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Abstract— Text documents often embed data that is structured
in nature, and we can expose this structured data using infor-
mation extraction technology. By processing a text database with
information extraction systems, we can materialize a variety of
structured “relations,” over which we can then issue regular
SQL queries. A key challenge to process SQL queries in this
text-based scenario is efficiency: information extraction is time-
consuming, so query processing strategies should minimize the
number of documents that they process. Another key challenge
is result quality: in the traditional relational world, all correct
execution strategies for a SQL query produce the same (correct)
result; in contrast, a SQL query execution over a text database
might produce answers that are not fully accurate or complete,
for a number of reasons. To address these challenges, we study a
family of select-project-join SQL queries over text databases, and
characterize query processing strategies on their efficiency and—
critically—on their result quality as well. We optimize the execu-
tion of SQL queries over text databases in a principled, cost-based
manner, incorporating this tradeoff between efficiency and result
quality in a user-specific fashion. Our large-scale experiments—
over real data sets and multiple information extraction systems—
show that our SQL query processing approach consistently picks
appropriate execution strategies for the desired balance between
efficiency and result quality.

I. I NTRODUCTION

Real-world applications frequently rely on the information
in large collections of text documents such as news articles,
reports, and email messages. Text often embeds valuable
structured data, such as who recommends selling which stocks,
who has been hired by which corporation, or the number
of people affected by a disease outbreak. In this paper, we
consider the problem of effectively answering SQL queries
over a collection of text documents.

Applications that benefit from structured data embedded in
text arise in a wide range of domains. In disease control,
suppose an E. coli outbreak has just occurred in a remote
country; an epidemiologist may then want to find the Web-
accessible archive of a reputable newspaper in that country, to
compile statistics on E. coli outbreaks. In business intelligence,
a law firm may want to know if its competitorX has recently
worked with a companyY , and if so, in which cases; toward
this goal, the firm extracts evidence of such cases from the
competitor’s Web site, recent news articles, and court filings.
In scientific data management, a hydrologist may hypothesize
that soil erosion near Stevenson City has seriously affected the
downstream water quality of the Columbia River, using reports

of soil erosion that mention Stevenson City from a variety of
sources.

Unfortunately, despite the pervasiveness of these applica-
tions, none of the current solutions for addressing the above
information needs is fully satisfactory. One solution is to rely
on keyword search to retrieve documents that are relevant to
the task at hand, and then manually identify the (structured)
data of interest in the documents, a tedious process. An
alternative is an “extract-then-query” solution, which first
converts the text collection into a structured database by
applying information extraction (IE) techniques, and then
poses SQL queries over the extracted database. Consider
again the E. coli example above. Using a suitably trained
IE system, our epidemiologist might turn to the (previously
unseen) Web-accessible archive of a reputable newspaper from
the target country to extract relevant tuples of a relation
DiseaseOutbreaks(DiseaseName,Location,Year), where a
tuple 〈d, `, y〉 indicates that there was an outbreak of disease
d in location ` in yeary. Then, the epidemiologist may pose
SQL queries over the relation.

This solution can address expressive information needs, but
has two important limitations. First, it often wastes substantial
time extracting useless information, because only a relatively
small number of articles in a text database might be useful
to process a query. This is likely the case for the above
E. coli query and the newspaper archive. Furthermore, the
actual “slice” of the relations that is needed to answer a query
(e.g., the tuples withDiseaseName equal to E. coli in our
example) may also be relatively small. Then, to answer a
query in a timely manner, materializing the entire relations
and processing all database documents is undesirable.

Another important limitation of the above solution is that it
might be too slow forurgent information needs. Information
extraction is well known to be computationally expensive
[1] (e.g., applying IE to even a moderate-size collection can
easily take many hours for some IE systems). So the above
solution would be too slow for an epidemiologist who must
act fast to control an infectious disease, or for a stock analyst
who must respond to the market in a timely manner. In
such cases, reliable but not exhaustive query results might be
appropriate, as long as they are returned fast. On the other
hand, when the need is not urgent (e.g., as in the law firm
and hydrologist examples described earlier), users may want
to receive exhaustive query results, for which they may be



willing to wait a relatively long time. In general, users often
have preferences regarding the quality and run-time efficiency
expected from the querying process, which the above rigid
solution cannot accommodate.

To address the above limitations, in this paper we propose
viewing this as aquery optimizationproblem. Accordingly, we
define a space of execution plans—which includes the extract-
then-query approach—and a cost model that captures user
preferences; we also develop a way to estimate plan costs and,
correspondingly, to select the best plan. We show that query
processing can be decomposed into a sequence of basic steps:
retrieving relevant text documents, extracting relations from
the documents, cleaning the extracted data, and assembling the
cleaned data into the final query answers. Our problem is then
to consider the desired user-specified balance between quality
and execution efficiency, and choose a strategy accordingly, in
a principled, cost-based manner.

In the rest of the paper, we elaborate on our solution to
process SQL queries over text databases, called SQOUT (for
“SQL queries over unstructured text databases”). Specifically,
our contributions are as follows:

• We establish that it is feasible to execute SQL queries
over text on-the-fly, with IE systems (Section III).

• We show how IE systems, document retrieval strategies,
and data cleaning operators—components often studied
in isolation in the past—can be seamlessly integrated to
form a space of execution plans for SQL queries over
text databases (Section III).

• We develop a cost model that exposes the tradeoff be-
tween efficiency and result quality, and enables users to
flexibly adjust their preferences (Section IV).

• We define the statistics necessary to estimate both ex-
ecution efficiency and result quality, and show how to
obtain such statistics efficiently and effectively from text
databases (Sections IV and V).

• We evaluate our approach with extensive experiments
over a real-world data set and using state-of-the-art
IE systems. Our results demonstrate that our approach
consistently picks execution strategies appropriate for
the desired balance between efficiency and result quality
(Section VI).

II. RELATED WORK

The problem of information extraction from unstructured
text has received significant attention (see [2] for a survey).
This research has mostly focused on improving IE accu-
racy (e.g., [3, 4, 5, 6]). The related problem of “wrapper
induction” from template-based Web pages has also been
studied extensively (e.g., in [7]). In addition, recent work has
considered information extraction from the entire Web (e.g.,
[8]). Recently, [9] introduced a novel technique to leverage
existing structured databases for information extraction.

The extraction of information from text is computationally
expensive, because of the complex text processing generally
required. Approaches have been proposed for improving IE
efficiency, to avoid processinguselessdocuments that are not

relevant to the extraction task at hand and, instead, focus on
promisingdocuments that are likely to contain information to
be extracted. One such approach, QXtract [1], uses machine
learning to derive keyword queries that identify documents
rich in target information. For example, QXtract might de-
rive keyword query [foodborne AND pathogens] to retrieve
promising documents for aDiseaseOutbreaksrelation.

Recent approaches have also looked into handling ex-
tracted data using probabilistic databases, which model data
uncertainty by assigning probabilities to tuples. Specifically,
[10] showed how to store the output from an extraction
system based on Conditional Random Fields in a probabilistic
database, after appropriately deriving a probability for each
extracted tuple. Recently, [11] introduced a structured query
processing system that extracts data from documents in an
offline step and relies on probabilistic databases to process user
queries. In contrast, our approach handles the extracted data
uncertainty during query processing, by resolving extraction
errors and data conflicts using data cleaning techniques (Sec-
tion III); however, the probabilistic approach in [11] can also
be applied towards the same goal, which we will investigate
as part of our future work.

The “on-the-fly” extraction nature of our work is somewhat
reminiscent of work on question answering (e.g., [12]), but this
research focuses on natural language questions, not on SQL
queries, and has not considered the efficiency-quality tradeoffs
in depth. Other relevant work has focused on specialized
scenarios or settings: examples include extraction over dy-
namic data [13] and combining multiple extraction programs
using declarative programs (e.g., UIMA [14], GATE [15],
Xlog [16]). Finally, other important extraction aspects besides
optimization, such as extraction architecture [17] and schema
discovery [18], have also been addressed in the literature.

Closest to this paper is the analysis in [19, 20], which
considers (among others) the problem of optimizing the doc-
ument retrieval strategy for a single IE systemS. Our current
work is related to [19, 20], but differs from it in several
crucial aspects. First, [19, 20] has studied only a single-IE-
system scenario; however, to answer practical SQL queries, we
must often employ multiple IE systems and relations, which
raises novel processing challenges that we will discuss and
address in this paper. Second, [19, 20] assumes thatS is
perfect in that it produces all—and only—correct tuples; we
remove this assumption, and develop a principled method to
model extraction errors. Finally, unlike [19, 20], we do not
optimize for a pre-specified target recall, but consider the goal
of balancing recall, precision, and execution time in a flexible
manner.

A preliminary, 3-page version of this paper appears in [21].

III. PROBLEM STATEMENT AND EXECUTION PLANS

Consider a document collectionD, which has been iden-
tified for a specific application (e.g.,D might be the Web-
accessible archive of a newspaper for our E. coli example of
Section I). Then our goal is to answer SQL queries overD
using IE systems. From the many types of IE systems (see



Section II), we focus on the common type that takes as input
a document and produces as output tuples of the relation
for which the system was trained. For instance, consider
an IE system trained for a relationHeadquarters(Company,
Location), where a tuple〈c, `〉 indicates thatc is a company
whose headquarters are located in`. Then, from the text
snippet, “Redmond-based Microsoft announced today ...” of
a document, this IE system may extract tuple〈Microsoft,
Redmond〉.

In this paper, we focus on the problem of processing SQL
queries using such IE systems:

Problem Statement 1:Consider a text databaseD with
a boolean search interface [22], andn “base” relations
R1, . . . , Rn defined overD. Each base relationRi can be
extracted fromD using one or more IE systems. We assume
that all base relationsR1, . . . , Rn share the same primary key
K and no other attributes, so each relation might be regarded
as contributing additional attributes of the entities identified by
the key attributes inK. We define a viewV = (R1 1 · · · 1

Rn)K as the natural outerjoin of the base relationsR1, . . . , Rn

over theK attributes. We consider SQL selection-projection
queries overV with selection condition conjuncts of the form
A = t, whereA is a textual attribute andt is a constant. Then,
given such a SQL selection-projection queryQ over V , our
goal is to identify an execution strategy forQ that meets the
desired efficiency and result quality requirements.

Following this problem statement, consider an IE system
trained to extract theHeadquartersrelation above, as well
as another system trained for anExecutives(Company, CEO)
relation, where a tuple〈c, e〉 indicates that persone is the
CEO of companyc. We can then define a viewCompany-
Info(Company, Location, CEO)as the natural outerjoin of
these two “base” relations and express queries such as:

Q1: SELECT Company, CEO FROM CompanyInfo
WHERE Location = ‘Redmond’

This problem setting is appropriate as a first step in our
investigation of the general problem of answering SQL queries
over text databases, and is already useful in practice (see
Section VI-B). In Section VII, we discuss how to generalize
our approach further.

Given a SQL queryQ as described above, we now discuss
the space of execution plans forQ. To evaluateQ over
databaseD, we need to:

(1) Select an IE systemEi for each base relationRi.
(2) Select a document retrieval strategyXi for eachEi.
(3) Use each strategyXi to retrieve from databaseD a set of

documentsPi, then processPi using IE systemEi to obtain
a relation instanceri.

(4) Clean the relationsr1, . . . , rn by reconciling references and
eliminating data inconsistencies.

(5) ExecuteQ over viewv = (r1 1 · · · 1 rn)K .

We now elaborate on these steps.

Step (1), Selecting IE Systems:Given a queryQ, we first
determine the base relations that are needed forQ, based on

the attributes in the SELECT and WHERE clauses. This, in
turn, identifies the IE systems that are relevant toQ. If more
than one IE system is available for a certain base relation, then
which system we choose will depend on their efficiency and
quality as well as on the user preferences (see Section IV).

Step (2), Selecting Retrieval Strategies:For each IE system
E, we select a way to retrieve the documents thatE will
process. (This is analogous to selecting an access path in an
RDBMS.) We consider four representative strategies based on
the existing literature [19, 20]:

Scan: We sequentially scan the collection and feed each
document toE. This strategy produces the complete query
results forE, but makesE processall documents.

Const: We find constants (if any) in queryQ, then feedE
only the documents that contain those constants. For example,
the constant “Redmond” in queryQ1 above can be used as
a keyword query to retrieve only documents with this word
for Headquarters, on the ground that documents without it
could not contribute useful tuples for that base relation.Const
thus avoids processing all documents, and its efficiency is
determined by theselectivityof the constants in the query.

PromD: Given E, PromD employs the learning method of
QXtract [1] to derive keyword queries (e.g.,[based AND
shares]for Headquarters) and feedE only “promising” doc-
uments that contain these keywords. Thus, likeConst, PromD
also avoids processing all documents. However,PromD may
miss some answer tuples and is IE-system-dependent, in that
the keyword queries that it derives—and thus the set of
documents retrieved—depend on the IE systemE.

PromC: This strategy combinesConstandPromDby ANDing
their queries, to retrieve documents that are promising and, at
the same time, satisfy the predicates of the SQL query. For
example, forQ1 we combine query [based AND shares] from
PromD with query [Redmond] from Const to obtain query
[based AND shares AND Redmond]. Similarly to PromD,
PromC avoids processing all documents, but may miss some
answer tuples and is IE-system-dependent.

The following example illustrates these strategies:

Example 3.1: Figure 1 shows a possible execution for query
Q1. This execution employs two document retrieval strategies,
PromC for Headquartersand Scan for Executives. PromC
issues queries such as [based AND shares AND Redmond]
to the search interface of the database, to retrieve promising
documents. After feeding each of these documents to the
HeadquartersIE system, we obtain tuples such as〈Microsoft,
Redmond〉. Note that〈Microsoft Corp., New York〉 was (erro-
neously) extracted in this step by the (often-less-than-perfect)
extraction system. To extractExecutives, Scan retrieves all
documents exhaustively, one at a time, and feeds them to the
extraction system for this relation, to extract tuples such as
〈Microsoft Corp., Bill Gates〉. 2

When queryQ has a selection condition associated with a
base relation, then all four retrieval strategies are applicable
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Fig. 1. Stages in the execution of query Q1.

for the relation (e.g., this is the case forHeadquartersin query
Q1). However, in such caseConstis preferable toScan: Const
returns all documents that can contribute to the query result
and never processes more documents thanScan. Similarly,
PromC is preferable toPromD. Hence, in this case we will
consider onlyConst and PromC for retrieving documents
for the base relation. If, in contrast, a base relation has no
associated selection condition, then onlyScan and PromD
apply.

Step (3), Retrieving and Processing Documents:Upon
identifying the documents to process for each IE systemE,
we retrieve these documents from disk, feed them toE, and
write the extracted tuples to an auxiliary database, for data
cleaning and further query processing.

Step (4), Cleaning Extracted Data: The extracted tuples
are often noisy: typographical errors commonly occur in text,
entity references might be far from uniform, IE systems are
error-prone, and text databases might sometimes include con-
tradictions, which would be problematic even in the absence
of extraction errors.

To address this problem, we first reconcile entity references.
In principle, we can apply any existing reference reconciliation
technique (variants of which are also known as record linkage,
among other terms [2, 23]). For now, we rely on the domain-

independent technique of [24]1, which is effective and can
be implemented robustly within a RDBMS. We apply this
technique to the values of the key attributesK of all our
extracted relations collectively. For example, in Figure 1, we
conclude that “Microsoft” and “Microsoft Corp.” refer to the
same company, in bothHeadquartersandExecutives. We then
pick an arbitrary canonical representation for the entity from
among the associated values. For now, we choose the longest
string in each group, so that “Microsoft Corp.” represents
“Microsoft.”

We then resolve semantic inconsistencies due to extraction
errors and inherent inconsistencies in the data. Rather than
attempting to do this in a sophisticated way, we focus on sim-
ple majority arguments. Specifically, we group the extracted
tuples in each relation (after reference reconciliation) by their
key attributes and choose the most frequent value in each
group, individually for each non-key attribute. The rationale is
that text databases often exhibit substantial redundancy [3, 4]
and errors are likely to be outnumbered by correct facts. Of
course, alternate approaches could be used, especially in the
presence of domain knowledge, and such approaches could be
immediately substituted in our algorithm.

Step (5), Processing Query over Extracted View:As a final
step, we execute the SQL query over the cleaned, materialized
view generated after the above steps.

To summarize, we explore a space of candidate execution
plans by seamlessly combining multiple IE systems along
with appropriately chosen document retrieval strategies, and
data cleaning techniques. Next, we discuss our cost model, to
characterize query execution plans in terms of their efficiency
and result quality.

IV. EFFICIENCY-VS.-QUALITY COST MODEL

To compare alternate execution strategies for a queryQ over
a databaseD, we will define thegoodnessof a query execution
as a function of its efficiency and result quality. For this, we
defineefficiencyas follows:

Definition 4.1: [Efficiency] The efficiency of a query
executionS over a text databaseD, E(S, D), is the inverse
of the execution time ofS over D. 2

The goodness of an execution strategy is also a function of
its result quality. So, we need to characterize the “ideal” result
for Q over D, Ideal(Q ,D). This hypothetical ideal result
consists of all the correct tuples forQ that could be derived
from databaseD by “perfect” IE systems (i.e., IE systems
with perfect precision and recall), using theScandocument
retrieval strategy (i.e., by processing all database documents
exhaustively), and by fully cleaning the data. Based onIdeal,
we defineprecisionand recall as follows:

Definition 4.2: [Precision and Recall] Consider an exe-
cution strategyS for a queryQ over a text databaseD, and
let R be the results thatS produces. We define theprecision

1http://pages.stern.nyu.edu/˜panos/datacleaning

http://pages.stern.nyu.edu/~panos/datacleaning


of S over D as P (S, D) = |R∩Ideal(Q,D)|
|R| and therecall of

S over D as R(S, D) = |R∩Ideal(Q,D)|
|Ideal(Q,D)| . 2

Of course,|Ideal(Q ,D)| is prohibitively expensive to compute
for any large databaseD, since this “computation” would
necessarily involve substantial human effort (e.g., no “perfect”
IE systems exist). So we need to avoid computingIdeal when
we characterize the goodness of an execution strategy. A
key observation is that, to choose between strategiesS1 and
S2, with goodness valuesg1 and g2, respectively, we do not
need to consider the exact values forg1 and g2. Instead, it
suffices to inspect their ratiog1

g2
to decide which strategy is

best. With this observation in mind, we define goodness—and
quality, a metric based on which goodness is specified—so
that the|I deal(Q, D)| constant in the denominators of both
g1 and g2 “cancels out” when we consider goodnessratios.
Specifically, we combine precision and recall into a single
metric by computing their geometric mean, as follows2:

Definition 4.3: [Quality] Consider an execution strategy
S for a queryQ over a text databaseD. We define thequality
of S over D as Q(S, D) = (P (S, D) · R(S, D))1/2. 2

Our definition of quality is similar in spirit to theF1-
measure [22] used in information retrieval, yet our metric
is easier to estimate in the realistic scenario where theIdeal
results are not available, as we will see.

To finally define goodness, we note once again that, ulti-
mately, the choice of the right balance between efficiency and
quality is user-specific: sometimes users desire high-quality
exhaustive query results, even if query execution takes a rela-
tively long time; some other times, users are after some “quick
and dirty” answers. We capture this desired efficiency-quality
balance with a (user-specified) query processing parameterw,
ranging from 0, to privilege efficiency, to 1, to privilege result
quality. In turn, we use parameterw to characterize the overall
goodnessof a query execution, as follows:

Definition 4.4: [Goodness] Thegoodnessof a query exe-
cution S over a text databaseD for user-specified parameter
w is Gw(S, D) = Q(S, D)w · E(S, D)(1−w). 2

The goodness function, as defined above, captures (a wei-
ghted version of) the result quality per execution time unit,
and allows users to weigh efficiency and result quality appro-
priately. Several alternate query paradigms can also be used
to reflect the user preferences. In particular, we could follow
the relational model and define aSTOP-AFTER-K-TUPLES
paradigm, where the objective of an execution is to derive
only K answer tuples as efficiently as possible. Alternatively,
a STOP-AFTER-TIME-T paradigm could indicate that the
query execution must finish withinT time units and produce
the highest quality results possible within that time frame. In
this paper, we focus on finding query execution strategies with
highestgoodness, as in Definition 4.4; we will investigate the
above alternate query paradigms—and others—in our future

2Our definition of quality weighs precision and recall equally. This defini-
tion can be easily generalized, though, to allow for different (user-specified)
weights for precision and recall.

Symbol Description

|Docs(E, X, D)| number of documents retrieved fromD by
retrieval strategyX for extraction systemE

RTime(E, X, D) average time to retrieve a document fromD
usingX for extraction systemE

ETime(E, X, D) average time to runE on a document retrieved
from D usingX

|T(E, X, D)| average number of tuples thatE extracts from
a document retrieved fromD usingX

|C(E, X, D)| average number ofcorrect tuples thatE extracts
from a document retrieved fromD usingX

|Join(E, D)| cardinality of the join of relationsR1, . . . , Rn,
extracted as specified inE = {(E1, X1), . . . ,
(En, Xn)}, whereEi is an extraction system forRi,
with document retrieval strategyXi (i = 1, . . . , n)

TABLE I

DATABASE-SPECIFIC STATISTICS.

research work.
To estimate the properties of each candidate execution

strategy, we use the statistics in Table I for an IE systemE
with an associated document retrieval strategyX (i.e., Scan,
PromD, Const, or PromC) over a databaseD. (In Section V,
we describe how we gather the Table I statistics.) Note that the
behavior ofX may be dependent on the choice of IE system
E (e.g., as is the case forPromD; see Section III), so statistics
such as|Docs(E, X, D)| depend not only onX andD, but also
on E (Table I).

Single-Relation Queries:Consider a query execution strategy
S over a databaseD, and assume thatS involves only one
extraction system,E, with an associated retrieval strategyX.
Our efficiency analysis ignores the post-extraction processing
of Steps (4) and (5): the time required for these steps is
directly proportional to the number of tuples extracted, and this
time is (indirectly) accounted for by the analysis for Step (3),
which considers the number of documents processed. Then,
we estimate the execution time forS over D as:

|Docs(E,X,D)|·(RTime(E,X,D)+ETime(E,X,D)) (1)

The estimated efficiency ofS, Eest(S, D), then follows di-
rectly from this expression. We estimate precision as:

Pest(S, D) =
|C(E, X, D)|
|T(E, X, D)|

(2)

To estimate recall, we face the challenge that|I deal(Q,D)|
is unknown in the denominator of the definition of recall
(Definition 4.2) and computing it would require a prohibitively
large human effort3. We observe that the|Ideal(Q,D)| fac-
tor affects theabsolutegoodness value (Definition 4.4) of
the executions, but not their relative standing, as discussed
earlier in this section. So we can safely replace recall with
Rest(S, D) = |C(E, X, D)| · |Docs(E, X, D)|: this value is the

3This problem is analogous to computing the exact recall for information
retrieval techniques, an impossible proposition over large data sets.



estimated number of correct tuples extracted byE andX from
D. Equivalently, using Equation (2),

Rest(S, D) = Pest(S, D) · |T(E, X, D)| · |Docs(E, X, D)| (3)

Multiple-Relation Queries: We now focus on queries that
join multiple base relations. Specifically, consider a query
execution strategyS over a databaseD, involving extraction
systemsE1, . . . , En, with associated document retrieval strate-
giesX1, . . . ,Xn, respectively. We estimate the execution time
for S as the sum of the time to generate each base relation,
computed using Equation (1):

n∑
i=1

|Docs(Ei, Xi, D)|·(RTime(Ei, Xi, D)+ETime(Ei, Xi, D))

(4)
Estimating precision for strategies that involve multiple ex-

traction systems—and hence, extract multiple base relations—
is challenging. In absence of additional information, we can
assume independence for the extraction errors across the rela-
tions and define precision based on the values for the individ-
ual relations, asPest(S, D) =

∏n
i=1

|C(Ei,Xi,D)|
|T (Ei,Xi,D)| . However,

we observed experimentally that this assumption can result in
underestimating the true precision, so we “boost” the single-
relation precision before proceeding with the independence
assumption and define:

Pest(S, D) =
n∏

i=1

2 · Pi

1 + Pi
(5)

wherePi = |C(Ei,Xi,D)|
|T (Ei,Xi,D)| andn ≥ 2.

Regarding recall, we proceed as in the single-relation case
(Equation (3)) and substitute the total number of correct tuples
generated byS. Thus,

Rest(S, D) = Pest(S, D)·|Join({(E1, X1), . . . ,(En, Xn)},D)|
(6)

where|Join({(E1, X1), . . . , (En, Xn)}, D)| is the number of
tuples in the (inner) join of the relations extracted fromD
by extraction systemsE1, . . . , En, with respective document
retrieval strategiesX1, . . . , Xn. We estimate the join cardi-
nality by appropriately scaling, in turn, the cardinality of the
corresponding join computed over a document sample, as we
describe in Section V-B.

By substitutingEest, Pest, and Rest for E, P , and R in
Definitions 4.3 and 4.4, we can obtain a “proxy” goodness
value whose computation does not involve knowledge of
|Ideal(Q ,D)|, as discussed. As we argued above, the strategy
with highest “proxy” goodness also has highest actual good-
ness, so we can optimize the execution of a query effectively
and without human intervention.

V. DERIVING DATABASE STATISTICS

We now discuss how to estimate the statistics in Table
I, which requires that we resort to document sampling in a
preprocessing step for SQOUT. We determine the sample size
via the sequential sampling method in [25, 26] to achieve an
appropriate confidence level on our statistics estimates. In our

experiments, we target a 95% confidence level, which requires
independent sample sizes of up to 5% of the collection size.
In general, we can compute the statistics forScanandPromD
offline, while Const and PromC, which depend on query-
specific constants, require some processing at query time.

A. Document Retrieval Statistics

Consider an IE systemE and a databaseD. The document
retrieval statistics on which we rely are:

Number of documents retrieved: Scanalways retrieves all
database documents, so|Docs(E, Scan, D)| = |D|. PromD
retrieves only the documents that match its associated queries,
so we derive|Docs(E, PromD, D)|—offline—by issuing the
PromDqueries associated with extraction systemE to the da-
tabaseD and counting the unique documents among the query
matches. UnlikeScanandPromD, ConstandPromC retrieve
documents in a query-specific manner, since these retrieval
strategies rely on the constants in the SQL query. We can
efficiently derive|Docs(E, Const, D)| at query-processing time
by issuing the SQL constants as queries to the database (e.g.,
[Redmond] for our example SQL query Q1) and extracting the
number of matches that the queries generate, without retrieving
any documents.

To compute|Docs(E, PromC, D)|, we know (1) the number
of matches—computed offline—for thePromD queries and
(2) the number of matching documents—computed at query-
processing time—for theConstqueries. The number of doc-
uments that match the conjunction of eachPromD query and
each Const query is unknown, however, and issuing these
queries to the database at query-processing time would be
too expensive. Instead, we analyze—in an offline training
step—whether database constants associated with each relation
attribute tend to strongly co-occur with thePromD query
keywords in the database documents.4 If this is the case, then
we assume that eachPromCquery, formed by the conjunction
of a PromDquery and aConstquery, returns the minimum of
the number of matches of each individual query. Otherwise, we
estimate|Docs(E, PromC, D)|—by assuming independence—
as |Docs(E, Const, D)| · |Docs(E, PromD, D)|/|D|.

Retrieval time: We estimateRTime(E, Scan, D)—offline—
by computing the time required to retrieve each document
in a random sample fromD. We use this same estimate for
RTime(E, Const, D), since theConstqueries tend to be short
and hence relatively inexpensive to process. ForPromD, the
retrieval time is estimated—also offline—over a sample of the
documents that match thePromD queries associated withE.
We use this same estimate forRTime(E, PromC, D), since the
PromCqueries tend to be only slightly longer than thePromD
queries, and hence their retrieval-time behavior is similar.

B. Extraction Statistics

Consider an extraction systemE with an associated doc-
ument retrieval strategyX over a databaseD. To estimate

4This analysis relies on a pairedt-test [27] and other statistical methods,
which we do not discuss further because of space limitations.



the extraction statistics in Table I, we consider the (tuple-rich)
documents that match thePromD queries forE separately
from the rest of the documents: these two subsets ofD are
likely to exhibit substantially different values for the extraction
statistics. Specifically, we perform stratified sampling [27] over
D, with one stratum,PD, corresponding to thePromDmatches
in D and the other stratum corresponding to the remainder of
the documents inD. Figure 2 shows these strata forD. For
Scan, the extraction statistics below are computed over both
strata, namelyPD andD − PD. For PromD and PromC, we
compute the statistics overPD only. Finally, forConstwe use
both PD and D − PD: conceptually,Const retrieves all of
the PromC documents, which are included inPD, plus some
additional documents, which are inD−PD (see Figure 2). We
compute the extraction statistics forConstbased on|Docs(E,
PromC, D)|, |Docs(E, Const, D)|, and the stratified sample
statistics.

For instance, when deriving|T(E, Scan, D)| as described
above, we retrieve documents until we reach a confidence of
95% in the estimated value. Then, ifE extracted, on average,
say tD tuples from theD − PD stratum andtPD

tuples from
the PD stratum, we compute|T(E, Scan, D)| as a weighted
average oftD and tPD

, with weights |D − PD| and |PD|,
respectively. The other statistics are handled analogously.

PromD

PromC

Const

Scan

Fig. 2. Database strata for sampling.

Extraction time and number of extracted tuples: We
estimateETime(E, X, D)and |T(E, X, D)| by runningE over
the document sample(s) forX (see above).

Join cardinality: |Join(E , D)|, for E = {(E1, X1), . . . ,
(En, Xn)}, is the cardinality of the join of the extracted
relationsR1, . . . , Rn, whereRi is extracted using extraction
systemEi and document retrieval strategyXi (i = 1, . . . , n).
To estimate this cardinality, we handle theScanand PromD
cases offline: we first focus on the appropriate document
sample for eachEi, Xi pair, as discussed above, then extract
the relation tuples,Sample(Ei, Xi, D), from each document
sample, and finally join the extracted relations to determine the
sample join cardinalityjs. Then, we produce the|Join(E , D)|
estimate as [28]:

|Join(E , D)| = js ·
n∏

i=1

|T (Ei, Xi, D)| · |Docs(Ei, Xi, D)|
|Sample(Ei, Xi, D)|

For ConstandPromC, we estimate the join cardinality online,
from the corresponding join cardinality valuesjs for Scanand
PromD, respectively, as discussed above.

Verifying tuple correctness: To compute|C(E, X, D)|, we
need to decide whether extracted tuples are correct, for which

we could manually inspect the text database to make a
decision. This manual inspection is, of course, tedious and
prohibitively time-consuming, so we resort instead to a more
automatic “verification” approach. Specifically, we first manu-
ally define a small number of “safe” natural-language patterns
for each relation, such as “〈LOCATION〉-based〈ORGANIZATION〉”
for Headquarters. To decide whether an extracted tuple is cor-
rect or not, we instantiate the safe patterns for the relation with
the attribute values for the tuple, and search for instances of
the instantiated patterns using the database’s search interface.
Intuitively, we automate the process of deriving statistics by
simulating a manual evaluation of tuples. For example, tuple
〈Microsoft Corp., Redmond〉 results in an instantiated pattern
“Redmond-based Microsoft Corp.” We consider the presence
of an instantiated pattern in a database as strong evidence
of tuple correctness, from which we derive a conservative
approximation of the number of correct tuples extracted by
an extraction system.

VI. EXPERIMENTAL EVALUATION

We now describe the settings for our experiments and report
the experimental results.

A. Experimental Settings

Data and relations: We use a subset of the North American
News Text Corpus5, with 1995-6 articles from The New York
Times, split into atraining (135,438 documents from 1996)
and a test database (137,893 documents from 1995). We
define two “base” relations,Headquarters(Company, Loca-
tion) and Executives(Company, CEO), and a viewCompany-
Info(Company, Location, CEO)over the base relations.

Queries: We use 33 SQL queries overCompanyInfo, defined
manually to cover an interesting mix of selections (e.g.,SE-
LECT * FROM CompanyInfo WHERE Location = ‘California’) and
projections (e.g.,SELECT Company, CEO FROM CompanyInfo),
including selections with many and with few or no database
matches.

IE systems:We trained variations of our home-grown imple-
mentations ofDIPRE [4] and Snowball [3] forHeadquarters
and Executives. We modified the original formulation of
DIPRE to fit our newspaper database (e.g., we do not exploit
URLs or HTML tags, but incorporate instead named-entity
tags, such as〈ORGANIZATION〉). For variety, we trained three
versions of Snowball for each relation, obtained by privileging
precision, recall, or a combination of both via the modifiedF1-
measure (see Section IV), and refer to them asSB-P, SB-R,
andSB-C, respectively.

Document retrieval strategies: To define thePromD and
PromCretrieval strategies (Section III), we use QXtract [1], as
described in Section II, trained for each of the four extraction
systems for each base relation.

5http://www.ldc.upenn.edu

http://www.ldc.upenn.edu


SQOUT and baseline techniques:We compare our query
processing approach, SQOUT, against 15 “baseline” tech-
niques, each with a static choice of extraction system and doc-
ument retrieval strategy. Specifically, we define four families
of baseline techniques, corresponding to document retrieval
strategiesScan, PromD, Const, and PromC. For each choice
of retrieval strategy, we pick extraction systems (out ofDIPRE,
SB-P, SB-R, and SB-C) in four different ways, namely to
privilege efficiency, precision, recall, or a combination of
precision and recall. We make the choice of extraction system
for each relation and baseline, once and for all, using the
statistics of Section V, which are computed during SQOUT’s
preprocessing step. For instance, for the precision baseline
with PromD, we pick an extraction system forHeadquarters
that maximizes our precision estimate|C(E, PromD, D)|

|T(E, PromD, D)| for that
relation. TheConst(PromC) baselines use the same extraction
systems selected for the correspondingScan (PromD) base-
lines; also,ConstandPromC “degenerate” toPromD for any
relation with no selection condition in a query. The prefix of
a baseline name denotes whether the baseline privileges ex-
traction system efficiency (B:E), precision (B:P), recall (B:R),
or a combination of precision and recall (B:C); the suffix of
the name, in turn, denotes the retrieval strategy. For example,
B:P-PromDis the precision-oriented baseline that usesPromD
for document retrieval. We consider all combinations except
for B:E-Scan, sinceScanwould not be a strategy of choice
for an efficiency-oriented execution.

Evaluating our optimization approach: We first run all
execution strategies (i.e., SQOUT and the 15 baseline tech-
niques) for a query and then take the union of all the tuples
produced collectively, eliminating duplicates. We then verify
the correctness of each tuple via the automated template-based
approach of Section V-B6 and revisit tuples marked as correct
to manually detect any suspicious tuples. (We found very few
such cases.) Then, we manually check all extracted tuples
that did not pass the automatic verification step. We did not
perform this manual verification step for projection queries
with no selection condition because their results were too large
to be manageable. The final phase is to label each tuple in each
query execution as correct or incorrect based on the above
analysis; also, we mark as incorrect any tuple with a NULL
attribute value7 such that it has a correct complete counterpart,
with no NULL attribute values, that was identified by any
competing execution strategies. After labeling the results for
each query execution, we calculate execution time, precision,
recall—computed with respect to the pool of correct tuples that
all alternative executions collectively produce for the query—
and goodness.

Computing environment: All our experiments were con-
ducted on a Dell Power Edge 2650 computer server (see
Table II). We implemented our strategy in Java. We ran our
experiments on an unloaded computer, restarting the Java

6If a tuple is the join of two base relation tuples, we require that each
component base tuple be correct individually.

7Note that we take the outerjoin of the base relations (Section III).

CPU Intel Xeon 2.4 GHz
RAM 4 GB
Operating System Red Hat Enterprise Linux AS release 4 (2.6 EL)
Runtime Environment Java 1.5.012 (Sun)

TABLE II

COMPUTING ENVIRONMENT FOR THE EXPERIMENTS.

Virtual Machine and flushing the file buffer and CPU caches
before every single execution. We used the PostgreSQL8

DBMS and, to provide a search interface to the text collections,
we used Lucene9. Finally, for the data cleaning step (see
Section III), we used a similarity threshold of 0.9 [24].

B. Experimental Results

SQOUT vs. “Extract-then-query”: As argued in the Intro-
duction, the prevalent solution to process SQL queries over
a text database is an “extract-then-query” approach, where
all database documents are processed by the appropriate IE
systems. To analyze the efficiency of this approach, which
corresponds to theScanretrieval strategy, we ran the 3 *-Scan
baselines, namelyB:C-Scan, B:P-Scan, and B:R-Scan, for
each of our 33 SQL queries (Section VI-A), for a total of 99
executions. Several of these executions demanded in excess
of one hour to complete (single-relation executions are faster
than join executions). These experiments confirm our initial
observation: the extract-then-query approach is not appropriate
for scenarios where efficiency is important; more generally,
this approach does not adapt to user preferences on efficiency
and result quality. In contrast, rather than processing all docu-
ments exhaustively, SQOUT extracts the database statistics of
Table I in a preprocessing step, and then optimizes queries,
to pick the best execution strategies for the desired efficiency-
quality balance. We discuss SQOUT’s preprocessing step later
in this section, and now analyze the effectiveness of SQOUT’s
optimization approach.

SQOUT vs. Baselines:We vary the user-specifiedw param-
eter (Section IV) from 0 (to privilege efficiency) to 1 (to
privilege result quality). We distinguish between the queries
without any selection condition, to which we refer aspro-
jection queries, and the rest, to which we refer asselection
queries, because theConstand PromC retrieval strategies do
not apply to projection queries.

Figure 3 shows the averagegoodness(Figure 3(a)) and
execution time (Figure 3(b)) of each technique over all se-
lection queries, as a function ofw. The values for SQOUT
include the time required by the SQOUT optimization steps
(Steps (1) and (2), Section III). SQOUT consistently has
either the highest or close to the highestgoodnessfor all
values ofw. When we privilege efficiency (w=0), the SQOUT
goodnessis better than that for all but two baseline techniques,
namelyB:C-ConstandB:P-Const. For some queries, SQOUT

8http://www.postgresql.org
9http://lucene.apache.org

http://www.postgresql.org
http://lucene.apache.org
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Fig. 3. (a)Goodnessand (b) execution time over selection queries for varying
w (log scale).

picks execution strategies that produce no tuples. Although
the SQOUT strategies are the most efficient (see Figure 3(b)),
their goodnessvalue is zero (Definition 4.4). An example
of one such query isSELECT Location FROM CompanyInfo
WHERE Company = ‘Applied Materials’: SQOUT choosesPromC
as the document retrieval strategy forHeadquarters, which
fails to extract any answer tuples. In contrast,B:C-Const
and B:P-Const use Const and manage to generate answer
tuples, using a longer execution. For some other queries (e.g.,
SELECT Company FROM CompanyInfo WHERE CEO = ‘Larry
Ellison’), SQOUT choosesConst, which leads togoodness
values higher than those for the*-PromC baselines (PromC
generally retrieves fewer documents thanConst, which in turn
might lead to lower recall values). Therefore, the performance
of SQOUT atw = 0 lies between those ofB:C-ConstandB:P-

Constand those of the*-PromC baselines. When we privilege
result quality (w=1), SQOUT performs slightly worse than
the best baseline, namely,B:E-Const. Finally, for projection
queries SQOUT has the maximumgoodnessfor all values of
w. (We omit the figure because of space limitations.)

Extraction System Retrieval Strategy
w DIPRE SB-C SB-P SB-R Const PromC

0 47.6 0 52.4 0 14.8 85.2
0.5 35.7 35.7 0 28.6 29.6 70.4
1.0 35.7 28.6 0 35.7 100 0

TABLE III

SQOUT’S CHOICE OF EXTRACTION SYSTEM AND RETRIEVAL STRATEGY,

AS A PERCENTAGE OF ALL CASES, FOR SELECTION QUERIES.

Unlike our baseline techniques, SQOUT chooses document
retrieval strategies and extraction systems for each query
execution. To understand these choices, Table III focuses
on selection queries for differentw values. We show the
fraction of times that SQOUT picksConstor PromC for base
relations having an associated selection condition in the que-
ries: for efficiency-oriented executions (w=0), SQOUT mostly
picks PromC, whereas for quality-oriented executions (w=1),
SQOUT picksConst, since Const cannot miss any relevant
documents for a selection query. Table III also shows the
choice of IE systems: when efficiency is privileged, SQOUT
picks DIPRE and SB-P, which have lower processing times;
in contrast, when quality is privileged, SQOUT progresses
towards selectingSB-C or SB-Ras the choice of extraction
system.

Accuracy of SQOUT’s Strategy Ranking: To complete
our analysis, we measured the correlation between SQOUT’s
ranking of strategies and the (perfect) ranking generated using
the actual goodness values; a positive correlation between
these rankings is a good indicator of SQOUT’s ability to avoid
picking the worst strategies for a query and picking the best or
close to the best strategies. We obtained consistently positive
values of the Spearman correlation coefficient [27], which
further supports our above conclusion that SQOUT robustly
picks strategies with highest or close to highest goodness.

SQOUT’s Preprocessing Step:SQOUT optimizes queries
based on the statistics in Table I, which are computed during
a preprocessing step. With highly unoptimized code, this step
required 22.6 minutes in our experiments.10 This step enables
SQOUT to optimize SQL queries in a user-specific manner
highly effectively, as shown above. SQOUT’s preprocessing
overhead makes it undesirable for one family of queries,
namely for queries that both (1) have no constants (i.e.,
whereConst and PromC are not applicable)and (2) specify

10SQOUT’s preprocessing step relies on the sequential sampling approach
of [25, 26] (Section V). Our current implementation of this preprocessing
step is not optimized for efficiency. In fact, there are many opportunities
for substantially reducing the running time of this step (e.g., reusing sample
documents for both the single-relation and join statistics estimation), which
we will explore in our future work.



that efficiency is not important (e.g.,w = 1). In such case,
an extract-then-query execution is preferable: SQOUT resorts
to an extract-then-query execution, but also pays the extra
cost of the preprocessing overhead. However, for all other
scenarios, SQOUT is indeed attractive with respect to extract-
then-query. For example, forw = 0.5 and querySELECT *
FROM CompanyInfo WHERE CEO =‘Eric Benhamou,’SQOUT’s
run time, including the preprocessing step, is 34% less than
the time for the fastest extract-then-query approach,B:P-
Scan. An interesting observation is that the execution forB:P-
Scangenerated no answer tuples for this query, whereas the
execution picked by SQOUT generated an answer tuple. This
observation underscores the benefits of considering both the
result quality as well as the execution time when selecting a
query execution.

In conclusion, our estimation techniques appropriately cap-
ture the factors involved in selecting a good query execution
strategy and thus produce an ordering of alternate strategies
that is often close to the perfect one. Overall, we showed that
our proposed optimization approach consistently picks desir-
able query execution strategies for the user-specified tradeoff
between execution efficiency and result quality. SQOUT, as
expected, privileges efficiency for low values ofw and result
quality for high values ofw. We have also extensively eval-
uated theaccuracy of the efficiency and quality estimateson
which SQOUT relies (Section IV). In a nutshell, the SQOUT
estimates are generally close to the actual values, but the
absolute errors of these estimates are often non-negligible;
importantly, however, the relative rankings of the strategies
according to the SQOUT efficiency and quality estimates are
positively correlated—as measured using Spearman correla-
tion tests—with the correct ranking in all cases, which explains
the high goodness of the SQOUT executions. Due to space
limitations, we omit further details.

VII. C ONCLUSION AND FUTURE WORK

This paper presented a principled, effective query optimiza-
tion approach for simple SQL queries over text databases. Our
approach relies on information extraction systems to discover
the structured data that is “buried” in natural-language text,
and considers both efficiency as well as query result quality
when choosing an appropriate SQL query execution strategy
over a text database. Many interesting research problems
remain open in this area, and we plan to study them in our
future work. One such problem is how to handle a richer
family of SQL queries, beyond the simple selection-projection-
join queries that we considered in this paper. Another chal-
lenging problem for future work is to explore the synergy
between this paper’s online extraction approach and an ap-
proach that exploits already extracted information (e.g., during
earlier querying), to strike the right balance between offline
computation—for persistent information needs and for the
static portions of the text databases—and online extraction—
for dynamic database contents and information needs.
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