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Abstract— Text documents often embed data that is structured of soil erosion that mention Stevenson City from a variety of
in nature, and we can expose this structured data using infor- sgurces.
mation extraction technology. By processing a text database with Unfortunately, despite the pervasiveness of these applica-

information extraction systems, we can materialize a variety of fi fth t soluti f dd ina the ab
structured “relations,” over which we can then issue regular 1ons, none Or the current solutions Tor addressing the above

SQL querieS. A key Cha“enge to process SQL queries in this information needs is fu"y Satisfactory. One solution is to rely
text-based scenario is efficiency: information extraction is time- on keyword search to retrieve documents that are relevant to
consuming, so query processing strategies should minimize thethe task at hand, and then manually identify the (structured)
number of documents that they process. Another key challenge data of interest in the documents, a tedious process. An
is result quality: in the traditional relational world, all correct . . W . . . ;
execution strategies for a SQL query produce the same (correct) alternative is an eXtraCF'the.n'query solution, which first
result; in contrast, a SQL query execution over a text database converts the text collection into a structured database by
might produce answers that are not fully accurate or complete, applying information extraction (IE) techniques, and then
for a number of reasons. To address these challenges, we study E‘OOSGS SQL queries over the extracted database. Consider
family of select-project-join SQL queries over text databases, and again the E. coli example above. Using a suitably trained

characterize query processing strategies on their efficiency and— . . . . .
critically—on their result quality as well. We optimize the execu- IE system, our epidemiologist might turn to the (previously

tion of SQL queries over text databases in a principled, cost-based Unseen) Web-accessible archive of a reputable newspaper from
manner, incorporating this tradeoff between efficiency and result the target country to extract relevant tuples of a relation
quality in a user-specific fas_hlor_]. Our Ia_rge-scale experiments—  Disease Qutbreaks(DisecaseName, Location, Year), where a

over real data sets and multiple information extraction systems— tuple (d, £, y) indicates that there was an outbreak of disease

show that our SQL query processing approach consistently picks . . - . - .
appropriate execution strategies for the desired balance between d in location in yeary. Then, the epidemiologist may pose

efficiency and result quality. SQL queries over the relation.
This solution can address expressive information needs, but
|. INTRODUCTION has two important limitations. First, it often wastes substantial

time extracting useless information, because only a relatively

Real-world applications frequently rely on the informatiosmall number of articles in a text database might be useful
in large collections of text documents such as news articles, process a query. This is likely the case for the above
reports, and email messages. Text often embeds valuablecoli query and the newspaper archive. Furthermore, the
structured data, such as who recommends selling which stockstual “slice” of the relations that is needed to answer a query
who has been hired by which corporation, or the numbg¢g.g., the tuples withDiseaseName equal to E. coli in our
of people affected by a disease outbreak. In this paper, eeample) may also be relatively small. Then, to answer a
consider the problem of effectively answering SQL queriasuery in a timely manner, materializing the entire relations
over a collection of text documents. and processing all database documents is undesirable.

Applications that benefit from structured data embedded inAnother important limitation of the above solution is that it
text arise in a wide range of domains. In disease controhight be too slow forurgentinformation needs. Information
suppose an E. coli outbreak has just occurred in a remaberaction is well known to be computationally expensive
country; an epidemiologist may then want to find the Welf] (e.g., applying IE to even a moderate-size collection can
accessible archive of a reputable newspaper in that countrygtsily take many hours for some IE systems). So the above
compile statistics on E. coli outbreaks. In business intelligenamlution would be too slow for an epidemiologist who must
a law firm may want to know if its competitoX has recently act fast to control an infectious disease, or for a stock analyst
worked with a company’, and if so, in which cases; towardwho must respond to the market in a timely manner. In
this goal, the firm extracts evidence of such cases from thech cases, reliable but not exhaustive query results might be
competitor's Web site, recent news articles, and court filingappropriate, as long as they are returned fast. On the other
In scientific data management, a hydrologist may hypothesizand, when the need is not urgent (e.g., as in the law firm
that soil erosion near Stevenson City has seriously affected #red hydrologist examples described earlier), users may want
downstream water quality of the Columbia River, using reports receive exhaustive query results, for which they may be



willing to wait a relatively long time. In general, users oftemelevant to the extraction task at hand and, instead, focus on
have preferences regarding the quality and run-time efficiengyomisingdocuments that are likely to contain information to
expected from the querying process, which the above rigig¢ extracted. One such approach, QXtract [1], uses machine
solution cannot accommodate. learning to derive keyword queries that identify documents
To address the above limitations, in this paper we proposeh in target information. For example, QXtract might de-
viewing this as ajuery optimizatiorproblem. Accordingly, we rive keyword query foodborne AND pathogehdo retrieve
define a space of execution plans—which includes the extragtomising documents for BiseaseOutbreakeelation.
then-query approach—and a cost model that captures useRecent approaches have also looked into handling ex-
preferences; we also develop a way to estimate plan costs a@rakted data using probabilistic databases, which model data
correspondingly, to select the best plan. We show that quamycertainty by assigning probabilities to tuples. Specifically,
processing can be decomposed into a sequence of basic sfdil}: showed how to store the output from an extraction
retrieving relevant text documents, extracting relations frosystem based on Conditional Random Fields in a probabilistic
the documents, cleaning the extracted data, and assemblingd&iabase, after appropriately deriving a probability for each
cleaned data into the final query answers. Our problem is thextracted tuple. Recently, [11] introduced a structured query
to consider the desired user-specified balance between qualitycessing system that extracts data from documents in an
and execution efficiency, and choose a strategy accordinglyoifline step and relies on probabilistic databases to process user
a principled, cost-based manner. queries. In contrast, our approach handles the extracted data
In the rest of the paper, we elaborate on our solution tmcertainty during query processing, by resolving extraction
process SQL queries over text databases, called SQOUT (@orors and data conflicts using data cleaning techniques (Sec-
“SQL queries over unstructured text databases”). Specificaltign [lIT); however, the probabilistic approach in_[11] can also

our contributions are as follows: be applied towards the same goal, which we will investigate
. We establish that it is feasible to execute SQL queri@ part of our future work.
over text on-the-fly, with IE systems (Sectipn I1). The “on-the-fly” extraction nature of our work is somewhat

« We show how IE systems, document retrieval strategig€miniscent of work on question answering (elg.] [12]), but this
and data cleaning operators—components often studi@$earch focuses on natural language questions, not on SQL
in isolation in the past—can be seamlessly integrated @leries, and has not considered the efficiency-quality tradeoffs
form a space of execution plans for SQL queries ovélt depth. Other relevant work has focused on specialized
text databases (Sectipn]lll). scenarios or settings: examples include extraction over dy-

« We develop a cost model that exposes the tradeoff gamic datal[18] and combining multiple extraction programs
tween efficiency and result quality, and enables users 4sing declarative programs (e.g., UIMA_[14], GATE_[15],
flexibly adjust their preferences (Sectipn] IV). Xlog [16]). Finally, other important extraction aspects besides

« We define the statistics necessary to estimate both @gtimization, such as extraction architecture! [17] and schema
ecution efficiency and result quality, and show how téiscovery [18], have also been addressed in the literature.
obtain such statistics efficiently and effectively from text Closest to this paper is the analysis InI[19] 20], which
databases (Sectiops]IV ahd V). considers (among others) the problem of optimizing the doc-

« We evaluate our approach with extensive experimeriignent retrieval strategy for a single IE systémOur current
over a real-world data set and using state-of-the-amork is related to [[19] 20], but differs from it in several
IE systems. Our results demonstrate that our approa@icial aspects. First| [19, 20] has studied only a single-1E-
consistently picks execution strategies appropriate f8yStem scenario; however, to answer practical SQL queries, we
the desired balance between efficiency and result qualffjust often employ multiple IE systems and relations, which
(Section[ V). raises novel processing challenges that we will discuss and

address in this paper. Second, |[19] 20] assumes Shat

perfect in that it produces all—and only—correct tuples; we
The problem of information extraction from unstructuredemove this assumption, and develop a principled method to
text has received significant attention (sek [2] for a surveyjodel extraction errors. Finally, unlike [19,120], we do not

This research has mostly focused on improving IE accuoptimize for a pre-specified target recall, but consider the goal

racy (e.g., ([3,.4/5[16]). The related problem of “wrappeof balancing recall, precision, and execution time in a flexible

induction” from template-based Web pages has also be@anner.

studied extensively (e.g., inl[7]). In addition, recent work has A preliminary, 3-page version of this paper appears$.in [21].

considered information extraction from the entire Web (e.g.,

[B]). Recently, [9] introduced a novel technique to leverage !!l- PROBLEM STATEMENT AND EXECUTION PLANS

existing structured databases for information extraction. Consider a document collectioR, which has been iden-
The extraction of information from text is computationallitified for a specific application (e.g) might be the Web-

expensive, because of the complex text processing generaltgessible archive of a newspaper for our E. coli example of

required. Approaches have been proposed for improving Section[]). Then our goal is to answer SQL queries alder
efficiency to avoid processingselesslocuments that are notusing IE systems. From the many types of IE systems (see

II. RELATED WORK



Sectior{ 1}), we focus on the common type that takes as inpiie attributes in the SELECT and WHERE clauses. This, in
a document and produces as output tuples of the relatimmn, identifies the IE systems that are relevant)tolf more
for which the system was trained. For instance, considdran one IE system is available for a certain base relation, then
an IE system trained for a relatiadeadquarters(Company, which system we choose will depend on their efficiency and
Location) where a tuple(c, £) indicates that is a company quality as well as on the user preferences (see Sectipn V).
whose headquarters are located 4nThen, from the text
snippet, “Redmond-based Microsoft announced today ...
a document, this IE system may extract tugMicrosoft,
Redmond.

In this paper, we focus on the problem of processing S
queries using such IE systems:

Problem Statement 1Consider a text databas® with  Scan We sequentially scan the collection and feed each
a boolean search interfacé [22], and “base” relations document toE. This strategy produces the complete query
Ri,..., R, defined overD. Each base relatiok; can be results forfs, but makest processall documents.

extracted fromD gsing one or more |IE systems. We assumesonst We find constants (if any) in querg, then feedE

that all base relation&,, ..., R, share the same primary keyony the documents that contain those constants. For example,
K and no other attributes, so each relation might be regardgd constant “Redmond” in querg1 above can be used as
as contributing additional attributes of the entities identified by keyword query to retrieve only documents with this word
the key attributes in. We define a view” = (R, X --- X for Headquarters on the ground that documents without it
Ry)x as the natural outerjoin of the base relatidhs. . ., B could not contribute useful tuples for that base relatianst
over the K attributes. We consider SQL selection-projectiogh,s avoids processing all documents, and its efficiency is

queries ove” with selection condition conjuncts of the formgetermined by theselectivityof the constants in the query.
A =t, whereA is a textual attribute antlis a constant. Then,

given such a SQL selection-projection quegyover V, our ~PromD: Given E, PromD employs the learning method of
goal is to identify an execution strategy for that meets the QXtract [1] to derive keyword queries (e.gbased AND
desired efficiency and result quality requirements. shares]for Headquartery and feedE' only “promising” doc-

Following this problem statement, consider an IE systeﬁggnsotizzt CfonéZ;ZiTeZ?l Eeggj%(;i'tghﬁzwme%m 'S:T]Fg?:aD
trained to extract théHeadquartersrelation above, as well P 9 ' 0 y

as another system trained for &xecutives(Company, CEO)tthSkseomce)rc?nsnvsrrietgplﬁ:uaﬂdclzr:\llze_zfgenrg_i(heEgn?heem,sg': tgft
relation, where a tupldc,e) indicates that persom is the q th tq' d—d d on the IE svsig
CEO of companyc. We can then define a vie@ompany- ocuments retrieve epend on the It sysiem
Info(Company, Location, CEOas the natural outerjoin of PromC This strategy combineSonstandPromDby ANDing
these two “base” relations and express queries such as: their queries, to retrieve documents that are promising and, at
Q1. SELECT Company, CEO FROM Companylnfo the same time, satisfy the predicates of the SQL query. For
WHERE Location = ‘Redmond’ example,.forQl we combine queryJased AND shgr@érom
PromD with query Redmonil from Constto obtain query
This problem setting is appropriate as a first step in o{lbased AND shares AND Redmdn&imilarly to PromD,
investigation of the general problem of answering SQL queri®omC avoids processing all documents, but may miss some
over text databases, and is already useful in practice (sseswer tuples and is IE-system-dependent.
Section[ VI-B). In Sectiof V]I, we discuss how to generalize The following example illustrates these strategies:

our approach further. . . Example 3.1: Figurg]1 shows a possible execution for query
Given a SQL query, as described above, we now discusg)| This execution employs two document retrieval strategies,
the space of execution plans f@p. To evaluate) over promc for Headquartersand Scan for Executives PromC

, Step (2), Selecting Retrieval Strategied-or each IE system
, we select a way to retrieve the documents thatwill
process. (This is analogous to selecting an access path in an
CfDBMS') We consider four representative strategies based on
he existing literature [19, 20]:

database, we need to: _ issues queries such as [based AND shares AND Redmond]
(1) Select an IE systent; for each base relatioR;. to the search interface of the database, to retrieve promising
(2) Select a document retrieval strategdy for eachF;. documents. After feeding each of these documents to the

(3) Use each strategyX; to retrieve from databas® a set of Headquarter$E system, we obtain tuples such @gicrosoft,
gorcgrgic(a)r:]t?ﬁ;,t;zggprocess}? i using IE system¥; to obtain - pagmoni Note that(Microsoft Corp., New Yotkwas (erro-
(4) Clean the relation;h ..., by reconciling references and neously) extracted in this step by the (often-less-than-perfect)
eliminating data inconsistencies. extraction system. To extraﬁxecut!ves Scanretrieves all
(5) ExecuteQ over viewv = (r1 M --- X ). docum_ents exhaustlvely,_ one a_t a time, and feeds them to the
We now elaborate on these steps ext_ract|on system f_or this relation, to extract tuples such as
: (Microsoft Corp., Bill Gates O
Step (1), Selecting IE SystemsGiven a queryQ@, we first When query@ has a selection condition associated with a
determine the base relations that are needed)fobased on base relation, then all four retrieval strategies are applicable



independent technique of [@]which is effective and can
be implemented robustly within a RDBMS. We apply this
technique to the values of the key attributas of all our

[based AND shares
AND Redmond]

Search Interface

Retrieved
documents  extracted relations collectively. For example, in Figife 1, we
Headquarters Executives conclude that “Microsoft” and “Microsoft Corp.” refer to the
<Company, Location> <Company, CEO> same company, in botHeadquartersand ExecutivesWe then
Company | Location pick an arbitrary canonical representation for the entity from
Microsot | Redmond Company [ CEO Extracted ~among the associated values. For now, we choose the longest
IBM Armonk Microsoft Corp| Bill Gates tupl . L “n "
Microsoft Corp]  New York Apple Amelio uples string in each group, so that “Microsoft Corp.” represents
Microsoft Corp]  Redmond Kmart Corp. | Floyd Hall “Microsoft.”

Sybase Corp. | Mountain Vie

We then resolve semantic inconsistencies due to extraction

Company” | Location Company | CEO y errors and inherent inconsistencies in the data. Rather than
Microsoft Corp|  Redmond Microz;glgom BillGates Nf;':t?o'rfsd attempting to do this in a sophisticated way, we focus on sim-
melio . . epe
Microutt Corp|  New vork Kmart Corp. | Floyd Hall ple majority arguments. Specifically, we group the extracted
Microsoft Corp] ~ Redmond tuples in each relation (after reference reconciliation) by their
Sybase Corp. | Mountain Vie ki : :
ey attributes and choose the most frequent value in each
Migr%gé%jg\olrp Location Mi%%To%ag‘érp B_”cgcg Consistent  group, individually for each non-key attribute. The rationale is
1 I ates - e .
IBM Armonk Apple Amelio relations  that text databases often exhibit substantial redundancy [3, 4]
Sybase Corp. Mountain View Kmart Corp. | Floyd Hall and errors are likely to be outnumbered by correct facts. Of
T T course, alternate approaches could be used, especially in the
Mi"f’fgfhf/lwp- R:fn:‘:n“kd Bill Gates Relation  presence of domain knowledge, and such approaches could be
Sybase Corp. | Mountain View instance  jmmediately substituted in our algorithm.
Apple Amelio . ) .
Kmart Corp. Floyd Hall Step (5), Processing Query over Extracted ViewAs a final
* Company T CEO Query step, we execute the SQL query over the cleaned, materialized
| Microsoft Corp| Bill Gates | results view generated after the above steps.
_ _ _ To summarize, we explore a space of candidate execution
Fig. 1. Stages in the execution of query Q1. plans by seamlessly combining multiple IE systems along

with appropriately chosen document retrieval strategies, and
data cleaning techniques. Next, we discuss our cost model, to
characterize query execution plans in terms of their efficiency

for the relation (e.qg., this is the case fdeadquartersn query .
and result quality.

Q1). However, in such casgéonstis preferable t&scan Const
returns all documents that can contribute to the query result
and never processes more documents tBaan Similarly,
PromC is preferable toPromD. Hence, in this case we will  To compare alternate execution strategies for a q@eoyer
consider only Const and PromC for retrieving documents a databas®, we will define thegoodnes®f a query execution

for the base relation. If, in contrast, a base relation has Bg a function of its efficiency and result quality. For this, we
associated selection condition, then or8ganand PromD defineefficiencyas follows:

IV. EFFICIENCY-VS.-QUALITY COSTMODEL

apply. Definition 4.1: [Efficiency]  The efficiency of a query
executionS over a text databas®, E(S, D), is the inverse

Step (3), Retrieving and Processing DocumentstUpon h 8
P (3) 9 9 P of the execution time of over D. O

identifying the documents to process for each IE sysiém
we retrieve these documents from disk, feed thentaand ~ The goodness of an execution strategy is also a function of
write the extracted tuples to an auxiliary database, for ddta result quality. So, we need to characterize the “ideal” result
cleaning and further query processing. for @ over D, Ideal(Q, D). This hypothetical ideal result

consists of all the correct tuples f&y that could be derived
Step (4), Cleaning Extracted Data:The extracted tuples from databaseD by “perfect’ IE systems (i.e., |IE systems
are often noisy: typographical errors commonly occur in texjyith perfect precision and recall), using tis&andocument
entity references might be far from uniform, |E systems aretrieval strategy (i.e., by processing all database documents
error-prone, and text databases might sometimes include cerhaustively), and by fully cleaning the data. Basedadeal,
tradictions, which would be problematic even in the absengg defineprecisionandrecall as follows:

of extraction errors. Definition 4.2: [Precision and Recall] Consider an exe-

To address this problem, we first reconcile entity referencesition strategysS for a query@ over a text databas®, and
In principle, we can apply any existing reference reconciliatidet R be the results that produces. We define thecision
technique (variants of which are also known as record linkage,
among other terms [2, 23]). For now, we rely on the domain-http:/pages.stern.nyu.edu/"panos/datacleaning
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of S over D as P(S, D) = H012al(@D)l and therecall of ~_Symbol Description

_ |RNIdeal(Q,D)] O |Docs(E, X, D)  number of documents retrieved frof by
SoverD as R(S,D) = [Ideal(Q,D)| retrieval strategyX for extraction systent
Of course|Ideal(Q, D)| is prc_)hlbltlvgly expensive 1o COMPUte " ineE X, D) average time to retrieve a document frdin
for any large databas®, since this “computation” would using X for extraction systenf
necessarily |n\{olve substantial humaq effort (e.g., no “perfecterime(E, X, D) average time to rur on a document retrieved
IE systems exist). So we need to avoid computiheal when from D using X
we characterize the goodness of an execution strategy. A, x, ) average number of tuples that extracts from
key observation is that, to choose between stratefjieand a document retrieved fromb using X
Sa, with goodness valueg; and g, respectively, we do not |c(g, X, D) average number aforrecttuples thatE' extracts
need to consider the exact values fgr and g-. Instead, it from a document retrieved from using X
suffices to inspect their rati% to decide which strategy is |Join(€E, D) cardinality of the join of relationsRy, . .., Ry,
best. With this observation in mind, we define goodness—and extracted as specified it = {(£1, X1), .. .,

i ic b d hich d . ified (En,Xn)}, whereE; is an extraction system faR;,

quality, a metric based on which goodness is specified—so with document retrieval strategy(; (i = 1,...,n)

that the|Ideal(Q, D)| constant in the denominators of both
g1 and g» “cancels out” when we consider goodneassios.
Specifically, we combine precision and recall into a single
metric by computing their geometric mean, as follﬁws

Definition 4.3: [Quality] Consider an execution strategy
S for a query(@ over a text databas®. We define thquality research work.
of S over D asQ(S, D) = (P(S,D) - R(S,D))*/2. O To estimate the properties of each candidate execution

Our definition of quality is similar in spirit to ther;- Strategy, we use the statistics in TaPle | for an IE sysfém
measure [[22] used in information retrieval, yet our metri¢ith an associated document retrieval stratégy(i.e., Scan
is easier to estimate in the realistic scenario whereldeal PromD, Const or PromC) over a databas®. (In Section Y,
results are not available, as we will see. we describe how we gather the Tafjle | statistics.) Note that the
To finally define goodness, we note once again that, uliehavior ofX may be dependent on the choice of IE system
mately, the choice of the right balance between efficiency afd(€-g., as is the case féromD; see Sectiofi I}l), so statistics
quality is user-specific: sometimes users desire high-qualftfch agDocs(E, X, D) depend not only oX” and D, but also
exhaustive query results, even if query execution takes a refL £ (Tablef]).

tively long time; some other times, users are after some “quiglng|e-Relation Queries:Consider a query execution strategy
and dirty” answers. We capture this desired efficiency-quality 5yer 5 databas®, and assume tha$ involves only one
balance with a (user-specified) query processing parameteleyiraction systemf, with an associated retrieval strategy
ranging from 0, to privilege efficiency, to 1, to privilege resulpyr efficiency analysis ignores the post-extraction processing
quality. In turn, we use pargmetefrto characterize the overall ¢ Steps (4) and (5): the time required for these steps is
goodnesf a query execution, as follows: directly proportional to the number of tuples extracted, and this

Definition 4.4: [Goodness] Thegoodnesf a query exe- time is (indirectly) accounted for by the analysis for Step (3),
cution S over a text databas® for user-specified parameterwhich considers the number of documents processed. Then,
w is Gy (S, D) = Q(S,D)* - E(S, D)1 ~%), O we estimate the execution time f6rover D as:

The goodness function, as defined above, captures (a V}/gbcs(E X, D)|-(RTime(E, X, D)+ ETime(E, X, D)) (1)
ghted version of) the result quality per execution time unit, Y Y T

and allows users to weigh efficiency and result quality appréhe estimated efficiency of, E..:(S, D), then follows di-

priately. Several alternate query paradigms can also be useetly from this expression. We estimate precision as:

to reflect the user preferences. In particular, we could follow IC(E, X, D)

the relational model and defineSTOP-AFTER-K-TUPLES Pewt(S,D) = m ()

paradigm, where the objective of an execution is to derive T

only K answer tuples as efficiently as possible. Alternatively, To estimate recall, we face the challenge thideal(Q, D))|

a STOP-AFTER-TIME-T paradigm could indicate that theis unknown in the denominator of the definition of recall

query execution must finish withi#i’ time units and produce (Definition[4.2) and computing it would require a prohibitively

the highest quality results possible within that time frame. #large human effdff We observe that thefdeal(Q, D)| fac-

this paper, we focus on finding query execution strategies wi@f affects theabsolute goodness value (Definition 4.4) of

highestgoodnessas in Definitior] 4.4; we will investigate thethe executions, but not their relative standing, as discussed

above alternate query paradigms—and others—in our futgarlier in this section. So we can safely replace recall with
R.st(S, D) = |C(E, X, D) - |Docs(E, X, D) this value is the

20ur definition of quality weighs precision and recall equally. This defini-
tion can be easily generalized, though, to allow for different (user-specified)3This problem is analogous to computing the exact recall for information
weights for precision and recall. retrieval techniques, an impossible proposition over large data sets.

TABLE |
DATABASE-SPECIFIC STATISTICS



estimated number of correct tuples extractedtbgnd X from  experiments, we target a 95% confidence level, which requires

D. Equivalently, using Equatiof(2), independent sample sizes of up to 5% of the collection size.
_ In general, we can compute the statistics $manand PromD

Reat(S, D) = Pest(S, D) - [T(E, X, D) - [Docs(E, X, D) (3) offline, while Const and PromG which depend on query-

. . . . ifi nstants, requir me pr ing at ry time.
Multiple-Relation Queries: We now focus on queries thatSpec ¢ constants, require some processing at query time

join multiple base relations. Specifically, consider a quer. Document Retrieval Statistics
execution strategys over a databas®, involving extraction  cgnsider an IE systery and a databasB. The document

systemsly, .. ., E,,, with associated document retrieval strat€trieval statistics on which we rely are:

gies Xy, ..., X, respectively. We estimate the execution time

for S as the sum of the time to generate each base relatibh,!mber of documents retrieved: ScanaIWayS retrieves all
computed using Equatiofi](1): database documents, $Pocs(E, Scan, D)= |D|. PromD

" retrieves only the documents that match its associated queries,
Z|Docs(Ei,Xi,D)|~(RTime(Ei,Xi,D)JrETime(Ei,Xi,D)) SO we deriv_e|Docs(E_, PromD, D|)—off|_ine—by issuing the
] PromD queries associated with extraction systénto the da-
(4) tabaseD and counting the unique documents among the query
Estimating precision for strategies that involve multiple exnatches. UnlikeScanand PromD, Constand PromC retrieve
traction systems—and hence, extract multiple base relationgiecuments in a query-specific manner, since these retrieval
is challenging. In absence of additional information, we cagtrategies rely on the constants in the SQL query. We can
assume independence for the extraction errors across the retfficiently derive|Docs(E, Const, D)at query-processing time
tions and define precision based on the values for the indivigly issuing the SQL constants as queries to the database (e.g.,
ual relations, asP...(S,D) =[]/, % However, [Redmonfifor our example SQL query Q1) and extracting the
we observed experimentally that this assumption can resultiomber of matches that the queries generate, without retrieving
underestimating the true precision, so we “boost” the singlany documents.
relation precision before proceeding with the independenceTo computeDocs(E, PromC, O) we know (1) the number
assumption and define: of matches—computed offline—for theromD queries and
(2) the number of matching documents—computed at query-

n

P.s1(S,D) = H 12 i); (5) processing time—for th€onstqueries. The number of doc-
T uments that match the conjunction of ed@tomD query and
where P, = [C(EXi.D)| gnq, S o each Const query is unknown, however, and issuing these

._ ‘T(El*X’HD)l . . . i - i i
Regarding recall, we proceed as in the single-relation cadeenes fo the database at query-processing time would be

(Equation[(8)) and substitute the total number of correct tuplg)s0 expensive. Instead, we analyze—m an °‘.°“'“e trammg
generated bys. Thus step—whether database constants associated with each relation

attribute tend to strongly co-occur with tHeromD query
Rest(S, D) = Pegy(S, D):|Join({(E1, X1),. .., (En, X,)},D)| keywords in the database documéftgthis is the case, then
(6) we assume that eadhromC query, formed by the conjunction

where|Join({(E1, X1), ..., (En, Xn)}, D)| is the number of of a PromD query and &onstquery, returns the minimum of
tuples in the (inner) join of the relations extracted frdin the number of matches of each individual query. Otherwise, we
by extraction systemg, ..., E,, with respective document estimate|Docs(E, PromC, D}—by assuming independence—

retrieval strategiesXy,...,X,. We estimate the join cardi- as|Docs(E, Const, O) |Docs(E, PromD, D)/|D]|.

nality by appro'pr.lately scaling, in turn, the cardinality of th%&etrieval time: We estimateRTime(E, Scan, By-offline—
corresponding join computed over a document sample, as weé

descrie in Secto V. 1 sompuing e e tedared o peneve each documens
By substitutingF.s¢, Pest, and R.,; for E, P, and R in P )

7 . . " RTime(E, Const, D)since theConstqueries tend to be short
Definitions[4.3 and 4]4, we can obtain a "proxy” goodnesg d hence relatively inexpensive to process. FmmbD, the

! . a
value whose computation does not involve knowledge gfc o : .
retrieval time is estimated—also offline—over a sample of the

|I.deal<.Q’ D)|'“ as dIECUSSGd. As we argued_above, the strate Ycuments that match tHeromD queries associated with.
with highest “proxy” goodness also has highest actual goog-

Ao X - We use this same estimate fleifime(E, PromC, DQ)since the
ness, so we can optimize the execution of a query effectiv ! :
) : . omCqueries tend to be only slightly longer than theomD
and without human intervention.

gueries, and hence their retrieval-time behavior is similar.
V. DERIVING DATABASE STATISTICS . -
B. Extraction Statistics

We now discuss how to estimate the statistics in Tablec id traci tefi with iated d
Ml which requires that we resort to document sampling in a onsider an extraction systef with an associated doc-
ent retrieval strategyX over a databasé. To estimate

preprocessing step for SQOUT. We determine the sample st8
via the _Sequent"?l sampling method in [_25! 26] t_o achieve any;g analysis relies on a pairgetest [27] and other statistical methods,
appropriate confidence level on our statistics estimates. In euich we do not discuss further because of space limitations.



the extraction statistics in Talle I, we consider the (tuple-ricije could manually inspect the text database to make a
documents that match theromD queries for E separately decision. This manual inspection is, of course, tedious and
from the rest of the documents: these two subset® adre prohibitively time-consuming, so we resort instead to a more
likely to exhibit substantially different values for the extractiomutomatic “verification” approach. Specifically, we first manu-
statistics. Specifically, we perform stratified sampling [27] ovexlly define a small number of “safe” natural-language patterns
D, with one stratumpPp, corresponding to thEeromDmatches for each relation, such asibcarion)-based(orcanization)”
in D and the other stratum corresponding to the remainderfof HeadquartersTo decide whether an extracted tuple is cor-
the documents irD. Figure[2 shows these strata fbr. For rect or not, we instantiate the safe patterns for the relation with
Scan the extraction statistics below are computed over bothe attribute values for the tuple, and search for instances of
strata, namelyPp and D — Pp. For PromD and PromC we the instantiated patterns using the database’s search interface.
compute the statistics ovéty only. Finally, for Constwe use Intuitively, we automate the process of deriving statistics by
both P, and D — Pp: conceptually,Const retrieves all of simulating a manual evaluation of tuples. For example, tuple
the PromC documents, which are included iy, plus some (Microsoft Corp., Redmorjdresults in an instantiated pattern
additional documents, which are In— Pp, (see Figurg¢]2). We “Redmond-based Microsoft Corp.” We consider the presence
compute the extraction statistics f@onstbased oriDocs(E, of an instantiated pattern in a database as strong evidence
PromC, D), |Docs(E, Const, O) and the stratified sampleof tuple correctness, from which we derive a conservative
statistics. approximation of the number of correct tuples extracted by
For instance, when derivingl(E, Scan, D)) as described an extraction system.
above, we retrieve documents until we reach a confidence of
95% in the estimated value. Then,Af extracted, on average, VI. EXPERIMENTAL EVALUATION
saytp tuples from theD — Pp stratum andtp, tuples from
the Pp stratum, we computé¢T(E, Scan, D)) as a weighted
average oftp andtp,, with weights|D — Pp| and |Pp],
respectively. The other statistics are handled analogously.

We now describe the settings for our experiments and report
the experimental results.

A. Experimental Settings

Data and relations: We use a subset of the North American

News Text Corpd$ with 1995-6 articles from The New York
Times, split into atraining (135,438 documents from 1996)

" scan and atest database (137,893 documents from 1995). We

define two “base” relationsHeadquarters(Company, Loca-
Fig. 2. Database strata for sampling. tion) and Executives(Company, CEQ3nd a viewCompany-

Info(Company, Location, CEQ)ver the base relations.

Extraction time and number of extracted tuples: We Queries: We use 33 SQL queries ov&ompanylnfo defined
estimateETime(E, X, D)and[T(E, X, D) by running E over - manually to cover an interesting mix of selections (eSE;

the document sample(s) fof (see above). LECT * FROM Companyinfo WHERE Location = ‘Californigand
Join cardinality: |Join(€,D)|, for & = {(Ey, X1), ..., .projec'tions (e.g:SELEQT Company, CEO FROM Companylhfo
(En,X,)}, is the cardinality of the join of the extractedincluding selections with many and with few or no database
relations Ry, ..., R,, whereR; is extracted using extraction matches.

systemE; and document retrieval stratedy; (i =1,....n). |E systems:We trained variations of our home-grown imple-
To estimate this cardinality, we handle tSeanand PromD  entations oDIPRE [4] and Snowball[[3] forHeadquarters
cases offline: we first focus on the appropriate documegy Executives We modified the original formulation of
sample for eactt;, X; pair, as discussed above, then extrag§|pRE to fit our newspaper database (e.g., we do not exploit
the relation tuplesSample(E;, X;, D), from each document yr| s or HTML tags, but incorporate instead named-entity
sample, and finally join the extracted relations to determine tﬂfgs, such asoreanizaTiony). For variety, we trained three
sample join cardinality,. Then, we produce th&/oin(€, D)|  yersions of Snowball for each relation, obtained by privileging
estimate as [28]: precision, recall, or a combination of both via the modifigd

Join(&.D)| = j 12[ IT(E;, X;, D)| - |Docs(E;, X;, D)| ~ measure (see Sectign]IV), and refer to themS&PR, SB-R

0 , =Js 11 |Sample(E;, X;, D)] and SB-G respectively.

Document retrieval strategies: To define thePromD and
PromCretrieval strategies (Secti¢n]lll), we use QXtract [1], as
described in Sectign]ll, trained for each of the four extraction
systems for each base relation.

For ConstandPromC we estimate the join cardinality online,
from the corresponding join cardinality valugsfor Scanand
PromD, respectively, as discussed above.

Verifying tuple correctness: To compute|C(E, X, D), we
need to decide whether extracted tuples are correct, for whicFhttp:/imww.ldc.upenn.edu
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SQOUT and baseline techniques\We compare our query Cia A{”(‘;E'sxeon 2.4 GHz

processmg approach, _SQOQT’ against :.1-5 “baseline” tec|fbperating System Red Hat Enterprise Linux AS release 4 (2.6 EL)
nigues, each with a static choice of extraction system and do&untime Environment  Java 1.512 (Sun)

ument retrieval strategy. Specifically, we define four families
of baseline techniques, corresponding to document retrieval
strategiesScan PromD, Const and PromC For each choice

of retrieval strategy, we pick extraction systems (oUDt?RE,
SB-P, SB-R and SB-Q in four different ways, namely to

privilege efficiency, precision, recall, or a combination of/jirtual Machine and flushing the file buffer and CPU caches
precision and recall. We make the choice of extraction systefafore every Sing|e execution. We used the PostgrEﬁQL
for each relation and baseline, once and for all, using thgBMS and, to provide a search interface to the text collections,
statistics of Sectiofi v, which are computed during SQOUT\ge used Luceffe Finally, for the data cleaning step (see

preprocessing step. For instance, for the precision baselg@ctiorm), we used a similarity threshold of 0[9[24].

with PromD, we pick an extraction system féteadquarters

that maximizes our precision estima#%ég:g—m for that B. Experimental Results

relation. TheConst(PromQ) baselines use the same extraction

systems selected for the correspondBegan (PromD) base- SQOUT vs. “Extract-then-query™: As argued in the Intro-
lines; also,Constand PromC “degenerate” tdPromD for any duction, the prevalent solution to process SQL queries over
relation with no selection condition in a query. The prefix oft text database is an “extract-then-query” approach, where
a baseline name denotes whether the baseline privileges &k-database documents are processed by the appropriate IE
traction system efficiencyB(E), precision B:P), recall B:R), Systems. To analyze the efficiency of this approach, which
or a combination of precision and recaB:C); the suffix of corresponds to th8canretrieval strategy, we ran the 3Sean

the name, in turn, denotes the retrieval strategy. For examgiaselines, namelB:C-Scan B:P-Scan and B:R-Scan for
B:P-PromDis the precision-oriented baseline that uBesmD €ach of our 33 SQL queries (Section VJ-A), for a total of 99
for document retrieval. We consider all combinations excepkecutions. Several of these executions demanded in excess

for B:E-Scan since Scanwould not be a strategy of choice©f one hour to complete (single-relation executions are faster
for an efficiency-oriented execution. than join executions). These experiments confirm our initial

. L i observation: the extract-then-query approach is not appropriate
Evaluating our optimization approach: We first run all ¢, scenarios where efficiency is important; more generally,
execution strategies (i.e., SQOUT and the 15 baseline teglys onnroach does not adapt to user preferences on efficiency
niques) for a query and then take the union of all the tpleg,y esyit quality. In contrast, rather than processing all docu-
produced collectively, eliminating duplicates. We then verify,onts exhaustively, SQOUT extracts the database statistics of
the correctness of eactuple via t.he automated template—baisgg'e[] in a preprocessing step, and then optimizes queries,
approach of Section ViBand revisit tuples marked as correct, nick the best execution strategies for the desired efficiency-
to manually detect any suspicious tuples. (We found very fey,ajiv halance. We discuss SQOUT's preprocessing step later

such F:ases.) Then, we manqally gheck all extracted ,tUp|ﬁ§his section, and now analyze the effectiveness of SQOUT’s
that did not pass the automatic verification step. We did ”Bbtimization approach.

perform this manual verification step for projection queries

with no selection condition because their results were too lar§&OUT vs. BaselinesWe vary the user-specified param-

to be manageable. The final phase is to label each tuple in egt@r (Sectior[ 1Y) from 0 (to privilege efficiency) to 1 (to
query execution as correct or incorrect based on the abdVéilege result quality). We distinguish between the queries
analysis; also, we mark as incorrect any tuple with a NULWithout any selection condition, to which we refer pm-
attribute valug such that it has a correct complete counterpaigction queries, and the rest, to which we refer sedection
with no NULL attribute values, that was identified by anylueries, because tieonstand PromCretrieval strategies do
competing execution strategies. After labeling the results f8pt apply to projection queries.

each query execution, we calculate execution time, precisionFigure[3 shows the averaggoodness(Figure[3(a)) and
recall—computed with respect to the pool of correct tuples th@xecution time (Figurg¢]3(b)) of each technique over all se-
all alternative executions collectively produce for the query-lection queries, as a function af. The values for SQOUT
and goodness. include the time required by the SQOUT optimization steps
. : ] . (Steps (1) and (2), Sectign |lll). SQOUT consistently has
Computing environment: All our experiments were con- L. =~ highest or Clos the highegiodnessfor all
ducted on a _DeII Power Edge 2650 cpmputer server (S\%ues ofw. When we privilege efficiencyu{=0), the SQOUT
Tablem)' We implemented our strategy in Java. _We fan Olhodnesss better than that for all but two baseline techniques,
experiments on an unloaded computer, restarting the J elyB:C-ConstandB:P-Const For some queries, SQOUT

TABLE I
COMPUTING ENVIRONMENT FOR THE EXPERIMENTS

6If a tuple is the join of two base relation tuples, we require that each
component base tuple be correct individually. Ehttp://www.postgresgl.org
"Note that we take the outerjoin of the base relations (Sen ). Shttp://lucene.apache.org
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Constand those of th&-PromC baselines. When we privilege
result quality v=1), SQOUT performs slightly worse than
the best baseline, namelB;E-Const Finally, for projection
gueries SQOUT has the maximugoodnesdor all values of
w. (We omit the figure because of space limitations.)

Extraction System Retrieval Strategy
w DIPRE SB-C SB-P SB-R Const PromC
0 47.6 0 52.4 0 14.8 85.2
0.5 35.7 35.7 0 28.6 29.6 70.4
1.0 35.7 28.6 0 35.7 100 0
TABLE Il

SQOUT’S CHOICE OF EXTRACTION SYSTEM AND RETRIEVAL STRATEGY
AS A PERCENTAGE OF ALL CASESFOR SELECTION QUERIES

Unlike our baseline techniques, SQOUT chooses document
retrieval strategies and extraction systems for each query
execution. To understand these choices, T4ble Il focuses
on selection queries for differenty values. We show the
fraction of times that SQOUT pick8onstor PromC for base
relations having an associated selection condition in the que-
ries: for efficiency-oriented executiong£0), SQOUT mostly
picks PromC whereas for quality-oriented executions=1),
SQOUT picksConst since Const cannot miss any relevant
documents for a selection query. Talple| Il also shows the
choice of IE systems: when efficiency is privileged, SQOUT
picks DIPRE and SB-RB, which have lower processing times;
in contrast, when quality is privileged, SQOUT progresses

3 L 4
10 W towards selectingSB-C or SB-Ras the choice of extraction
‘ ‘ ‘ ‘ system.
0 0.2 0.4 0.6 0.8 1 .
Accuracy of SQOUT's Strategy Ranking: To complete
(b) our analysis, we measured the correlation between SQOUT’s
B~ B:.C-Const &~ B.C-PromC % B:C-PromD -<- B:C-Scan ranking of strategies and the (perfect) ranking generated using
--&=- B:E-Const o B:E-PromC -*- B:E-PromD -<¢- B:P-Scan i .
~@- B:P-Const -©- B:P-PromC -~%- B:P-PromD -o- B:R-Scan the actual goodness values; a positive correlation between
8- BR-Const ~o- BR-PromC -* B:R-PromD —#= SQOUT these rankings is a good indicator of SQOUT'’s ability to avoid
. o , , ._picking the worst strategies for a query and picking the best or
Fig. 3. (a)Goodnessnd (b) execution time over selection queries for varyin | to the best strateqi We obtained istentl it
w (log scale). ose to the best strategies. We obtained consistently positive

values of the Spearman correlation coefficient! [27], which
further supports our above conclusion that SQOUT robustly
picks strategies with highest or close to highest goodness.
picks execution strategies that produce no tuples. Althou
the SQOUT strategies are the most efficient (see Figure 3(
their goodnessvalue is zero (Definitior]_4]4). An example
of one such query iSSELECT Location FROM Companyinfo
WHERE Company = ‘Applied MaterialsSQOUT chooseBromC
as the document retrieval strategy feleadquarters which
fails to extract any answer tuples. In contraBtC-Const
and B:P-Const use Const and manage to generate answet
tuples, using a longer execution. For some other queries (e.
SELECT Company FROM Companyinfo WHERE CEO = ‘Larry
Ellison’), SQOUT choose<Const which leads togoodness 10500yt preprocessing step relies on the sequential sampling approach
values higher than those for thePromC baselines RromC  of [25, [26] (Sectio{ ¥). Our current implementation of this preprocessing
generally retrieves fewer documents th@onst which in turn step is not optimized for efficiency. In fact, there are many opportunities
. for substantially reducing the running time of this step (e.g., reusing sample
might lead to lower recall values). Therefore, the performan

! &8cuments for both the single-relation and join statistics estimation), which
of SQOUT atw = 0 lies between those @&:C-ConstandB:P-  we will explore in our future work.

OUT’s Preprocessing Step:SQOUT optimizes queries
sed on the statistics in Taljle I, which are computed during
a preprocessing step. With highly unoptimized code, this step
required 22.6 minutes in our experime@sThis step enables
SQOUT to optimize SQL queries in a user-specific manner
highly effectively, as shown above. SQOUT’s preprocessing
verhead makes it undesirable for one family of queries,
mely for queries that both (1) have no constants (i.e.,
here Constand PromC are not applicableand (2) specify



that efficiency is not important (e.gwy = 1). In such case, remaining authors are supported by a generous gift from the
an extract-then-query execution is preferable: SQOUT resoBata Management, Exploration, and Mining Group, Microsoft

to an extract-then-query execution, but also pays the exRasearch.

cost of the preprocessing overhead. However, for all oth
scenarios, SQOUT is indeed attractive with respect to extra
then-query. For example, far = 0.5 and querySELECT *
FROM Companyinfo WHERE CEO =‘Eric Benhamo§QOUT's
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VIl. CONCLUSION AND FUTURE WORK

This paper presented a principled, effective query optimizag]
tion approach for simple SQL queries over text databases. Our
approach relies on information extraction systems to discov&?]
the structured data that is “buried” in natural-language text,
and considers both efficiency as well as query result quali
when choosing an appropriate SQL query execution strategy
over a text database. Many interesting research problems
remain open in this area, and we plan to study them in ot
future work. One such problem is how to handle a riChT[,b]
family of SQL queries, beyond the simple selection-projection-
join queries that we considered in this paper. Another chags)
lenging problem for future work is to explore the synergy
between this paper’'s online extraction approach and an &
proach that exploits already extracted information (e.g., durin
earlier querying), to strike the right balance between offlir{e ]
computation—for persistent information needs and for thgg
static portions of the text databases—and online extraction—
for dynamic database contents and information needs. [27]
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