
Class Notes CS 3137

1 Priority Queues

• Priority Queue - PQ is a queue that is ordered by priority - a value stored in the node
that allows us to determine which node precedes another node, which establishes a
priority ordering.

• Priority Queues have the following functions associated with them:

– Initialize PQ to be empty

– Test whether PQ is empty

– Test whether PQ is full

– Insert a new item into the PQ,

– Delete item of highest priority

• There are many ways to implement PQ’s. If we use an array, we can just insert any
item into the PQ at the end. Then a delete will need to search the entire array to find
the highest priority item. Cost: Insert: O(1), Delete: O(N).

• If we do inserts into the array to preserve priority ordering, we will need to:

– Find the spot in the array where the new insertion occurs

– Shuffle all the array elements to adjust the array for the new element

• Cost of an insert is now O(N) - we may have to shuffle all the elements if insertion is
at beginning of array. Delete is now O(1) since the first element in the array is the
highest priority item

• The same analysis applies if we use a linked list, sorted by priority. Insertion will be
O(N) and deletion O(1).

2 Heaps

• Can we improve on this time complexity for a PQ?

• We can by using a Heap. A Heap is a complete binary tree with values stored in its
nodes such that no child has a value smaller then the value of its parent. Put another
way, every node has a smaller value than its children. This is also called a Min-Heap

since the smallest value must by definition be stored at the root (can you prove this
must be so?).
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• A Max-Heap just reverses the idea: no child has a value larger than its parent, and the
root contains the largest value.

3 Array Implementation of Heaps

• Although we are talking about using a binary tree to create a heap, there is a partic-
ularly easy and efficient way to store complete binary trees in arrays.

• In this representation, we use array positions beginning with 1 (not zero). The root
will always be stored in array position 1. The two children of the root will be in array
positions 2 and 3.

• Following this idea, every tree node at array position i will have its children at array
positions 2 ∗ i and 2 ∗ i + 1.

• Because we are using arrays, we need to allocate the maximum amount of space at
compile time. This implementation will reserve space for each node having 2 children,
whether they do or not.

• To store a complete binary tree in an array we need to keep track of the largest array
position that is being used (N). We can summarize how to access tree members with
this table:

To Find: Use: Provided:

Left Child of A[i] A[2*i] 2*i≤ N
Right Child of A[i] A[2*i+1] 2*i+1≤ N

Parent of A[i] A[i/2] i>1
Root A[1] A is nonempty

Whether A[i] is a leaf True 2i > N

• Given the array implementation, we can now write access functions to perform inser-
tions and deletions into the heap, preserving the PQ ordering. We will use a min-heap
for our example.

• INSERT: the trick here is to add the new item to the end of the array, and “bubble”
or “percolate” it up towards the root if it is of smaller key value than its parent node.

• DELETEMIN: Remove the root of the tree (highest priority item). We now need to
readjust the tree to keep it in heap order. To do this, place the last item in the array
at the root, and “bubble” it down towards the leaf nodes until it reaches the spot it
belongs in according to min-heap ordering.
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• The cost of an insert operation is O(LogN) since we may possibly have to bubble the
new item up the height of tree, which is Log(N).

• The cost of a delete operation is O(1) to remove the root (highest priority item)
and O(LogN) to readjust the heap after we remove the root. Remember that in a
DELETEMIN, we replace the root with the last item in the heap and bubble it down
(possibly) the height of tree, which is Log(N).

• A simple sorting technique that takes advantage of the heap idea is Heapsort. Essen-
tially, to sort N items, A1 . . . An, you do the following:

for(i=1; i<=N; i++)

insert item i into Heap

for(i=1; i<=N; i++)

Deletemin from Heap and readjust Heap

• Intuitvely, the cost of this is O(N Log(N)), since we have to do N insertions N deletions
at cost Log(N) each.

• There is an interesting observation about turning an array of elements into a heap -
a Heapify operation. In an array of N elements, about half the elements are leaves.
Element N/2 (integer division) is the last element that has a child - why?

• We can exploit this to heapify an array by only bubbling down the first N/2 elements
of the array, which speeds the process up.

4 JAVA Implementation of Heaps

Below is code for Heap operations. In the code below I use the java.lang implementation of
the interface Comparable which is compatible with Java 1.2.
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//This program generates a set of random integers and inserts

//them into a min-heap and then returns the numbers in order

import java.util.Random;

public class MyBinaryHeap

{

public MyBinaryHeap( int capacity )

{

currentSize = 0;

array = new Comparable[ capacity + 1 ];

}

public void insert( Comparable x )

{

// percolate up

int hole = ++currentSize;

for( ; hole > 1 && x.compareTo( array[ hole / 2 ] ) < 0; hole /= 2 )

array[ hole ] = array[ hole / 2 ];

array[ hole ] = x;

}

public Comparable findMin( )

{

if( isEmpty( ) )

return null;

return array[ 1 ];

}

public Comparable deleteMin( )

{

if( isEmpty( ) )

return null;

Comparable minItem = findMin( );

array[ 1 ] = array[ currentSize-- ];

percolateDown( 1 );

return minItem;

}

public void buildHeap( )

{

for( int i = currentSize / 2; i > 0; i-- )

percolateDown( i );
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}

public boolean isEmpty( )

{ return currentSize == 0; }

private void percolateDown( int hole )

{

int child;

Comparable tmp = array[ hole ];

for( ; hole * 2 <= currentSize; hole = child ) {

child = hole * 2;

if( child != currentSize &&

array[ child + 1 ].compareTo( array[ child ] ) < 0 )

child++;

if( array[ child ].compareTo( tmp ) < 0 )

array[ hole ] = array[ child ];

else break;

}

array[ hole ] = tmp;

}

private int currentSize; // Number of elements in heap

private Comparable [ ] array; // The heap array

public static void main( String [ ] args )

{

int NUMINSERTS = 12;

int MAXINTEGER = 3456;

int i;

MyBinaryHeap h = new MyBinaryHeap( NUMINSERTS );

Random generator= new Random();

for( i = 1 ; i <= NUMINSERTS; i ++) {

int x= generator.nextInt(MAXINTEGER);

System.out.println("Random number inserted is " + x);

h.insert( new Integer( x ) );

}

for( i = 1; i <=NUMINSERTS; i++ )

System.out.println( "min is " + h.deleteMin() );

}

}
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5 Cost of Creating a Heap

• We can analyze the cost of putting an array into heap order. Remember, we can always
represent a full or complete binary tree with an array implementation.

• Start with a full binary tree with K = 4 levels and N = 2K − 1 nodes, and level K − 1 is
the maximum level.

Level 0: O

/ \

/ \

Level 1: O 0

/ \ / \

/ \ / \

Level 2: O O O O

/ \ / \ / \ / \

/ \ / \ / \ / \

Level 3: O O O O O O O O

• To make this into a heap, we will use a method that starts at the bottom of the tree and will
“bubble down” every node that isn’t in heap order.

• Let index i = 1,2,3,4. The number of nodes at each level K− i is 2K−i.. In the picture above,
all 24−1 nodes at level 4 − 1 are leaves. This means that these nodes are already in heap
order - they are bigger than their children (they don’t have any children!) and we don’t have
to bubble them down.

• However, nodes at the other levels as we move up the tree from the deepest level can bubble
down to satisfy the heap priority. But they only have to move a few levels, not necessarily
the maximum depth of the tree.

• So, the 2K−2 nodes at depth K − 2 only have to bubble down 1 level. In the picture above,

all 22 nodes at level 2 only have to bubble down 1 level. Similarly, all 21 nodes at level 1

only have to bubble down 2 levels in the tree. Finally the single 20 node at level 0 needs to

bubble down 3 levels.

index nodes heap level bubble down levels

i 2K−i K-i i-1

1 8 3 0

2 4 2 1

3 2 1 2

4 1 0 3

6



• We can summarize this as follows:

Let i = 1, . . . , K. The 2K−i nodes at depth K − i only have to bubble down i−1 levels

• So, to create a heap, we can count the maximum number of bubble downs possible,
which is:

Max. # of Moves to make a Heap =
K∑

i=1

2K−i(i − 1)

K∑

i=1

2K−i(i−1) = 2K−1
·0 + 2K−2

·1 + 2K−3
·2 + . . . + 20

·(K−1) =
K−1∑

i=0

2i(K−(i+1))

This becomes:

K
K−1∑

i=0

2i
−

K−1∑

i=0

2i(i + 1)

The first terms sum is just K · (2K − 1) and the second term’s sum is (K − 1) 2K + 1
(you can prove this by induction). The two sums add up to 2K − K + 1 Since the
number of nodes N = 2K − 1, we can say that this is an O(N) operation

• So here is a heapify function....

public void buildHeap( )

{

for( int i = currentSize / 2; i > 0; i-- )

percolateDown( i );

}

• So, to analyze the Heapsort algorithm, we create a heap from an unordered array at
cost N , and once we create the heap, we need to perform N deletions at cost Log(N)
for each deletion, yielding a total cost of N + N Log(N) which is O(NLog(N)).
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