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Abstract— In this paper, we present a visual learning al-
gorithm for estimating the configuration of a multisegment
continuum robot designed for surgery. Our algorithm inter-
polates a stereo visual feature descriptor manifold using Radial
Basis Functions (RBFs) to estimate configuration pose angles.
Results are shown on a 3-segment snake robot, where rotational
accuracy in the range of 1◦−2◦ is achieved.

I. INTRODUCTION

Continuum robots are continuously bending elastic struc-
tures [1] that promise great advantages for surgical inter-
vention. Their inherent compliance increases safety during
surgery and allows for deeper reach inside the anatomy. This
capability is essential for new demanding surgical paradigms
such as Single Port Access Surgery (SPAS) [2] and Natural
Orifice Translumenal Endoscopic Surgery (NOTES) [3].

Continuum robots have been investigated recently by the
medical robotics research community for Minimally-Invasive
Surgery (MIS) [4], SPAS [5], and NOTES [6]. Different
designs and actuation modalities have been proposed [7]–
[12], however all suffer from lack of accuracy due to friction,
extension and torsion of their actuation lines, kinematic
approximations, and actuation coupling between segments.

Methods have been proposed to overcome these issues
with model-based [6], [13]–[15] and vision-based approaches
[16]–[18]. In [16], the authors extracted individual vertebrae
along a snake arm to fit successive circles to determine the
curvature by analyzing the change in length of the segment
due to curving. In [17], the authors used a voxel-carving
strategy to extract the position of a flexible manipulator
using three orthogonal cameras. In [18], the authors used
Self-Organizing Maps and stereo vision to detect the shape
of a concentric-tube robot without the use of fiducials for
positional accuracy. Finally, a tiered real-time controller that
uses both extrinsic and intrinsic sensory information for
improved performance of multisegment continuum robots
was presented in [19].

In this paper we extend a previous algorithm [20] to
estimate the configuration of a single-segment continuum
robot. This method interpolates a smooth functional map-
ping from robot configurations to features using a look-up
table. The extension to multiple segments is time-consuming
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Fig. 1. The experimental setup of our 3-segment robot, where each segment
is individually color coded to facilitate segmentation of the vertebrae.

because a high-dimensional nearest-neighbor lookup (with
many samples) is required.

The contribution in this paper is a method for estimating
the configuration of a multisegment continuum robot arm
using a visual learning algorithm. Off-line ground truth robot
configuration angles are mapped to stereo visual feature de-
scriptors through a smoothly-varying parameterized feature
manifold. Radial Basis Functions are used to interpolate
this high-dimensional feature manifold to directly estimate
the configuration angles from the features, avoiding any
memory-intensive look-up tables in the reverse direction.
The coupling effects of the independently bending segments
are accounted for by expressing the orientation of each
segment with respect to a static base coordinate frame. The
application of a smoothing operation to the shape descriptor
increases the stability and repeatability of the pose estimation
through the manifold.

II. MODELING OF THE MULTI-SEGMENT CONTINUUM
ROBOT

A single-segment snake arm is constructed of one centrally
located passive primary backbone, and three radially placed
secondary backbones with pitch radius r and separation angle
β , as shown on the left of Fig. 2. The segment is moved
through the workspace by controlling the lengths of the sec-
ondary backbones. The pose of the end disk of segment k≥ 1
can be completely described by the generalized coordinates:

ψk = [θLk ,δk]
T (1)

where θLk and δk define respectively the angle tangent to the
central backbone at the end disk and the plane in which the
segment bends. The orientation of the end disk is given by
the following sequence of rotations:

Rk−1
k = RZRYRT

Z (2)
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environment.
The contributions of this paper are in presenting new

frameworks for analyzing and controlling continuum robots
for compliant motion control. A novel mapping of the envi-
ronment wrenches to a generalized force in the configuration
space of a continuum segment is defined that casts perturbing
wrenches into the controllable space of the segment. A closed
form analytic expression of the stiffness of a single-stage
continuum robot driven by NiTi wires is defined based on
an expression of the system energy. A controller is proposed
to drive a continuum robot segment to a configuration that
minimizes its interaction with an unknown wrench acting at
an unknown location. The algorithm uses the difference of
the measured and predicted unperturbed generalized force, in
conjunction with the stiffness of the segment, to move in a
direction to minimize the environment interaction. Incorpo-
ration of on-line estimation obviates the need for an exact
model of friction parameters and provided robustness to model
uncertainties. This work supports future implementation of
rapid deployment into the surgical workflow by integration
of compliance control for simplifying surgical robot setup and
supporting safe insertion and navigation to deep surgical sites.

II. SINGLE SEGMENT CONTINUUM ROBOT KINEMATICS

AND STATICS

Kinematics for continuum robots, assuming circular bend-
ing, has been thoroughly investigated, e.g. [14]–[18]. The
multi-backbone single segment robot, Fig. 2, is constructed of
one centrally located passive primary backbone, and three radi-
ally symmetric actuated secondary backbones. The secondary
backbones are equally spaced with a separation angle β = 2π

3
and with a pitch circle radius, r, from the primary backbone.
The structure is bounded by aluminum base and end disks
defining the frames {b} and {g} respectively and a multitude
of spacer disks which maintain approximate radial symmetry
as the segment moves through the workspace. By controlling
the lengths of the secondary backbones, the segment can be
moved throughout the workspace defined by the kinematics.

The pose of a single-segment multi-backbone continuum
robot can be completely described by the generalized coordi-
nates, termed configuration space, by the vector

ψ =
[
θL, δ

]T
. (1)

where θL and δ define respectively the bending angle and the
bending plane of the segment, Fig. 2.

The inverse kinematics of the iith segment of the continuum
robot relating the configuration space, ψ, to the joint space,
q =

[
q1 q2 q3

]T
, is given as:

Li = L+ qi = L+ΔiΘ (2)

where L is the nominal length of the primary backbone, i =
1, 2, 3 defines the secondary backbone, Δi = r cosσi, σi =
δ + (i− 1)β, and Θ = θL − π

2 .
The velocity inverse kinematics can be described by differ-

entiating (2) to yield

q̇ = Jqψψ̇ (3)
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Figure 2. Structure and kinematic nomenclature for a single-segment
continuum robot.

where Jqψ is given by

Jqψ =

⎡
⎣

rcσ1 −rΘsσ1

rcσ2 −rΘsσ2

rcσ3 −rΘsσ3

⎤
⎦ . (4)

and cα � cos (α) and sα � sin (α).
The direct kinematics of the iith segment from the config-

uration space, ψ, to the operational space, x, is given by the
position

pL =
L

Θ

⎡
⎣

cδ (sθL − 1)
−sδ (sθL − 1)

cθL

⎤
⎦ (5)

and the orientation,

bRg =

⎡
⎣

c2δsθL + s2δ −cδsδsθL + sδcδ cδcθL
cδsδsθL + sδcδ s2δsθL + c2δ −sδcθL

−cδcθL sδcθL sθL

⎤
⎦ .

(6)
bRg is defined as the rotation matrix of the moving frame
{g} with respect to the fixed frame {b}, where the frames are
defined in Fig. 2.

By differentiating (5) and (6), the instantaneous direct
kinematics is given by

ẋ = Jxψψ̇ (7)

where, for non-singular configurations, e.g. θL �= π
2 ,

Jxψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Lcδ
ΘcθL−sθL+1

Θ2 −Lsδ
sθL−1

Θ

−Lsδ
ΘcθL−sθL+1

Θ2 −Lcδ
sθL−1

Θ

L
ΘsθL+cθL

Θ2 0
−sδ cδcθL
−cδ −sδcθL
0 −1 + sθL

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

and, for θL = π
2 ,

Jxψ =

[
−L

2 cδ
L
2 sδ 0 −sδ −cδ 0

0 0 0 0 0 0

]T
. (9)

Fig. 2. [Left] Structure and kinematic nomenclature for a single segment
continuum robot. [Right] Drawing of our 3-segment continuum robot,
displaying coordinate systems and the rotations which represent the con-
figurations.

where Rz = Rot(−δk, ẑ), Ry = Rot(θ0−θLk , ŷ), and operator
Rot(φ ,u) returns a rotation matrix of angle φ about axis u
and θ0 = π/2. The configuration variables θLk and δk can be
obtained from (2) as1:

θLk = θ0− atan2
(√

R2
13 +R2

23,R33

)
(3)

δk =−atan2(R23,R13) (4)

where Ri j are the entries of rotation matrix Rk−1
k . To augment

our approach to multiple segments (Fig. 2, right), we use a
global representation of each segment, regardless of its kine-
matic chain. As such, we seek a rotation R0

k which maps the
end disk of any segment k to the static base {0} of the robot.
To achieve this, we chain together rotations of segments,
proximally, all the way up to the base coordinate frame. For
example, given sequentially-ordered segments, it’s assumed
that the rotation matrix R0

k is formed by composition:

R0
k = R0

1R1
2 . . .R

k−1
k (5)

In this way, we can express every segment of the snake arm
in a common coordinate frame and train with these mappings
all together. A 3D rotation matrix represents 3 independent
DOFs, and so we want a 3-vector to represent this transform.
We chose to use ZYX Euler angles, ek = [αek ,βek ,γek ], s.t.:

αek = arcsin(
R21

η
) (6)

βek = arcsin(−R31) (7)

γek = arcsin(
R32

η
) (8)

where η is a normalization factor:

η =
√

R2
11 +R2

21 (9)

In this formulation, αek is a rotation about the z-axis, βek is
a rotation about the y-axis, and γek is a rotation about the
x-axis. Note that other rotation representations may also be
used in place of this and easily substituted into our approach.
We use ek to represent the 3-vector Euler angles.

1We use the atan2 notation such that: θ = atan2(sin(θ),cos(θ)).

(a) K-Means Labels (b) Binary Labeling of Top Seg-
ment

(c) Binary Labeling of Middle
Segment

(d) Binary Labeling of Bottom
Segment

Fig. 3. The binary labelings [white pixels] resulting from the clustering
labeling shown in Fig. 3(a), and the associated edges of these binary masks
[red pixels], obtained by applying the Sobel operator. The edges are used
to build the feature descriptors, described in Sec. IV-B

III. PARAMETERIZED MANIFOLD

We begin with a description of how we map the fea-
ture descriptors to rotation angles. Our method relies on
learning mappings of features to physical configurations.
Our descriptors must be carefully chosen so that nearby
points in feature space represent similar configurations. By
discretely sampling a continuous space of configurations,
we can interpolate a feature descriptor manifold, which is
parameterized by the configuration angles ek. In [20] we
described the following forward mapping:

G(ψk) = Lk (10)

where ψk is as described in (1), Lk is a compressed feature
descriptor (through applying Principal Components Analysis
(PCA) to a set of training descriptors to reduce the dimen-
sionality, Sec. IV-C), and G is the manifold mapping. We
showed that we can use training samples to learn G and
interpolate estimated features Lk based on arbitrary DOFs
ψk. We constructed a look-up table of these interpolated
features and estimated unknown configurations by finding
the nearest neighbors of an observed descriptor. We used
a weighted-average of the configurations that produced the
nearest feature matches to recover the configuration angles.
Because we were operating with 2 DOFs, the look-up table
was reasonably sized in terms of memory. However, as more
DOFs are added, this becomes intractable quite quickly.

Ideally, we would like to learn the inverse mapping G−1

mapping features directly to the estimated rotation angles
corresponding to that feature, thereby bypassing any need
for a lookup table. Because these features are normally
high-dimensional, the interpolation becomes quite complex.
We found that using Radial Basis Functions (RBFs) [21]



provided a good approximation to this interpolated mapping
if the underlying assumptions of smoothness are sufficiently
maintained. As we will show, the descriptor choice becomes
incredibly important as features which don’t correspond
smoothly to DOFs cannot be interpolated accurately.

IV. STEREO FEATURE DESCRIPTORS

In order to build a feature descriptor which describes the
physical configuration of our continuum segment, we first
must select which pixels we will use to build the feature.

A. Image Segmentation

The pixels corresponding to each segment must be ex-
tracted, and so we use an unsupervised K-Means clustering
of pixels in CIELAB color space. The color information ex-
ists mainly in the chromanicity-layers a and b, and so a single
frame is used to learn the most representative colors in the
image frame. After training we must manually select which
clusters correspond to which snake segments, but once that is
done we can automatically extract the segment pixels in each
frame independently. A sample clustering result is shown in
Fig. 3(a), where different labels are automatically assigned
to the pixels in the image according to their color separation.
This facilitates segmenting the continuum segments from
the image, individually, and results in 3 individual binary
labeling, shown as white pixels in Figs. 3(b)-3(d).

Next, we compute edges from these binary images using
the Sobel edge detector. This gives us points along the outer-
edges of the object, shown as red pixels in Figs. 3(b)-3(d).
The intuition behind using these points to build the feature
descriptor is that as a particular segment bends, the shape
changes redistribute the points along the outer edges in
unique ways. Our descriptor seeks to capture and describe
these changes smoothly, as described next.

B. Descriptor Extraction

Our feature descriptor must be used to represent the 3D
configuration of the snake segment. Although we do not
explicitly perform stereo reconstruction, we combine feature
descriptors from stereo cameras into a single, composite
feature. In this way, 3D shape information will be encoded
because we have two separate views of the object in a
stereo setup, and ambiguous movements due to out-of-plane
perspective effects in one camera can be captured by the
other camera by means of the descriptor.

To build the feature descriptor of a single segment in a
single camera, we take the location of the center of the edges
and build a 1D histogram of the angles of each point of the
edges with respect to the center of the object. A pictorial
representation of this descriptor is shown in Fig. 4, whereby
we show 14 bins for purposes of describing the idea, however
we used 120-bins (every 3◦) in our experiments. The bins
radiate outwards from the center of the edge pixels (e.g.,
the median of the points). The bins count the number of
edge pixels in each angular range. The histogram should be
densely binned so that small changes in shape are captured
and the descriptor is sensitive, yet not overly noisy.

Because this descriptor is sensitive to the location of the
center point which we use to compute the radial bins, we
perform a smoothing operation to provide some invariance
to the location of the center that we use. We apply a Gaussian
weighting around a bin location when a vote is added to the
histogram, performing wrap-around at the boundaries of the
histogram to account for the cyclic nature of rotations. We
show results on the overall descriptor stability in Sec. V-C.

Finally, to encode the shape in 3D, we collect the feature
descriptor from the left and right camera separately and
concatenate them together into a single stereo feature vector.
These are used to map directly to rotation angles to describe
the configuration of a snake segment.

C. Feature Pre-Processing

Before constructing the mapping G−1 of features to ro-
tation angles, we pre-process the features to reduce the
complexity using PCA. We use a magnetic sensor to provide
ground truth pose angles for training purposes. To collect
training data, we collect pairs of stereo images Si = {ILi, IRi}
and associated eki = {αeki

,βeki
,γeki} measurements, where

i = 1, . . . ,N for N discrete training samples.
The stereo pairs Si are mapped to 1-D stereo feature

descriptors (for each segment k) H̃ki = [HT
kLi
,HT

kRi
] to represent

the shape of the segment on that frame. Our training set
then becomes A = {(ek1 , H̃k1), . . . ,(ekN , H̃kN )}. We use PCA
to reduce each H̃ki because each is very high-dimensional
but also quite sparse. It is shown in [22] that a compact
representation of an object’s appearance sufficiently captures
the pose by creating a parametric eigenspace to represent this
appearance. Therefore, we compute the principal components
of the training set of H̃ki samples. We observed that we can
substantially reduce the dimensionality while still recovering
a large percentage of the variance.

We then project the original training feature descriptors in
A to the eigen-subspace:

Lki = ET (H̃ki − c) (11)

where c is the mean feature descriptor over all H̃ki , E is a
matrix who’s columns consist of the b eigenvectors corre-
sponding to the top b eigenvalues we wish to preserve, and
Lki ∈ Rb×1. We choose b to capture a sufficient percentage
of the variance of the original feature training set. We call
these Lki samples eigen-features and these are used to learn

Fig. 4. A pictorial representation of our feature descriptor, for a single
segment of the robot from the left camera. Although we portray 14 bins,
for purposes of describing the idea, in our experiments we used 120 bins.



the mappings in the parametric manifold. Next we describe
the RBF method used to learn this mapping.

D. RBF Interpolation

A Radial Basis Function (RBF) is a function based on a
scalar radius:

φ(r) = φ(|x− xi|) (12)

where φ(r) can be different types of functions, such as
Gaussian, Multiquadric, Linear, Cubic, or Thinplate Splines.
In order to use RBFs to interpolate a function mapping
f (x), an approximation of the function is made by choosing
coefficients C0, C1, and λi to match values of the function at
interpolation nodes, such as:

f (x) =C0 +C1x+
n

∑
i=1

λ iφ(|x− xi|) (13)

Once coefficients C0, C1, and λi are found, we can use this to
approximate the function at any point. As mentioned before,
we seek the mapping

ek = G−1(Lk) (14)

so that the estimate of the configuration of a particular
segment can be directly computed from the associated stereo
feature descriptor extracted from a pair of images. We use
RBFs to interpolate this mapping G−1 from the training data
described in section IV-C. This produces a multi-dimensional
interpolation procedure mapping descriptor measurements in
Rb to configurations in R3. Therefore we need to compute
3 different sets of RBF coefficients corresponding to each
of the 3 rotation DOFs in ek. More specifically, one set of
coefficients will interpolate the mapping of Lk to αek :

αek = G̃−1
α (Lk) (15)

such that G̃−1
α is an approximation of the true mapping, G−1

α ,
which estimates the angles αek from Lk. We do the same for
G̃−1

β
and G̃−1

γ , which approximate G−1
β

and G−1
γ .

In the end, we have coefficients which can efficiently
produce estimates of rotations from any snake segment to
the static base coordinate frame. This method is in place of
our previous approach, which required a look-up table to be
constructed from the forward mapping G and is sensitive
to the density of the training samples. This means isolated
training measurements may provide larger errors when inter-
polating from the nearest-neighbors because of the weighted
averaging of nearby samples. However, interpolations using
RBFs perform very poorly with descriptors that don’t vary
smoothly (see Sec. V-D).

V. EXPERIMENTS

We experimented with the 3-segment continuum robot
of Fig. 1, where each segment was coded with individual
color markers to facilitate image segmentation. This type
of marker-based extraction is common for surgery [23]. In
our experiments we used 2 PointGrey Dragonfly cameras for

our stereo imaging. Four magnetic sensors were embedded at
points known along the robot arm to produce ground truth of
relative 3D rotations from each segment to its most proximal
segment. We used the Ascension Technology 3D Guidance
trakSTAR for ground truth angles, containing 4 Model 90
6-DOF sensors. Position static accuracy of the sensor is 1.4
mm RMS with an orientation static accuracy of 0.5◦.

We call the most proximal segment, attached to the static
robot base, segment 1. The next distal segment is called
segment 2, and the final, distal-most segment is segment 3.
Therefore, we seek rotations R0

1, R0
2, and R0

3, as described in
(5). For ground truth, R0

1 is given directly by the magnetic
trackers. To get R0

2, we are given R1
2 from the magnetic

trackers and then compute

R0
2 = R0

1R1
2 (16)

and similarly for R0
3, we compute

R0
3 = R0

1R1
2R2

3 = R0
2R2

3 (17)

Then, using the Euler angle conversion expressed in (6), (7),
and (8), we collect e0

1, e0
2, and e0

3 for use in training.
The color codings help extract the segments of the snake,

individually from each other, using the image processing
method described in Sec. IV-A. To begin, we train an RBF to
interpolate the mapping G−1 by collecting descriptors from
the stereo images, as described in Sec. IV-B, and then pre-
processing them as in Sec. IV-C. For each frame, we get
three stereo descriptors, each with their respective rotation
angles to the static base frame from the magnetic trackers.
Because the segments are treated independently, as a freely-
rotating body in 3D space, for each stereo pair we get three
completely separate training samples, corresponding to each
of the 3 segments of the continuum arm. Because a descriptor
is mapped to the rotation of the end disk of that segment to
the static base (regardless of the segments above it), we can
collect these samples and train an RBF to interpolate the
function mapping, as described in Sec IV-D. In this way,
we remove the coupling effects that would be present with
relative rotations. One advantage of treating the segments
individually is that if one or more is occluded, we can still
compute the configuration of the visible segments because
the coupling of the proximal segments above it is accounted
for in our formulation.

Fig. 5. The effect of number of training samples on overall rotational
accuracy.



Fig. 6. The effect of PCA feature dimensionality reduction on overall
rotational accuracy.

Our experiment consisted of randomly sampling the
workspace of the continuum robot and collecting measure-
ments for off-line training and testing. Overall, we collected
3483 total samples. We experimented with different amounts
of training data to analyze the effect on the interpolation
quality. In each of the cameras we extracted feature descrip-
tors using 120 bins (every 3◦), and so the composite stereo
features were 240-dimensional, before applying PCA.

A. Training Set Size

Fig. 5 shows our analysis of the effect of the number
of training samples to interpolate G−1 using an RBF with
respect to overall median rotational error (in all 3 dimensions
of rotation combined). As you can see, even training with
only 10% of the data (amounting to 348 samples), we can
achieve an overall median accuracy of 2.77◦. Our best result
comes with more training data, not surprisingly, at ∼ 1.43◦

of rotational accuracy.
To be sure these experiments are fair, for each trial we

randomly permute the data samples and randomly select
some for training and the rest for testing, according to the
split required by the experiment. We then take the average
result over this random sampling of the 3 trials to better
capture the behavior of that experiment.

B. Dimensionality Reduction

We also experimented with the effect of the PCA dimen-
sionality reduction on the 240-dimensional stereo feature
descriptors. We chose to train with 50% of the data and test
with the other 50% of the data, making sure the testing data
was not included in the interpolation of the training data. Fig.
6 shows the effect of different levels of variance recovery on
the overall median rotational accuracy. The recovered feature
dimensionality increases as more variance is included in the
PCA projections to produce the eigen-features Lk.

In these experiments, we notice an interesting result.
As expected, using the same amount of training data in
each experiment we get an increase in accuracy with more
dimensions, but only up to a point, where at ∼ 30 dimen-
sions (corresponding to 80−85% of the variance recovered)
accuracy decreases. We attribute this effect to over-fitting.
To investigate this further, we take the higher-dimensional
cases and train with more data, and accuracy increases again

to about the same level. This study gives a nice intuition
about the trade-off between number of training samples and
dimensionality reduction, and how they interact with each
other. Again, as previously we randomly permute the training
and testing samples.

C. Descriptor Stability

The descriptor histogram is built-up by the angles of the
segmented pixel locations from the edge maps with respect to
the center of the segment in the image. Typically we compute
this center location by taking the median of the edge pixel
locations, to approximate the center of the segment. As we
noted earlier, the repeatability of this histogram to describe a
particular configuration of a snake segment is sensitive to this
center location. Therefore we added a smoothing operation
to add some translational invariance to this center location.

To analyze the stability of the descriptor, we devised an
experiment as follows. Given a configuration of a snake
segment as a test, we compute the descriptor from a sin-
gle camera as we already described. This is our reference
histogram Hre f ∈ R120. We then add varying amounts of
Gaussian noise to the median center location, using noise
levels of 0.1 up to 8 pixels, and recompute the histogram
with the noisy center Hn. Because the units of the descriptor
are hard to interpret, we chose to use a percent difference
to analyze how the descriptor changes with noisy center
locations. The results are shown in Fig. 7. It is observed
that the percent difference of the histograms computed with
the noisy centers changes linearly with pixel noise. The slope
of the best-fit line to this data is 5.2, meaning that for every
pixel offset from the true center we get about an extra 5%
difference in the histogram.

The percent difference (PD) is an average of the percent
difference of every bin in Hn (for noise level n) to the
reference histogram Hre f :

PD =
∑

120
i=1 PDi

120
(18)

where PDi is the percent difference of a particular bin i ∈
[1, . . . ,120] of the histograms:

PDi =
|Hn(i)−Hre f (i)|

Hre f (i)
×100 (19)

Fig. 7. The stability of our feature descriptor with respect to the noise of
the center pixel location.



For each noise parameter, we perform 400 tests with that
same noise parameter and take the average PD, again to
reduce randomness. Using 0.5 pixels of noise, the PD from
the reference is 4.3% and when we apply 2 pixels of noise,
the PD grows to 12.8%. Although this still produces a larger
percent difference in the descriptor than we would like, the
smoothing operation reduces the tendency of the histograms
to change significantly when the segment center is noisy.
Further increasing this stability is a topic of future research.

D. Alternative Feature Descriptors

The choice of our descriptor is not arbitrary. To prove
this, we chose a popular descriptor in the computer vision
literature called Histogram of Oriented Gradients (HoG)
[24]. In order for the interpolation mapping to work, the
descriptors must vary smoothly with changes in 3D rotation.

We performed the same tests as previously described using
HoG descriptors in place of ours. To contrast our approach,
we update the gradient orientation bins using the gradient
magnitude as the vote for that bin using the gray values
of the image pixels. Again we combine the HoG’s from the
two cameras to construct a stereo feature descriptor, ensuring
fair comparison. We found that the RBF cannot accurately
interpolate the function mapping, and gives rotational errors
on the order of ∼ 100◦ and more. We believe this is the
case because the HoG descriptor more accurately describes
texture rather than shape, and this provides no smoothness
guarantees in the parametric rotation space. This means that
nearby HoG’s in feature descriptor space do not necessarily
describe similar physical configurations in terms of 3D
rotation, but rather in appearance, which is not relevant to
the problem being addressed in this paper. It’s important then
that the feature descriptor is more of a shape descriptor rather
than a texture descriptor.

VI. CONCLUSIONS

In this paper we have described an algorithm to compute
the configuration of a multi-segment continuum robot using
vision. We constructed a function mapping which trains off
of ground truth data to produce 3D rotation angles directly
from a stereo feature descriptor. In the future, we plan to run
closed-loop live experiments with a snake robot to perform
fine-scale manipulations, as in [19], where the algorithm
described in this paper can directly feed into the controller.
To do this accurately over long periods of time, we will need
to develop a tracking algorithm, noting that during a smooth
motion of the continuum arm, the configuration angles will
change slowly and the estimates may be filtered to avoid
jumps and outliers.

REFERENCES

[1] R. J. Webster III and B. A. Jones, “Design and Kinematic Modeling
of Constant Curvature Continuum Robots: A Review,” The Int. J. of
Robotics Research, Jun. 2010.

[2] P. Allemann, M. Schafer, and N. Demartines, “Critical appraisal of
single port access cholecystectomy.” The British J. of Surgery, vol. 97,
no. 10, pp. 1476–1480, Jul. 2010.

[3] A. N. Kalloo, V. K. Singh, S. B. Jagannath, H. Niiyama, S. L. Hill,
C. A. Vaughn, C. A. Magee, and S. V. Kantsevoy, “Flexible transgastric
peritoneoscopy: a novel approach to diagnostic and therapeutic inter-
ventions in the peritoneal cavity,” Gastrointestinal Endoscopy, vol. 60,
no. 1, pp. 114–117, 2004.

[4] M. Aron, G.-P. Haber, M. M. Desai, and I. S. Gill, “Flexible robotics:
a new paradigm.” Current Opinion in Urology, vol. 17, no. 3, pp.
151–5, May 2007.

[5] A. Bajo, R. Goldman, L. Wang, D. Fowler, and N. Simaan, “Integration
and preliminary evaluation of an insertable robotic effectors platform
for single port access surgery,” in IEEE Int. Conf. on Robotics and
Automation, 2012.

[6] N. Simaan, K. Xu, A. Kapoor, W. Wei, P. Kazanzides, P. Flint,
and R. Taylor, “Design and Integration of a Telerobotic System for
Minimally Invasive Surgery of the Throat.” The Int. J. of Robotics
Research, vol. 28, no. 9, pp. 1134–1153, Sep. 2009.

[7] S. Hirose, Biologically Inspired Robots: Snake-like Locomotors and
Manipulators. Oxford University Press, USA, 1993.

[8] N. Simaan, R. H. Taylor, and P. Flint, “A Dexterous System for
Laryngeal Surgery,” in IEEE Int. Conf. on Robotics and Automation,
2004, pp. 351–357.

[9] D. B. Camarillo, C. F. Milne, C. R. Carlson, M. R. Zinn, and
J. K. Salisbury, “Mechanics Modeling of Tendon-Driven Continuum
Manipulators,” IEEE Trans. on Robotics, vol. 24, no. 6, pp. 1262–
1273, 2008.

[10] R. J. Webster III, J. M. Romano, and N. J. Cowan, “Mechanics of
Precurved-Tube Continuum Robots,” IEEE Trans. on Robotics, vol. 25,
no. 1, pp. 67–78, 2009.

[11] P. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and Control
of Concentric-Tube Robots,” IEEE Trans. on Robotics, vol. 26, no. 2,
pp. 209–225, 2010.

[12] S. Kesner and R. Howe, “Position control of motion compensation
cardiac catheters,” IEEE Transactions on Robotics, vol. 27, no. 6, pp.
1045–1055, 2011.

[13] K. Xu and N. Simaan, “Actuation Compensation for Flexible Surgical
Snake-like Robots with Redundant Remote Actuation,” in IEEE Int.
Conf. on Robotics and Automation, no. May, 2006, pp. 4148–4154.

[14] V. Agrawal, W. J. Peine, B. Yao, and S. Choi, “Control of Cable
Actuated Devices using Smooth Backlash Inverse,” in IEEE Int. Conf.
on Robotics and Automation, 2010, pp. 1074–1079.

[15] S. B. Kesner and R. D. Howe, “Design and Control of Motion
Compensation Cardiac Catheters,” in IEEE Int. Conf. on Robotics and
Automation, 2010, pp. 1059–1065.

[16] M. Hannan and I. Walker, “Vision based shape estimation for contin-
uum robots,” in IEEE Int. Conf. on Robotics and Automation, 2003,
pp. 3449–3454.

[17] D. B. Camarillo, K. E. Loewke, C. R. Carlson, and J. K. Salisbury,
“Vision based 3-D shape sensing of flexible manipulators,” IEEE Int.
Conf. on Robotics and Automation, pp. 2940–2947, May 2008.

[18] J. M. Croom, D. C. Rucker, J. M. Romano, and R. J. Webster III,
“Visual Sensing of Continuum Robot Shape Using Self-Organizing
Maps,” in IEEE Int. Conf. on Robotics and Automation, 2010, pp.
4591–4596.

[19] A. Bajo, R. E. Goldman, and N. Simaan, “Joint and Configuration
Feedback for Enhanced Performance of Multi-Segment Continuum
Robots,” in IEEE Int. Conf. on Robotics and Automation, 2011.

[20] A. Reiter, R. E. Goldman, A. Bajo, K. Iliopoulos, N. Simaan, and P. K.
Allen, “A learning algorithm for visual pose estimation of continuum
robots,” in IEEE Intl. Conf. on Intelligent Robots and Systems, 2011.

[21] M. D. Buhmann, Radial Basis Functions. Cambridge University
Press, 2003.

[22] H. Murase and S. Nayar, “Visual learning and recognition of 3d objects
from appearance,” Int. J. on Computer Vision, vol. 14, no. 1, pp. 5–24,
Jan 1995.

[23] G. Q. Wei, K. Arbter, and G. Hirzinger, “Automatic tracking of laparo-
scopic instruments by color coding,” in First Joint Conf. on Computer
Vision, Virtual Reality and Robotics in Medicine and Medical Robotics
and Computer-Assisted Surgery, 1997, pp. 357–366.

[24] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Conf. on Computer Vision and Pattern Recogni-
tion, 2005, pp. 886–893.


