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Abstract

Separation of control and data plane is a principle in-
creasingly used to improve the performance of net-
work protocols and applications, such as the Web.
Use of security mechanisms, such as the SSL/TLS
protocol, can negate these performance gains, since
such mechanisms need to be located on the data path.
We argue that the same principle of separation can
be applied to security mechanisms, by removing the
web server from the secure data path.

We present a minimal operating system extension
that can improve the performance of web servers us-
ing SSL/TLS by up to 27%. Our intuition is that
protocol framing and cryptographic transforms can
be applied to incoming and outgoing data frames by
the operating system under a policy specified by the
web server. In this way, we can reduce the number of
system calls and context switches to a small constant
number, and the amount of data copying that involves
the web server by 100%. We describe our prototype
implementation for the OpenBSD operating system
and quantify its performance implications.

1 Introduction

It is becoming increasingly common for modern sys-
tem designers to enhance system performance by
separating the system control and data planes. The
intuition is that an application defines its control re-
quirements, and the operating system or hardware
mechanisms implement the requested movement or
transformations of the data. This keeps the data in the
fast path at all times. For example, the Apache web-
server uses the sendfile() system call, which takes

a file descriptor and a network socket and transfers
the file directly over the socket, keeping all the data
in kernel space. Apache makes a control decision,
(send this file to this socket), and the OS performs
the data transfer without the file ever reaching the
user-level process.

The cryptographic requirements of secure proto-
cols often lead to a deviation from this fast path. An
Apache server responding to HTTPS requests cannot
use sendfile(), because the SSL/TLS libraries are im-
plemented in user space. Even if the web server has
a crypto accelerator card, the file must be copied into
user space, dispatched to the accelerator card and re-
turned to user space before it is passed to the net-
work.

Our approach is conceptually straightforward: in-
tegrate network and cryptographic processing in the
kernel so that there are no diversions from the
fast data path. The result is minimization of data
copying between the user-level application (e.g., the
web server) and the kernel. This has great ad-
vantages over similar proposals, such as zero-copy
I/O, whereby the kernel uses the MMU to re-map
user-process memory pages in the kernel address
space and vice versa, thus reducing data copying and
memory-bus contention. Unfortunately, implement-
ing zero-copy I/O has great implications for all of the
operating system and it requires extensive modifica-
tions to applications to achieve the best performance.
Furthermore, zero-copy by itself cannot be used to
take advantage of integrated network/crypto cards.

We present an extension to the OpenBSD kernel
that immediately improves the data-transfer perfor-
mance of TLS and other similar protocols by 20% to
nearly 30%. In our scheme, the kernel presents a new



system call, similar to Linux’s sendfile(), intended to
be called by user-level processes. The system call
takes a socket over which, for example, a TLS ses-
sion exists, a file descriptor, and the various key-
ing material associated with the TLS session. Then,
in kernel memory space, it performs the necessary
cryptographic transforms on the file (either in soft-
ware or with a cryptographic accelerator card) and
transfers it directly over the socket, bypassing user
memory space entirely. Our implementation is easily
portable to other operating systems, especially those
that implement System V STREAMS functionality
(e.g., Solaris).

2 OpenBSD Cryptographic Frame-
work

The OpenBSD cryptographic framework (OCF) [8]
is an asynchronous service virtualization layer in-
side the kernel that provides uniform access to cryp-
tographic hardware accelerator cards. It supports
symmetric (e.g., DES, AES) and asymmetric (e.g.,
RSA) algorithms, as well as hash functions (e.g.,
MD5). Symmetric-algorithm and hash function op-
erations are built around the concept of the ses-
sion, to take advantage of session-caching features
available in many hardware accelerators. Asymmet-
ric algorithms are implemented as individual opera-
tions. To use the OCF, other kernel subsystems (con-
sumers) first create a session with the OCF specify-
ing the algorithm(s) to use, mode of operation (e.g.,
CBC), cryptographic keys, initialization vectors. The
OCF determines which card to use and creates the
relevant state by invoking the driver.

For the actual encryption/decryption, consumers
specify the data to be processed and various offsets
that indicate where the encryption should start and
end, where the message authentication code (MAC)
should be placed, where the initialization vector can
be found (if it is already present on the buffer) or
where on the output buffer it should be written (if at
all).

The OCF presents two APIs; one for crypto-
graphic producers (e.g., crypto cards) and one for
cryptographic consumers (e.g., application-level se-

curity protocols). The producer API allows a driver
to register with the OCF the various algorithms it
supports and any other device characteristics (e.g.,
support for algorithm chaining, built-in random num-
ber generation, etc.). To use the OCF, consumers
first create a session with the OCF and specify the
algorithm(s) to use, mode of operation (e.g., CBC),
cryptographic keys, initialization vectors, and num-
ber of rounds (for variable-round algorithms). The
request is queued and processing returns to the con-
sumer, until a callback indicates that the operation is
completed.

To allow user-level processes to take advantage of
hardware acceleration facilities, a /dev/crypto device
driver abstracts all the OCF functionality and pro-
vides a command set that can be used by OpenSSL
(or other software using the /dev/crypto interface di-
rectly). This interface is based on ioctl() calls. Simi-
lar to the OCF itself, this uses a session-based model,
since the general case assumes that keys will be
reused for a sequence of operations. After opening
the /dev/crypto device and gaining a file descriptor
fd, the caller requests that a new session be created
for a certain cryptographic operation, and specifies
all related parameters (e.g., keys). A single session
can support both a cipher and a MAC.

Once a session is established, blocks can be en-
crypted or decrypted using the CIOCCRYPT ioctl().
Each time this is used, the caller can specify a new
IV or MAC information that they wish to fold into
the operation. Input and output buffers are speci-
fied via separate pointers, but they can point to the
same buffer for in-place encryption. Naturally, the
data size provided by the caller must be rounded to
the default block size of the algorithm being used.
A data size limit of 262,140 bytes exists at the mo-
ment, to hide a similar limit found in some chipsets.
The userland data blocks are copied into memory al-
located inside the kernel. The OCF is then called
to perform the operation using the initialization in-
formation stored in the application’s /dev/crypto ses-
sion. If the operation succeeds, the results are copied
back to the application buffers. The cost of these
copies is high for large block sizes.



3 Design

When a user-level process like Apache receives an
HTTP request for a particular file, it issues a send-
file() system call to efficiently service the request,
as shown in Figure 1. The web server cannot use
sendfile(), though, if the request is HTTPS, since
the SSL/TLS libraries are in shared libraries in user
memory. In this case, when the web server process
receives a request for a file, the file has to be read
from disk into kernel memory and then copied into a
buffer in user space. The buffer is then written to the
cryptographic accelerator card using the /dev/crypto
interface to the OCF (so it is transfered back into ker-
nel space). When the crypto operations are complete,
the buffer is sent back into user space. Finally, the
application writes the buffer to the network card, so,
again, the buffer is transfered into kernel space. Fig-
ure 2 summarizes the data movement. The problem
with this approach is that the data are copied unnec-
essarily into user memory space, and there are two
context switches associated with each copy.

We eliminate the copying and context switching
by transferring the data directly from disk to the
crypto card, and then directly from the crypto card to
the network card. In this case, the buffer is read from
disk into kernel memory and written directly to the
cryptographic accelerator card using the OCF’s ker-
nel API. When the OCF signals completion of the
crypto operations, the buffer is passed to sosend()
and thence to the network. The result is the ini-
tial and final context switches and no data copies, as
shown in Figure 3.

When the file is larger than the buffer, our im-
provement is even greater. Consider a buffer of size
n bytes and a file of size p bytes. The current state of
affairs requires 4p/n data copies and 8p/n context
switches. For p = 10n, this means the n-byte buffer
will get copied 40 times and there will be 80 context
switches. In our scheme, the buffer is copied zero
times and there are only two context switches.

3.1 Implementation

Our implementation consists of two relatively simple
modifications to the OpenBSD kernel. The first is the
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Figure 1: Apache’s default file transfer behavior,
with no crypto.
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Figure 2: Current mechanism for encrypting and
transfering a file. Note the four user/kernel space
crossings, each also encompasses two context
switches.

addition of a system call similar to Linux’s sendfile.
The system call takes a file descriptor fd and a socket
sck and copies data from fd to sck. Note this copy-
ing is all done within the kernel so the system call
does not waste time copying the data to and from
user space.

The second modification changes the socket layer
of the OpenBSD network stack. We add a new socket
option, SO CRYPT, that allows a crypto-consumer to
define cryptographic transforms for each packet sent
over a socket (e.g., where the encryption should start
and end, where the MAC should be placed, and so
on). When sosend() is called with the SO CRYPT
flag set, sosend() passes the data (in the form of
an mbuf ) to the OCF. Then sosend() calls tsleep()
and waits for OCF to indicate the completion of the
cryptographic operations. When the operation com-
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Figure 3: Encrypting and transfering a buffer
with sendfile() and SO CRYPT.
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Figure 4: Crypto-hardware performance. The
KERNEL-NULL bar indicates use of the null
encryption algorithm. The KERNEL-DES and
KERNEL-3DES bars indicate use of the software
DES and 3DES implementations in the kernel.
The remaining bars indicate use of the various
hardware accelerators. The vertical axis unit is
Mbits/second.

pletes, the new encrypted data are substituted into
the mbuf and control flow returns to the default net-
work processing. By passing sendfile() a socket with
SO CRYPT set, all network and crypto processing
takes place within the kernel and the data are never
copied into user space.

When an application such as a web server re-
sponding to HTTPS requests receives a request for
a file (with a descriptor fd) over a socket (with a
descriptor so), the web server enables SO CRYPT
on the socket and sets the necessary transforms and
keying material for TLS or SSL, as required. Then
it calls sendfile(fd, so). The file fd is read into a
buffer buf and each time the buffer fills, sendfile()
calls sosend(so, buf). Since SO CRYPT has already
been set on so, the cryptographic operations are han-
dled seamlessly. The file, which would have been
copied to and from user space repeatedly, is now
never copied into or out of user space.

3.2 Evaluation

We evaluate our system by comparing it with the tra-
ditional approach. In the traditional approach, we

read() the file from disk, use the /dev/crypto interface
to the OCF to perform the cryptographic transforms,
and then write() the file to the network socket (thus,
each data buffer is copied between user space and
kernel space four times). Our approach uses send-
file() with SO CRYPT and eliminates all user-kernel
space crossings.

To determine the raw performance of OCF, we use
a single-threaded program that repeatedly encrypts
and decrypts a fixed amount of data with various
symmetric-key algorithms, using the /dev/crypto in-
terface. We run the test against a variety of accelera-
tors, as well as using the kernel-resident software im-
plementation of the algorithms. We vary the amount
of data to be processed per request across experi-
ments. To measure the overhead of OCF without
the cryptographic algorithms, we added to the kernel
a null algorithm that simply returns the data to the
caller without performing any processing. Figure 4
shows the results.

We can make several observations on this graph.
First, even when no actual crypto is done, the ceiling
of the throughput is surprisingly low for small-size
operations (64 bytes). In this case, the measured cost



consists of the overhead of system call invocation, ar-
gument validation, and crypto-thread scheduling. As
larger buffers are passed to the kernel, the throughput
increases dramatically, despite the increasing cost of
memory-copying larger buffers in and out of the ker-
nel. When we use 1024-byte buffers, performance
in the no-encryption case jumps to 420 Mbps; for
8192-byte buffers, the framework peaks at about 600
Mbps.

Figure 5 shows a comparison over the OCF be-
tween HTTP, HTTP over IPsec, and ssl(3) as used
by HTTPS. We used curl(1) to transfer a large
file from the server to the client. As is evident,
HTTPS imposes a significant performance overhead
compared to plaintext HTTP. Figure 6 provides in-
sight on the latency overhead induced by HTTPS.
We used curl(1) to transfer a very small file (15
bytes) from the server to the client. We timed 1,000
consecutive transfers.

Figure 7 shows the results for the two schemes
operating on files of size 1MB, 10MB and 100MB.
We ran the tests between two Dell PowerEdge 2650s,
each with 1GB of RAM, over Gigabit Ethernet. The
sending machine was equipped with a Soekris En-
gineering vpn1201 cryptographic accelerator card,
and encrypted each file using 3DES. Each test case
was run multiple times, and the first run of case was
discarded, so that only those runs on a “hot” cache
were included. As the figure demonstrates, by parti-
tioning application-level data plane from the control
plane, performance gains approach 30% for all size
file transfers. This gain is due entirely to the elimina-
tion of data copies between kernel and user memory
space.

4 Related Work

There has been a considerable amount of work on
the enhancement of system performance through the
addition of cryptographic hardware [3]. This early
work was characterized by its focus on the hard-
ware accelerator rather than its implications for over-
all system performance. [12] began examining cryp-
tographic subsystem issues in the context of secur-
ing high-speed networks, and observed that the bus-
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attached cards would be limited by bus-sharing with
a network adapter on systems with a single I/O bus.
A second issue pointed out in that time frame [10]
was the cost of system calls, and a third [11, 5, 7] the
cost of buffer copying. These issues are still with us,
and continue to require aggressive design to reduce
their impacts.

As interest in security is currently in an upswing,
recent work has been examining the overall perfor-
mance impact of security technologies in real sys-
tems. Work by Coarfa, et al. [4] has focused on
the impact of hardware accelerators in the context of
TLS web servers using a trace-based methodology,
and concludes that there is some opportunity for ac-
celeration, but given the choice one might prefer a
second processor as it also assists with the substan-
tial (and perhaps dominant) non-cryptographic over-
heads. [9] provides some basic performance char-
acterizations of IPsec as well as other network se-
curity protocols, and the impact acceleration has on
throughput. The authors conclude that the relative
cost of high-grade cryptography is low enough that
it should be the default configuration.

[2] describes a technique for improving SSL hand-
shake performance. It demonstrates that it is faster to
do n SSL handshakes as a batch than n handshakes
individually, based on a technique for batching RSA
decryptions. It also shows a speedup factor of 2.5
for n = 4. It is important to note that this speedup
only applies to the handshake portion of the SSL con-
nection, not to the data transport itself. By caching
session keys, the authors of [6] demonstrate a reduc-
tion in download time of secure web documents of
between 15% and 50%. Again, this technique only
accelerates the handshake portion of the SSL con-
nection, without reducing the data transport time.

Other work has investigated performance im-
provements of TLS [2, 4, 6, 1] and offered recom-
mendations on how to improve the performance of
the session initialization phase of the protocol, which
contains several heavy-weight public key operations.
Similar improvements can be applied to the key ex-
change phase of SSH. Furthermore, recognizing the
increasing importance of TLS, several hardware ven-
dors have produced cryptographic accelerator cards

that can be used both for the public-key (e.g., RSA)
and the data-encryption operations.

5 Conclusions

Cryptographic protocols are a fundamental building
block for securing the Internet. Although their use
for routine operations such as file transfer and re-
mote login has become quite common, there remain
concerns about their impact in performance, particu-
larly on the server side. The result is that there has
been considerable effort accelerating various aspects
of protocols like TLS, which is widely used to pro-
tect web transactions. Most such work to date has
focused on the initial handshake aspect of the proto-
col, while commercially-available cryptographic ac-
celerators are not used to the best of their abilities.
To address this problem, we proposed separating the
web server application-level control and data planes,
removing the web server entirely from the security-
enhanced data path.

Our approach eliminates all unnecessary data
copies between the kernel and the user-level pro-
cess with minimum modifications to the kernel and
the application. We implemented our scheme in the
OpenBSD kernel, which provides support for hard-
ware cryptographic accelerators. The implementa-
tion was straightforward with little in the way of
pitfalls or hurdles. Our evaluation of the prototype
shows an improvement in the data-transfer perfor-
mance of TLS of 27%. Additionally, only incre-
mental changes are required to extend our scheme
to include use of network cards with integrated
cryptographic acceleration. We intend to extend
our scheme to handle transparent data decryption,
and exploit the conceptual parallels between the
user/kernel space crossings and the use of the PCI
bus. This will allow DMAing of data directly from
disk to the cryptographic accelerator card and di-
rectly from there to the network card.
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