits
transparent integration with applications, without needing
to modify either source or binary code for both applica-
tions and the Standard C library (LIBC). This has many ad-
vantages — for instance, our technique can be applied to
legacy and third-party applications for which there is no ac-
cess to the source code. Furthermore, e-NeXSh can be used
in conjunction with other defence mechanisms that instru-
ment application executables or library binaries to perform
run-time checking. Even though we modify the kernel in
our implementation, we can selectively enforce the protec-
tion mechanism, allowing most programs [that do not need

the security] to run unaffected.
The rest of this paper is structured as follows: we present

an overview of our approach in � 2. We describe our imple-
mentation of e-NeXSh in � 3, and present an evaluation of
our technique in � 4. We discuss related work in � 5, and
some remaining issues in � 6, and conclude in � 7.

2 Approach

Published guidelines [4, 6, 9] and analyses [7, 15, 23, 24]
of process-subversion attacks indicate that these attacks
generally contain the following integral elements: the trig-
gering of some security vulnerability in the target appli-
cation, causing an overwrite of some code pointer memory
location, making it point to malicious code of the attacker’s
choosing. These elements comprise the anatomy of attacks,
and is illustrated in figure 1. Then, as the program contin-
ues execution, it eventually activates this overwritten code
pointer, and begins executing the attack code in question.

Initiate
Attack

Invoke
System CallT

ri
g

g
e
r

V
u

ln
er

ab
ili

ty

E
xe

c
u

te

M
al

co
d

e

O
v

er
w

ri
te

C

o
d

e
-p

o
in

te
r

Figure 1. Anatomy of an Attack.

Research efforts have resulted in tools for identifying
and/or eliminating vulnerabilities from application code, as
well as at run-time techniques for detecting that vulnerabil-
ities may have been exploited or that certain code pointer
may have been overwritten. Rather than monitor all ex-
ploitable vulnerabilities and over-writable code pointers, we
focus on the third element of attacks, i.e., the malicious code
that attackers execute. Our technique is then able to de-
feat both known and yet unknown attacks, regardless of
the specific vulnerabilities they exploit, or the specific code
pointers they overwrite.

The executed malcode is invariably either executable
code that the attacker has injected into the program mem-
ory, or existing code in the program or its referenced li-
braries, and in all cases, is executed to invoke some system
call(s). Recognising this fact, we have based our technique
on the monitoring of system-call invocations both within
the kernel and at the user-space levels. We can trivially
identify direct invocations of system calls by injected code,
from within the kernel. Furthermore, we monitor calls to
LIBC functions to detect if existing code in the program or
its libraries is executed to indirectly invoke a system call
(this generally is by way of the appropriate LIBC func-
tion). Specifically, we intercept calls to LIBC functions
at the user-space level to inspect and validate the program

stack. By intercepting both paths to invoking system calls,
we can detect when a compromised program attempts to in-
voke system calls. We also randomise the program memory
layout to prevent mimicry attacks would otherwise replicate
the program stack in order to present a seemingly valid call
stack to our checking subsystem.

Table 1 provides a high-level overview of the evolution
of e-NeXSh in response to increasingly sophisticated and
adaptive attack mechanisms:

Attacks mechanisms and Defence measures

Code-Injection
attacks

Attack executable attack code injected into data
memory invokes system calls directly.

Defence the kernel component of e-NeXSh ex-
amines the “return address” for system calls
to identify code-injection attacks.

(LIBC-based)
Existing-Code
attacks

Attack attacker invokes system calls indirectly
by redirecting program flow-of-control to
existing trap instruction in either appli-
cation or library code, e.g., LIBC. This
avoids the first-level defence against code-
injection attacks.

Defence the LIBC component of e-NeXSh in-
tercepts invocations of shared library calls,
and verifies the program stack trace (main
— to library function), and thus detects
existing-code attacks.

(Stack-faking)
Mimicry
attacks

Attack attacker re-creates signature for a valid
program stack-trace to give e-NeXSh the
impression of a normal program run.

Defence randomise the program memory layout
(activation record headers � return address,
old frame pointer � , offset of program data
stack, and offset of program code segment)
to prevent attackers from re-creating a valid
stack-trace signature.

Table 1. High-level overview of defence tactics in
e-NeXSh and possible countermeasures. Each attack
mechanism is a countermeasure to the immediately
preceding defence technique.

3 Implementation

In this section, we describe the two components of our
e-NeXSh implementation for the Linux operating system
running on x86 hardware. We then illustrate its operations,
i.e., the sequence of events, for handling both normal pro-
gram behaviour and attacks in progress. We end this section
by enumerating some benefits of our technique.

3.1 Validating System-Call Invocations

We use the system calls emitted by a program as an in-
dication of its behaviour, similar to traditional host-based
intrusion detection systems (IDS) that infer program be-
haviour from audit patterns, i.e., the observed sequence of
system calls emitted [34, 42, 43, 58, 65] by the running
program. While these systems generally use source code-
based static models to determine malicious activity, we use
specific information associated with system-call and LIBC
invocations. The novelty in our technique is that we ex-
tend the checking “deeper” into the application’s call stacks,
thus making it more difficult for an attacker to launch
mimicry [60] (or libc-based) attacks.

We chose a kernel-based, system-call interposition tech-
nique to utilise the resource-manager role of the operat-
ing system kernel for monitoring the invocations of system
calls. Similar to normal function-calling conventions in user
code, a system-call invocation also stores information (the
program counter value) about the caller code in the pro-
gram stack. We extended the system-call handling utility
in the kernel to verify that it was legitimate application (or
library) code that made the system-call invocation. Specif-
ically, we check to see that the virtual memory address of
the trap machine instruction that issued the system call is
located in one of the code segments for the process. The
kernel maintains information on all the different code and
data segments that comprise each process’ run-time mem-
ory. Our kernel modifications simply checks the read-write
flag for the given memory address. A “writable” flag de-
notes data memory, which we now assume contains injected
code that’s invoking a system call. On the other hand, legit-
imate invocations of system calls occur from non-writable
code memory addresses that are associated with a “read-
only” flag.

3.2 Validating LIBC Function Invocations

We extend this caller-validation idea into the user-space
to validate invocations of LIBC functions. This is imple-
mented in the form of a shared library (e-NeXSh.so)
containing corresponding wrapper functions for each LIBC
function that is intercepted — we currently provide wrap-
pers only for functions that are useful to an attacker [65]
(some of these functions are: chmod, connect, execve,
fork, open, mmap, mprotect, socket). We set the
LD PRELOAD environment variable to ensure that LIBC
function invocations made by programs are directed into our
shared library. Each wrapper function consists of the fol-
lowing steps: authorise LIBC-based system calls, validate
the current call stack, and resume execution by invoking the
intended LIBC function, or kill the process if authorisation
fails. We describe the most complex step (call-stack valida-
tion) first.

.text
main:
 . . .
 call foo
 . . .

foo:

 . . .
 call bar
 . . .

bar:

 . . .
 call execve
 . . .

main:
 . . .
 call foo (0x0BB0)
 . . .

foo:

 . . .
 call bar (0x0CC0)
 . . .

bar:

 . . .
 call execve
 . . .

0x0AA0

0x0BB0

0x0CC0

0x0CCF

0x0AAF

0x0BBF

 parameter_a
 parameter_b

 parameter_c

 retAddr(0x0AAF)
 old-frame-ptr

 parameter_a

 parameter_b
 parameter_c

 retAddr(0x0BBF)

 old-frame-ptr

bar

foo

.stack

Figure 2. The stack trace yields bar’s return ad-
dress as 0x0BBF. We de-reference this memory ad-
dress (we can verify that it is contained within foo),
and inspect the preceding call instruction to extract
its operand. This operand is 0x0CC0, which we then
verify to match bar’s starting address. In this man-
ner, given the return address for the stack frame for
“foo calls bar”, we can use the machine code (from
the .text section) to verify that the caller-callee re-
lationship is legitimate. We repeat these checks for
each return address in the stack trace until we reach
main().

3.2.1 Validating the Call Stack

Each wrapper function performs a stack walk along the
dynamic chain of intermediate functions starting from
main() and ending with the function that eventually in-
voked the LIBC function. This yields a list of return ad-
dress values for each of the intermediate functions: we first
verify that each of these return addresses exists in the write-
protected memory region reserved for the application code,
viz., the .text section (we assume that information about
the range of the .text section for the program code is pro-
vided by the kernel). We then inspect the .text section
of the process memory to extract and decode each call
instruction preceding the instructions at these return ad-
dresses. We can now verify that the absolute target address
of this direct call instruction exactly corresponds to the
beginning address of the function that is one level deeper
in the call chain. In other words, for each caller-callee pair
in the dynamic chain, we can validate the call site and tar-
get site memory addresses against the start and end limits
for both functions. Our technique for validating the call
stack is similar to stack-tracing techniques in [26] and those
in Java for checking access control [61], but without the
benefit of Java’s extensive run-time information. Figure 2

illustrates the verification of a single caller-callee function
relationship, where foo calls bar.

The x86 architecture defines other (indirect) call in-
structions that are of variable length, and do not encode the
true target of the call instructions. Instead, they utilise
indirect addresses stored in registers or the memory at run-
time. This prevents us from statically producing call graphs
to define all possible caller-callee relationships, and forces
us to accept any function as a potentially valid target for an
indirect call instruction. An attacker could then poten-
tially overwrite a function pointer variable or a C++ VPTR
entry, and cause a redirection of control directly into a LIBC
function.

There are a number of options available at this point: we
can counter such attacks by requiring the innermost caller-
callee pair in the dynamic chain (where the application pro-
gram invokes the LIBC function) to be a direct call in-
struction — this has the potential to falsely label some ap-
plications as being compromised if they invoke the pro-
tected LIBC functions via function pointers (the applica-
tions we have evaluated do not use indirect call instructions
to invoke LIBC functions). Another approach is to run the
program in training mode and log the occurrences of code
pointers in the call stack. Assuming that these invocations
did not already lead to a process compromise during the
training stage, the logged data can be integrated into the dis-
assembly information for the program. This allows future
occurrences of these code pointers to be accepted. A third
option is to use a simple static-analysis [11] engine to pre-
compute sets of acceptable values for the target address for
indirect calls. Correctly using this new information would
increase the memory footprint of e-NeXSh.so. However,
the run-time overheads should be minimal since this data is
referenced only for call-stack instances that include indirect
calls. Even so, there may potentially be an efficient means
to further reduce these overheads.

3.2.2 Authorising System Calls

Before validating the call stack, the wrapper func-
tion invokes a new system call that we defined as
syscall libc auth. This system call is used to
indicate to the kernel that the checking mechanism in
e-NeXSh.so has verified the user-space section of the call
stack for upcoming system calls. We store a random1 32-bit
nonce in the stack frame, and pass the address of this nonce
in the system call. This ephemeral nonce value exists only
for the duration of the execution of the wrapper functions
in e-NeXSh.so (it is erased before the wrapper function
returns; see below), meaning that it is never available in

1The 64-bit result from the rdtsc machine instruction indicates the
value of the clock-cycle counter since the machine’s last boot-up. The
least-significant 32 bits of this result provide sufficient randomness for our
purposes.

memory whenever any attacker code may be executing. We
can thus prevent information leakage in a manner similar to
Karger [36] for cross-domain calls, and hence prevent re-
play attacks that read and re-use nonces.

The kernel code for syscall libc auth verifies that
this system-call invocation’s call site is in the code section
of e-NeXSh.so, and then stores the address and value (by
dereferencing the location on the user-space stack) of the
nonce in the process’ PCB, and returns control to the user-
space. Later on, when verifying system calls invoked via
LIBC functions, the kernel checks to make sure that the
nonce that was specified most recently still exists at the
given location (the nonce location becomes invalid when we
obliterate the nonce value from the stack, see next). Note
that by setting the nonce before validating the call stack,
we are able to prevent attacks that might otherwise jump
into the middle of our wrapper functions to skip the initial
checks.

After issuing the authorisation system call and validating
the call stack, the wrapper function resumes the program
execution by passing control to the original LIBC function
(referenced via explicit dlopen / dlsym calls) which may,
in turn, invoke system calls. These system calls are ac-
cepted by the kernel since not only are they invoked by a
trap instruction located in the code section (of LIBC), but
also because the nonce value that was passed to the kernel
is still valid. When the LIBC function completes execution,
it will return control to our wrapper function. We now zero
out the nonce value on the stack (to eliminate the possibil-
ity of any mimicry attack re-using the nonce), and return to
the application. We reduced the overhead from an earlier
implementation that involved a separate system call to in-
dicate to the kernel that the current e-NeXSh.so wrapper
had completed its execution, and was returning control to
the application.

Multi-threaded applications may enable attackers to use
a parallel thread to invoke malicious system calls (this
thread would still need to use a libc-based attack to avoid
issuing a system call directly from data memory) after get-
ting a legitimate program thread to carry out the system-
call authorisation. We counter this threat by implement-
ing semaphore-based synchronisation in the e-NeXSh.so
wrapper functions to ensure that multiple threads are not
concurrently allowed into the critical LIBC (and subsequent
system-call) functions. This could potentially cause syn-
chronisation problems with system calls that block on I/O,
e.g., read on a socket interface. However, none of the
LIBC functions we currently protect are blocking functions.

3.2.3 Attacks Against e-NeXSh

An attacker could attempt a direct target at the e-NeXSh
protection mechanism by overwriting the program stack to
make it appear as a valid run for the given program. This

allows the attacker to issue any system call that the applica-
tion could invoke during normal execution. The difference
is, of course, in the system-call parameter being provided:
an attacker could exploit this loophole to access critical files
by compromising any program that does file I/O. This prob-
lem is similar to that of attackers overwriting critical pro-
gram data that are used as parameters for system calls, and
a general solution is to manually define policies [49] to dic-
tate the set of file-system resources that each program can
access, for instance.

This loophole in e-NeXSh allows an attacker to create
a fake, but seemingly valid, stack, and consequently pass
both the LIBC- and kernel-based checks. Such attacks
have been demonstrated in [17] to mimic a valid program
stack, allowing them to successfully bypass commercial-
grade sandboxing products and consequently invoke system
calls. Later, we describe how we can counter these attacks
by using simple randomisation techniques to make it signif-
icantly harder for an attacker to re-create a valid stack.

Kruegel et al. [41] describe a binary code-analysis
method involving symbolic execution [39] of victim pro-
grams, to construct attacks that can automatically regain
program control even after issuing system calls (possibly
by using faked stacks). These are mimicry attacks of a dif-
ferent kind [41, 60] in that they intend to invoke a number of
system calls matching a valid audit trail for the given pro-
gram, enabling them to evade detection by traditional host-
based IDS systems [34, 42, 43, 58, 65] that may be monitor-
ing such program audit trails. Kruegel’s attacks use faked
stack traces to thwart Feng’s [27] and Sekar’s [53] stack-
verification techniques, and then repeatedly regain program
control, allowing them to defeat the defence techniques’
audit-trail monitoring mechanisms. In this manner, Kruegel
has reduced the task of breaking techniques such as [27, 53]
into a matter of invoking system calls a number of times.

A critical requirement for Kruegel’s generated attacks to
successfully regain program control after a system-call in-
vocation is their need to maliciously modify code pointers,
specifically, entries in the Procedure Linkage Table (PLT)2.
In this regard, we can trivially render Kruegel’s method in-
effective by extending e-NeXSh.so’s initialisation (when
the program is loaded) to carry out eager evaluation of the
program’s PLT, and subsequently write-protecting the PLT
to prevent any updates. Preventing the attack from updating
these code pointers has the effect that it eliminates the pos-
sibility of Kruegel’s attacks regaining program control af-
ter attempting a system-call invocation. However, even this
may be redundant given the increased difficulty in creating a
fake stack that can evade e-NeXSh.so, as described next.

The core elements of creating a fake stack are: deter-
mine what memory locations in the stack should contain the

2Kruegel states that other code pointers, e.g., function pointers, do not
reliably produce a successful exploit

return address and old frame-pointer values for activation
records, and overwrite these locations with values that are
valid for a normal program run. We employ randomisation
on different portions of the process memory layout to make
it hard to fake the stack. We first offset the starting location
of the program stack by a random 16-bit value as in [14], in-
creasing the difficulty for an attacker in figuring out which
memory addresses on the stack to overwrite. We can also
use either a suitably modified compiler [22, 37] or binary-
editing tool [47] to obfuscate (using 32-bit XOR keys) the
stored values in the stack-frame headers for the return ad-
dress and old frame-pointer value. Note that the XOR keys
need to be communicated to and stored in e-NeXSh.so to
reconstruct the original return address and old frame-pointer
values when traversing and validating the stack — the lo-
cation where these values are stored can be randomised,
and protected against scanning attacks by storing between
unmapped memory pages (an attacker trying to read from
these pages will cause a memory protection violation, and
thus crash the process).

Obfuscating the stored return address and old-frame
pointer values significantly increases the difficulty for an
attacker in determining what values to write on the stack
frames to simulate a valid stack. Even if he does figure out
which locations on the stack to overwrite, he would need to
know the XOR values for both the return address and old
frame-pointer. Finally, we also randomise the starting off-
set (as in [14]) for the .text segment by a random 24-bit
value, thus randomising function addresses in the program
code. This further increases the difficulty for an attacker
to figure out what values (for function return addresses) to
write on the program stack to mimic a valid stack.

These are standard compile-time or program load-time
techniques for obfuscating the program’s stack segment and
code segment layout, and can be implemented for no ad-
ditional run-time cost while still increasing the work-load
for a brute-force attack by a factor of up to �����

�
(16 + 32

+ 32 + 24). Combining e-NeXSh’s system-call and LIBC
function-call monitoring with these obfuscation techniques
addresses their mutual shortcomings, and makes for a more
powerful defence system than with either technique in iso-
lation. For instance, a program protected solely by these
obfuscation techniques, i.e., in the absence of our call mon-
itoring, can trivially be defeated by an attacker simply in-
jecting and executing code in data memory, or overwriting
a program code pointer to invoke a LIBC function — this is
demonstrated by brute-forcing attack techniques as reported
in Shacham [54]. Conversely, e-NeXSh’s call monitoring
techniques are susceptible to stack-faking attacks in the ab-
sence of such obfuscations.

3.3 Operation

We now describe the normal invocation of LIBC func-
tions by application code and a libc-based attack scenario.

A code-injection attack that issues system calls directly
from data memory will obviously be detected by our kernel
code. By defining the LD PRELOAD environment variable,
the program’s invocations of LIBC functions are directed
into the appropriate wrapper function in e-NeXSh.so
which issues the authorising system call, validates the pro-
gram call stack, and invokes the intended LIBC function, in
order. On the other hand, a standard libc-based attack will
generally transfer control directly into the original LIBC
function. Consequently, when this function issues system
call(s), our kernel component will correctly reject them due
to the lack of authorisation (i.e., the last specified nonce
location has been invalid since the last invocation of any
e-NeXSh.so wrapper function). A more sophisticated
libc-based attack that inspects the entries in the Procedure
Linkage Table (PLT) or Global Offset Table (GOT) can in-
voke the relevant wrapper function in our shared library.
However, the call stack-validation code will detect the devi-
ation from the program’s normal behaviour, and can log the
attack attempt and halt the process by issuing a SIGKILL
signal. Directly issuing system calls for both logging and
signaling and also not returning control to the application
makes our technique invulnerable to extended attacks, e.g.,
[16, 41], that may have compromised the logging- or exit-
handler code as a means of regaining control.

Figure 3 illustrates a successful, legitimate invocation of
the sys execve system call by function foo in the ap-
plication code, as well as an unsuccessful attempt by the
malicious code shellcode to invoke functions in LIBC.
As a result, malicious code can invoke system calls neither
directly nor indirectly via LIBC functions.

3.4 Transparency of Use

Our implementation imposes no interference on normal
system operations. Firstly, we can enforce protection on
only those programs that need security, e.g., server dae-
mons like httpd, sendmail, smbd, imapd, and leave
the rest of the system unaffected. The user-space com-
ponent e-NeXSh.so can be disabled by simply not set-
ting the LD PRELOAD environment variable. We created
a flag in the kernel’s Process Control Block (PCB) data
structure that has to be set in order for our kernel com-
ponent to validate system-call invocations. This flag can
be set by a variety of means in the kernel’s process load-
ing code: (a) the LD PRELOAD environment variable is set
(and contains e-NeXSh.so), (b) the program’s name con-
tains the prefix enxProtect , or (c) the program image
contains an ELF [56] section titled enexsh, consisting of
pre-computed disassembly information for the program and
the referenced libraries.

1 #include <string.h>
2
3 char *shellcode =
4 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0"
5 "\x88\x46\x07\x89\x46\x0c\xb0\x0b"
6 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c"
7 "\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
8 "\x80\xe8\xdc\xff\xff\xff/bin/sh";
9

10 int main(void) {
11 char buffer[96];
12 int i = 0, *p = (int *) buffer;
13 while (i++ < 32) *p++ = (int) buffer;
14 strncpy (buffer, shellcode,
15 strlen (shellcode));
16 return 0;
17 }

Figure 4. Sample stacksmashing attack.

execve:
syscall_libc_auth

call libc.execve

User-space

execve:

 . . .
 movl 0xb, %ebx
 int $0x80

sys_execve:
 . . .

Syscall Table

sys_execve

sys_fork

shellcode:
 . . .
 call execve

Kernel

sys_fork:
 . . .

syscall:

call syscall_table[i]

Kernel

// check protection flag
// validate caller addr in .text
// verify nonce

// validate call stack

// delete nonce

b

c

d

e

f

x

libc.so

e-NeXSh.so

foo:
 . . .
 call execve

a

Figure 3. The sequence (abcdef) indicates a success-
ful system-call invocation by “valid” function foo,
being routed through the new execve wrapper func-
tion in e-NeXSh.so and the original LIBC wrapper
function execve, in order. Step (b) represents the
operations of the new wrapper function, starting with
it informing the kernel to authorise the invocation of
sys execve, and ending with the stack trace and
caller-callee verifications, just before before calling
the original LIBC function. Step (d) signifies the ex-
ecution of the trap instruction, and the triggering of
the system-call signal handler in the kernel, and step
(e) represents the kernel performing its own checks,
verifying that the calling code’s virtual memory ad-
dress is in read-only memory, and that the currently
requested system call is authorised (by checking the
nonce). The sequence (xde) indicates an unsuccessful
attempt by attack code in shellcode to invoke the
same system call via LIBC. The attack fails the nonce
check at step (e), because the system-call invocation
has not been authorised.

Our technique allows for code execution on the stack
and heap as long as it does not invoke a system call or
LIBC function. A benefit of this feature is that e-NeXSh
does not break applications with a genuine need for an exe-
cutable stack, e.g., LISP interpreters. However, by prevent-
ing system-call or LIBC function invocations from the stack
or heap, e-NeXSh creates an “effectively” non-executable
stack and heap. This is an improvement over true non-
executable stack and heap techniques that either break le-
gitimate applications, or require significant effort to allow
such code to execute on the stack or heap.

4 Evaluation

In this section, we report on our evaluations of the effi-
cacy and usability of our technique. We conducted exper-
iments to measure both its effectiveness in protecting the
system from various attacks, and impact to the system per-
formance.

4.1 Efficacy

The foremost objective of any protection mechanism is
successful defence against attacks. We have used e-NeXSh
to defeat stack- and heap-based code-injection attacks based
on our modified version of Aleph One’s stacksmashing at-
tack (figure 4), and an example libc-based attack using
the sample program in figure 5. To further test our tech-
nique’s effectiveness against attacks, we ran a benchmark
test-suite compiled by Wilander and Kamkar [64]. This
code-injection attack test-suite contains 20 different buffer-
overflow techniques to overwrite vulnerable code pointers,
viz., function’s return address, function pointer variables,
old frame pointer, and longjmp buffers, in all of the stack,
heap, .bss and data segments of process memory. e-
NeXSh was able to achieve 100% effectiveness by defeating
all 20 attacks, a significant improvement over the mere 50%
achieved by ProPolice [25], the best buffer overflow detec-
tor tool evaluated by Wilander. A dynamic buffer-overflow
detector [51] also managed 100% effectiveness using this
test-suite, however with a considerably larger (upto �������)
overhead. We discuss performance issues due to e-NeXSh
next.

4.2 Usability

The usability issues related to incorporating any secu-
rity mechanism are manifold, including impact on system
performance, increase in program disk or memory usage,
any other interference with normal system operation (e.g.,
breaking certain applications), and ease of incorporating the

Micro-benchmark: system calls

0

1

2

3

4

5

6

7

8

mmap fork open mprotect getpid brk connect socket

system calls

n
o

rm
al

is
ed

 e
xe

cu
ti

o
n

 t
im

e

none enx-disabled enx-enabled

Figure 6. e-NeXSh micro-benchmark: System calls.
The three columns indicate mean execution time for
each system call on: (a) a stock Linux system, (b) an
e-NeXSh-enhanced Linux system, but without apply-
ing either kernel or LIBC protection, and (c) full e-
NeXSh protection. The values are normalised to col-
umn (a), i.e., the mean execution time for stock Linux.

Apache Macro-benchmarks: ApacheBench

14796.128 14663.876 14566.668

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

Average number of iterations

R
eq

u
es

ts
 p

er
 s

ec
o

n
d

Apache Apache with e-NeXSh disabled Apache with e-NeXSh enabled

Figure 7. e-NeXSh macro-benchmark:
ApacheBench. The height of each column indi-
cates the number of requests that Apache could
process each second.

1 #include <unistd.h>
2
3 char *argv[] = { "/bin/sh" };
4 int main(void) {
5 void **fp = (void **) &fp;
6 fp[2] = execve;
7 fp[4] = argv[0];
8 fp[5] = argv;
9 fp[6] = 0;

10 return 0;
11 }

Figure 5. Sample libc-based attack.

technique (e.g., any manual effort required). We focus pri-
marily on the impact to system performance due to our in-

terception of LIBC function and system-call invocations.

4.2.1 Execution Overheads

We ran a set of micro-benchmarks to determine the
worst-case performance hit on system-call invocations (via
LIBC), and macro-benchmarks to determine the perfor-
mance impact on real-world software. We used the
ApacheBench benchmarking tool from the Apache HTTP
Server project [1] and several common UNIX tools for the
macro-benchmarks. Our results show that e-NeXSh im-
poses a small performance overhead on average for Apache-
1.3.23-11 (� 1.5% reduction in request-processing capabil-
ity), and tools like tar and gzip. These benchmarks
were compiled with the gcc-3.2 compiler with no debug-
ging, and no optimisation. The benchmarks were run on a
1.2GHz Pentium III machine with 256MB of RAM. Timing
measurements were made using the gettimeofday func-
tion for the micro-benchmark tests, and the UNIX time
tool for the macro-benchmark tests. ApacheBench provided
its own timing results.

Micro-benchmarks We wrote a C program that uses the
gettimeofday function to measure the system time to
invoke each LIBC function (corresponding to the system
call, see next) LIMIT times in a loop (LIMIT == 10,000).
We then divided the total time by LIMIT to get the mean
execution time per invocation. We collected such values
from 10 runs, and averaged the median 8 values for each
system call. Figure 6 shows the results for individual micro-
benchmarks to assess upper-bound performance overhead
for several potentially dangerous system calls (that would
be used by an attacker), a system call (brk) frequently in-
voked for dynamic memory allocations, and a lightweight
system call (getpid).

Note the spikes for open, mprotect, connect and
socket system calls, indicating overheads of almost � � .
We ran additional tests with varying LIMIT (1, 10, 100,
1000, and 10000) for each of these system calls, and discov-
ered that the e-NeXSh overhead per system-call invocation
(the overhead settles in the range 3–8 ��� per 2–4 ��� system-
call execution time) became more prominent at higher itera-
tions — these additional results are tabulated in appendix A.

Macro-benchmarks We chose the ApacheBench bench-
marking suite for the Apache [1] HTTP server project
as a realistic benchmark for evaluating the perfor-
mance impact of e-NeXSh. Apache is ideal for this
purpose owing to its wide-spread adoption, and to
the fact that it exercises many of the wrapper func-
tions in e-NeXSh.so such as connect, execve,
fork, open, and socket. We ran the ab tool
from ApacheBench with the parameters: -n 10000

Normal e-NeXSh Overhead
Benchmark in seconds in seconds in percent

ctags 9.98 � 0.14 9.91 � 0.10 -0.60 � 1.93
gzip 10.98 � 0.62 11.19 � 0.44 2.09 � 6.45
scp 6.30 � 0.04 6.29 � 0.04 -0.15 � 0.96
tar 12.89 � 0.28 13.12 � 0.46 1.84 � 3.91

Table 3. e-NeXSh macro-benchmark: UNIX utilities,

-C 1000 http://localhost/50KB.bin to simu-
late 1000 concurrent clients making a total of 10,000 re-
quests for a 50KB file through the loopback network de-
vice (i.e., on the same host as the web server, to avoid net-
work latency-induced perturbations to our results). We col-
lected and averaged the results for 5 runs of ab for each
server configuration (see next). The machine was otherwise
unloaded.

Table 2 shows the results of our macro-benchmark tests
(also plotted in figure 7). The Apache server suffers a small
� 1.55% decrease (though the standard deviation indicates
that this decrease is insignificant) in request-handling ca-
pacity while running under full e-NeXSh protection (col-
umn 3, Apache +ENX), as compared to running on a stock
Linux system (column 1, Apache). Column 2 (Apache
-ENX) signifies the Apache server running unprotected
on top of an e-NeXSh-enhanced kernel, however with e-
NeXSh disabled.

Apache Apache (-ENX) Apache (+ENX)
14796.13 � 244.96 14663.88 � 142.90 14566.67 � 197.86

(decrease in throughput) -0.87% � 1.98 -1.55% � 2.14

Table 2. e-NeXSh macro-benchmark: ApacheBench.
The values in the first data row indicate the number
of HTTP requests handled per second (averaged over
5 runs, and corresponding standard deviation) by the
server in each configuration. The second row shows
the average decrease in throughput in comparison to
Apache running on stock Linux.

We also ran some tests to determine e-NeXSh’s impact
on the performance of common, non-server UNIX pro-
grams. Table 3 shows the execution time (averaged over 5
runs, and corresponding standard deviation) for the ctags,
gzip, scp and tar utilities, measured using the UNIX
time command. Three of these tests involved a local
glibc-2.2.5 code repository: we ran ctags to gen-
erate indexes for the GLIBC source code, tar to create
an archive of the source code repository, and scp to up-
load the archive file to a remote server (using public keys
for automatic authentication). We also created a 50MB file
by reading bytes from /dev/random, and we compressed

this file using gzip (it compressed the GLIBC archive too
fast for us to get a meaningful time measurement). These
results show that overhead added by e-NeXSh to these com-
mon programs is insignificant: in the final column, the re-
ported overhead is consistently smaller in magnitude than
the standard deviation.

4.2.2 Other Usability Issues

Recall that e-NeXSh operates completely transparently to
applications and existing libraries, meaning that their disk
usage remains constant. The run-time memory usage of
protected programs increases by the size of the data struc-
ture representing function boundaries (at 16 bytes per func-
tion, Apache-1.3.23-11 has 790 functions, i.e., increased
memory footprint of � 3KB) in e-NeXSh.so. If the
e-NeXSh.so shared library is customised for each ap-
plication, this will increase the disk usage marginally (cur-
rently 34KB).

Once the kernel has been patched, and a suitable
e-NeXSh.so shared library made available, applying e-
NeXSh protection to an application is a simple matter of by
setting the LD PRELOAD environment variable. Unlike the
non-executable stack and heap techniques, e-NeXSh does
not break applications that require execution of code on
the stack or heap, or require complex workarounds to “un-
break” them. Also, extending e-NeXSh.so with a new
wrapper is very easy, requiring only a one-line C macro to
define the wrapped LIBC function’s signature.

5 Related Work

Our technique is similar to existing work in three gen-
eral areas of security research: (a) system-call interposition
techniques for process sandboxing or intrusion detection,
(b) techniques that prevent the execution of injected code,
and (c) address obfuscation techniques to combat libc-based
attacks. Though there exist certain overlaps in these areas,
we discuss each area separately.

5.1 System-Call Interposition

System-call interception-based intrusion-detection sys-
tems [18, 32, 34, 58, 62, 63] are similar to our technique
in that they passively observe process behaviour. The ob-
served behaviour of the running program, as signified by
its audit trails, i.e., the sequence of system calls issued by
the running program, is validated against an abstract Finite
State Machine (FSM) model that represents normal execu-
tion of the monitored programs. These model can be con-
structed either during a training phase, or it can be generated
from other compile-time information about the program.
Running these systems within acceptable overheads has

generally resulted in loss of precision, yielding a large num-
ber of false positives, and sometimes even false negatives.
Giffin [33], another system call-driven, intrusion-detection
system, is an improvement over Wagner and Dean’s tech-
nique [58] that uses static disassembly techniques on Solaris
executables to create a precise, yet efficient model (based
on the Dyck language) to represent the beginning and end
of function invocations. Feng [27] and Rabek [50] take
the concept of system-call interception a step further by in-
specting return addresses from the call stack to verify them
against the set of valid addresses for the program. This is
similar to our (kernel-level) concept of validating the vir-
tual memory address of code that issues the trap instruc-
tion, and the validation of the call stack return addresses in
e-NeXSh.so. However, these systems incur larger over-
heads as they get the kernel to extract and verify individual
return address values from the program call stack, whereas
we only have to validate a single address in the kernel. In-
stead, we verify the user-space call stack completely within
our user-space component. Another important advantage of
our system is the simplicity of our technique — instead of
an FSM-based model, we simply use the program code (as
a call-graph model) to validate program call stacks.

Gao’s evaluation [29] concludes that mimicry attacks can
break anomaly-detection techniques that intercept system
calls and analyse audit trails. These mimicry attacks ex-
ploit the fact that such anomaly-detection techniques de-
fine normal program behaviour in terms of audit trails.
Our technique is not similarly vulnerable to these attacks
since we monitor not audit trails over a period of time,
but rather the entire call stack to validate against the static
program code. In � 3.2.3, we discussed the ineffective-
ness against e-NeXSh of Kruegel [41], a similar method
for automating mimicry attacks against certain classes of
intrusion-detection systems. A Phrack article [17] presents
a mimicry attack [29, 41] (using faked stack frames) to de-
feat two commercial sandboxing products for the Windows
operating system, viz., NAI Entercept and Cisco Security
Agent, that perform kernel-based verification of the return
addresses on the user-space stack and the return address of
the trap call. These defence techniques are tricked into
accepting the faked stack frames since they only check that
the return addresses from the stack-trace exist in a .text
section. Our full caller-callee validation in e-NeXSh.so
combined with the stack- and code-segment obfuscations
(� 3.2.3) would thwart a Linux version of this attack, given
that we make it much harder to fake the stack.

Linn et al. [45] present a defence technique that is very
similar to e-NeXSh is terms of its objectives and methods.
They also use the locations of trap instructions in code
memory to identify illegal invocations of system calls by

code-injection attacks — whereas our kernel module simply
inspects the “return address” of system-call invocations and
checks the memory page’s read/write flag, Linn’s technique
uses the PLTO [52] binary rewriting tool to pre-process ex-
ecutable files to construct an Interrupt Address Table (IAT)
of valid sites for system calls. The IAT is loaded by the ker-
nel, and referenced for a matching “return address” entry
when validating each system-call invocation during the pro-
gram run. Linn’s technique inherits the PLTO tool’s inabil-
ity to handle dynamically linked executables, and hence has
to include all referenced library code, e.g., LIBC, in a single
static executable to deal with the trap instructions in the
LIBC code. e-NeXSh, on the other hand, still only needs
to verify that the “return address” of the trap instruction
exists in a write-protected memory area — for LIBC, this
would be the code-segment of libc.so in the program
memory.

Besides their method of monitoring system-call instruc-
tions to identify code-injection attacks, Linn also includes
a mechanism parallel to our e-NeXSh.so, i.e., for identi-
fying attacks that use existing trap instructions in the pro-
gram (or library) code to invoke system calls. Linn classi-
fies these attacks into “known address” and “scanning” cat-
egories, and focuses on using obfuscation techniques to de-
feat such “scanning” attacks, including (a) using the PLTO
tool to replace the trap instructions with other machine in-
structions that are guaranteed to also cause a kernel trap, (b)
removing from executables any symbolic information that
might aid an attacker in figuring out where the trap in-
structions were replaced, (c) interspersing nop-equivalent
instructions in the program code, and (d) interspersing the
address space of the executable with munmap’d memory
pages. This collection of obfuscation techniques serves to
prevent a “scanning” attacker from using an existing trap
location in the program code to invoke system calls. How-
ever, when compared to e-NeXSh.so that accomplishes
the same purpose, we see that Linn’s performance overhead
(15%) is approximately � ��� greater than that for e-NeXSh.
Linn attributes their large overhead primarily to a degraded
instruction-cache performance, and points out that their lay-
out randomisation easily leads to a high rate of TLB misses.
Another disadvantage of their technique is the need to mod-
ify the executable files in a highly intrusive fashion, which
is likely to complicate matters for both debugging purposes
and interoperability with other, independent defence tech-
niques.

Some intrusion-detection systems require manual effort
to define and update explicit policies [18, 49] to restrict
programs’ run-time operations. Our technique obviates the
need for such explicit policies: instead, we use the program
code in the .text segment and its disassembly informa-
tion as guidelines for an implicit policy.

5.2 Defence Against Code-Injection Attacks

Process-specific randomised instruction sets [13, 38]
and process shepherding [40] have demonstrated resilience
against code-injection attacks by only permitting trusted
code to execute, where the trust is dictated by the origins of
the code. These systems rely heavily on the use of machine
emulators or binary translators incurring large overheads,
and hence are unsuitable for real-world use.

Techniques like [3, 5, 10, 55] protect against code-
injection attacks by making the program stack, heap and
static data areas non-executable. By default, these data ar-
eas are mapped to memory pages marked writable in the
Linux operating system. Since the 32-bit x86 architecture
only provides support to specify whether individual mem-
ory pages are writable and/or readable, there is no efficient
means of specifying whether a given page is executable.
This has resulted in operating systems like Linux consid-
ering readable pages as also being executable. These non-
executable stack and heap techniques [3, 55] have devel-
oped a software solution for distinguishing the readable and
executable capabilities for individual pages, and have been
successful in preventing the execution of code in these ar-
eas, although in a mostly non-portable manner. A critical
drawback of these approaches is that they break code with
legitimate need for an executable stack, prompting the de-
velopment of complex workarounds to facilitate such code,
e.g., trampolines for nested functions (a GCC extension to
C) and signal-handler return code for Linux.

Recent processors [30] provide native hardware sup-
port for non-executable pages via a NoExecute (NX) flag.
This, however, will serve only to make redundant the code
used to emulate the per-page execute bit — the complex
workarounds and associated overheads to allow executable
stacks and heaps for applications that require them still re-
main. Furthermore, these techniques cover only a subset of
exploitation methods (e.g., existing-code or libc-based at-
tacks are still possible).

Our approach can also be thought of as making data
memory non-executable for the purposes of injected code
invoking system calls or LIBC functions. However, our
technique does not prohibit the execution of most code that
has been deposited into data memory (the exception is the
trap instruction to make system calls), making it possible
to run applications that require an executable stack.

5.3 Address Obfuscation

Address-obfuscation techniques [3, 14, 20] can disrupt
libc-based attacks by randomising the locations of key sys-
tem library code and the absolute locations of all appli-
cation code and data, as well as the distances between
different data objects. Several transformations are used,

such as randomising the base addresses of memory re-
gions (stack, heap, dynamically linked libraries, routines,
and static data), permuting the order of variables and rou-
tines, and introducing random gaps between objects (e.g.,
by randomly padding stack frames or malloc()’d re-
gions). However, Shacham et al. [54] recently demonstrated
the futility of such address-obfuscation techniques for 32-
bit systems (they can only utilise � 16 bits of randomness)
by creating an attack to defeat PaX’s address space layout
randomisation in 216 seconds. e-NeXSh is not vulnerable to
this attack since we do not obfuscate the memory addresses
of LIBC functions. The secret component in our technique,
i.e., the nonce, is reliably secure against re-use by attack-
ers since we create and destroy the nonce values entirely
within e-NeXSh.so. Furthermore, we employ up to 104
bits (compare to 16bits for the tests in [54]) of randomness,
which greatly increases the difficulty for an attacker.

6 Open Issues and Future Work

An underlying assumption in our work is that an at-
tack needs to interact with the system outside its compro-
mised process, and that this interaction can be tightly mon-
itored and controlled by the OS kernel. Linux allows an
application to carry out memory-mapped I/O without hav-
ing to issue system-calls except for one initial call to the
mmap system call. The techniques presented in this paper
cannot detect when a compromised process is performing
memory-mapped I/O. However, such an attack is effective
only against a program that has already set up memory-
mapped access to critical files.

e-NeXSh is incompatible with systems that involve
copying executable code to data sections for the purposes
of execution — this will immediately be flagged as execu-
tion of injected code, and the process will be halted. For
instance, techniques like LibVerify [12] and Program Shep-
herding [40] that require execution of managed or shep-
herded code stored in data pages cannot be used in con-
junction with e-NeXSh.

One deficiency of our system is that it does not protect
against attacks that exploit vulnerabilities to overwrite cru-
cial (non-code pointer) data. This could enable the attacker
to bypass application-specific access-control checks, or, in
extreme cases, even be able to specify the parameter for the
program’s own invocation of the system call. However,
few techniques [18, 49] monitor system-call parameters to
protect against such attacks, and only with manually edited,
explicit policies.

6.1 Future Work

Our implementation relies on program and library dis-
assembly for validating stack traces, and is currently un-

able to carry out proper user-space call-stack validation ei-
ther if optimising compilers have been used to produce code
without the old-frame-pointer entry in stack frames
(i.e., cannot do stack traces), or if the program executable
has been strip’d of symbols (i.e., cannot disassemble the
code). The obvious solution to this problem involves impos-
ing certain build-time constraints — application code will
need to be compiled with the old-frame-pointer en-
abled, and the executables cannot be run through strip.
Another possibility is to use more robust disassemblers like
IDA-Pro [8].

A possible future direction for our work is to relocate the
user-space stack-verification code into the kernel. Having a
self-contained e-NeXSh mechanism in the kernel will allow
for a simpler design, avoiding the need for an extra system
call or storage space for a nonce in the PCB. Furthermore,
the call-stack verification can be extended to monitor library
code in statically linked executables. However, this deci-
sion could also lead to larger performance overheads as the
kernel has to validate the user-space stack.

We are working to improve the handling of code point-
ers in the call stack. In addition to collecting information
about the set of acceptable use for function pointers in the
call stack during training stages, we are considering the use
of static-analysis techniques combined with some run-time
program data [11] to compute full call graphs for programs.

7 Conclusions

We have presented a technique that makes use of infor-
mation about a process’ run-time memory, creating an im-
plicit policy to efficiently monitor all system call and LIBC
function invocations made by the process. This helps in de-
feating process-subversion attacks from causing any dam-
age outside of the compromised process. This technique has
demonstrated successful protection of software against both
code-injection and libc-based attacks, using Wilander’s test-
suite [64] in addition to our own synthetic effectiveness
benchmarks. We have established that our approach is both
feasible and economical, imposing negligible overheads on
Apache and common UNIX utilities, and is applicable for
both legacy and closed-source applications since we do not
require any changes to application source code.

8 Acknowledgements

We would like to thank Alfred Aho for his invaluable
comments and insights during the many discussions on the
techniques presented in this paper. This work was supported
in part by the National Science Foundation under grant ITR
CNS-0426623.

References

[1] Apache HTTP Server Project. http://httpd.
apache.org.

[2] CERT/CC Advisories. http://www.cert.org/
advisories.

[3] Pax: Non-executable data pages. https://pageexec.
virtualave.net.

[4] Phrack: . . . a Hacker community by the community, for the
community http://www.phrack.org/.

[5] RedHat Linux: Exec Shield. http://people.
redhat.com/mingo/exec-shield.

[6] SecuriTeam Exploits. http://www.securiteam.
com/exploits/.

[7] SecurityFocus BugTraq Mailing List. http://www.
securityfocus.com/archive/1.

[8] The IDA Pro Disassembler and Debugger. http://www.
datarescue.com/idabase/.

[9] The Metasploit Project: payloads for Linux. http://
www.metasploit.org/shellcode_linux.html.

[10] The OpenBSD Project 3.3 Release: Write XOR Execute.
http://openbsd.org/33.html.

[11] D. C. Atkinson. Call Graph Extraction in the Presence of
Function Pointers. In Proceedings of the 2002 International
Conference on Software Engineering Research and Prac-
tice, June 2002.

[12] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time
defense against stack smashing attacks. In Proceedings of
the 2000 USENIX Annual Technical Conference, June 2000.

[13] G. Barrantes, D. H. Ackley, T. S. Palmer, D. D. Zovi, S. For-
rest, and D. Stefanovic. Randomized instruction set emula-
tion to disrupt binary code injection attacks. In Proceedings
of the ACM Computer and Communications Security (CCS)
Conference, October 2003.

[14] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfus-
cation: an Efficient Approach to Combat a Broad Range of
Memory Error Exploits. In Proceedings of the 12th USENIX
Security Symposium, pages 105–120, August 2003.

[15] Brett Hutley. SANS Malware FAQ: The BH01
worm. http://www.sans.org/resources/
malwarefaq/bh01.php.

[16] Bulba and Kil3r. Bypassing StackGuard and StackShield.
Phrack, 5(56), May 2000.

[17] J. Butler. Bypassing 3rd party windows buffer overflow pro-
tection. Phrack, 11(62), July 2004.

[18] S. Chari and P. Cheng. BlueBox : A Policy-Driven, Host-
Based Intrusion Detection System. In Proceedings of the
9th Network and Distributed System Security Symposium
(NDSS), February 2002.

[19] H. Chen and D. Wagner. MOPS: an Infrastructure for Exam-
ining Security Properties of Software. In Proceedings of the
ACM Computer and Communications Security (CCS) Con-
ference, pages 235–244, November 2002.

[20] M. Chew and D. Song. Mitigating Buffer Overflows by Op-
erating System Randomization. Technical Report Computer
Science Technical Report 65, Carnegie Mellon University,
December 2002.

[21] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Point-
Guard: Protecting Pointers From Buffer Overflow Vulner-
abilities. In Proceedings of the 12th USENIX Security Sym-
posium, pages 91–104, August 2003.

[22] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stack-
guard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Symposium, Jan. 1998.

[23] Edward Ray. SANS Malware FAQ: MS-SQL Slam-
mer. http://www.sans.org/resources/
malwarefaq/ms-sql-exploit.php.

[24] eEye Digital Security. ANALYSIS: Sasser Worm.
http://www.eeye.com/html/Research/
Advisories/AD20040501.html.

[25] J. Etoh. GCC extension for protecting applications from
stack-smashing attacks. http://www.trl.ibm.com/
projects/security/ssp, June 2000.

[26] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P.
Miller. Formalizing Sensitivity in Static Analysis for Intru-
sion Detection. In Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, May 2004.

[27] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly detection using call stack information.
In Proceedings of the IEEE Symposium on Security and Pri-
vacy, Oakland, CA, May 2003.

[28] M. Frantzen and M. Shuey. StackGhost: Hardware facili-
tated stack protection. In Proceedings of the USENIX Secu-
rity Symposium, pages 55–66, August 2001.

[29] D. Gao, M. K. Reiter, and D. Song. On gray-box program
tracking for anomaly detection. In Proceedings of the 13th
USENIX Security Symposium, pages 103–118, August 2004.

[30] L. Garber. New Chips Stop Buffer Overflow Attacks. IEEE
Computer, 37(10):28, October 2004.

[31] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A Dele-
gating Architecture for Secure System Call Interposition. In
Proceedings of the 11th Network and Distributed System Se-
curity Symposium (NDSS), pages 187–201, February 2004.

[32] T. Garfinkel and M. Rosenblum. A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection. In Pro-
ceedings of the 10th Network and Distributed System Secu-
rity Symposium (NDSS), pages 191–206, February 2003.

[33] J. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive
intrusion detection. In Proceedings of the 11th Network and
Distributed System Security Symposium (NDSS), 2004.

[34] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detec-
tion using sequences of system calls. Journal of Computer
Security, 6(3):151–180, 1998.

[35] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in C programs.
In Third International Workshop on Automated Debugging,
1997.

[36] P. A. Karger. Using registers to optimize cross-domain call
performance. In Third International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems, pages 194–204, 1989.

[37] G. S. Kc, S. A. Edwards, G. E. Kaiser, and A. Keromytis.
CASPER: Compiler-Assisted Securing of Programs at Run-
time. Technical Report TR CUCS-025-02, Columbia Uni-
versity, New York, NY, November 2002.

[38] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Counter-
ing Code-Injection Attacks With Instruction-Set Random-
ization. In Proceedings of the ACM Computer and Commu-
nications Security (CCS) Conference, pages 272–280, Octo-
ber 2003.

[39] J. King. Symbolic execution and program testing. Commu-
nications of the ACM, 19(7), 1976.

[40] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure exe-
cution via program shepherding. In Proceedings of the 11th
USENIX Security Symposium, pages 191–205, August 2002.

[41] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Automating mimicry attacks using static binary analysis. In
Proceedings of the 14th USENIX Security Symposium, July
2005.

[42] L. C. Lam and T. Chiueh. Automatic Extraction of Accurate
Application-Specific Sandboxing Policy. In Proceedings of
the ���

�
International Symposium on Recent Advances in In-

trusion Detection (RAID), pages 1–20, September 2004.
[43] W. Lee, S. Stolfo, and P. Chan. Learning patterns from unix

process execution traces for intrusion detection. In Proceed-
ings of the AAAI97 workshop on AI methods in Fraud and
risk management, 1997.

[44] K. Lhee and S. J. Chapin. Type-assisted dynamic buffer
overflow detection. In Proceedings of the 11th USENIX Se-
curity Symposium, pages 81–90, August 2002.

[45] C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K.
Debray, and J. H. Hartman. Protecting against unexpected
system calls. In Proceedings of the 14th USENIX Security
Symposium, July 2005.

[46] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-Safe Retrofitting of Legacy Code. In Proceedings of
the Principles of Programming Languages (PoPL), January
2002.

[47] M. Prasad and T. Chiueh. A Binary Rewriting Defense
Against Stack-based Buffer Overflow Attacks. In Proceed-
ings of the USENIX Annual Technical Conference, pages
211–224, June 2003.

[48] V. Prevelakis and D. Spinellis. Sandboxing Applications. In
Proceedings of the USENIX Technical Annual Conference,
Freenix Track, pages 119–126, June 2001.

[49] N. Provos. Improving Host Security with System Call Poli-
cies. In Proceedings of the 12th USENIX Security Sympo-
sium, pages 257–272, August 2003.

[50] J. Rabek, R. Khazan, S. Lewandowski, and R. Cunningham.
Detection of injected, dynamically generated and obfuscated
malicious code. In Proceedings of the Workshop on Rapid
Malcode (WORM), 2003.

[51] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer
Overflow Detector. In Proceedings of the 11th Network and
Distributed System Security Symposium (NDSS), pages 159–
169, February 2004.

[52] B. Schwarz, S. K. Debray, and G. R. Andrews. PLTO: a
link-time optimizer for the intel ia-32 architecture. In Pro-
ceedings of the 2001 Workshop on Binary Translation (WBT-
2001), 2001.

[53] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program
behaviors. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, 2001.

[54] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and
D. Boneh. On the Effectiveness of Address-Space Random-
ization. In Proceedings of the ��� �

�
ACM Conference on

Computer and Communications Security (CCS), pages 298–
307, October 2004.

[55] Solar Designer. Openwall: Non-executable stack patch.
http://www.openwall.com/linux.

[56] Tool Interface Standards Committee. Executable and Link-
ing Format (ELF) specification, May 1995.

[57] Vendicator. Stack shield. http://www.angelfire.
com/sk/stackshield.

[58] D. Wagner and D. Dean. Intrusion detection via static analy-
sis. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 156–169, Oakland, CA, 2001.

[59] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A
First Step towards Automated Detection of Buffer Overrun
Vulnerabilities. In Proceedings of the 7th Network and Dis-
tributed System Security Symposium (NDSS), pages 3–17,
February 2000.

[60] D. Wagner and P. Soto. Mimicry attacks on host based
intrusion detection systems. In Proceedings of the Ninth
ACM Conference on Computer and Communications Secu-
rity, 2002.

[61] D. S. Wallach and E. W. Felten. Understanding Java stack
inspection. In Proceedinges of the 1996 IEEE Symposium on
Research in Security and Privacy, pages 52–63, May 1998.

[62] C. Warrender, S. Forrest, and B. A. Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In
IEEE Symposium on Security and Privacy, pages 133–145,
1999.

[63] A. Wespi, M. Dacier, and H. Debar. Intrusion detection us-
ing variable-length audit trail patterns. In Proceedings of
the 3rd International Workshop on the Recent Advances in
Intrusion Detection (RAID), 2000.

[64] J. Wilander and M. Kamkar. A Comparison of Publicly
Available Tools for Dynamic Intrusion Prevention. In Pro-
ceedings of the 10th Network and Distributed System Secu-
rity Symposium (NDSS), pages 123–130, February 2003.

[65] H. Xu, W. Du, and S. J. Chapin. Context Sensitive Anomaly
Monitoring of Process Control Flow to Detect Mimicry At-
tacks and Impossible Paths. In Proceedings of the � �

�
Inter-

national Symposium on Recent Advances in Intrusion De-
tection (RAID), pages 21–38, September 2004.

A Appendix

Figures 8, 9, 10, and 11 demonstrate declining average execution time for system calls in our extended micro-benchmark
tests, and indicate that the overhead due to e-NeXSh is in the range 3–8 ��� per invocation.

Micro-benchmark: syscall open

0

2

4

6

8

10

12

14

16

1 10 100 1000 10000 100000

Iterations

ex
ec

u
ti

o
n

 t
im

e

(m
ic

ro
se

co
n

d
s)

open-none open-enx

Figure 8. Micro-benchmark results: open.

Micro-benchmark: syscall mprotect

0

2

4

6

8

10

12

14

16

1 10 100 1000 10000 100000

Iterations

ex
ec

u
ti

o
n

 t
im

e

(m
ic

ro
se

co
n

d
s)

mprotect-none mprotect-enx

Figure 9. Micro-benchmark results: mpro-
tect.

Micro-benchmark: syscall connect

0

2

4

6

8

10

12

14

16

18

1 10 100 1000 10000 100000

Iterations

ex
ec

u
ti

o
n

 t
im

e

(m
ic

ro
se

co
n

d
s)

connect-none connect-enx

Figure 10. Micro-benchmark results: con-
nect.

Micro-benchmark: syscall socket

0

2

4

6

8

10

12

14

16

1 10 100 1000 10000 100000

Iterations

ex
ec

u
ti

o
n

 t
im

e

(m
ic

ro
se

co
n

d
s)

socket-none socket-enx

Figure 11. Micro-benchmark results: socket.

