Task Level Hierarchical System for BCI-enabled Shared Autonomy

Iretiayo Akinola, Boyuan Chen, Jonathan Koss, Aalhad Patankar, Jake Varley & Peter Allen
Columbia University
Shared Autonomy

Agent 1

Agent 2
Why BCI Interface?

- Robust Assistive Robotics Application
 - Can be used by humans with disabilities
- Complementary to other interfaces for complex tasks
 - Expand range of interface modalities
- Move BCI from the lab into real world
 - BCI Robotics Applications e.g. Home-Assistant Robot
 - Spur growth in BCI technologies
Which BCI?

Different BCI imaging modalities measure brain activity:

- electroencephalography (EEG),
- near-infrared spectroscopy (NIRS),
- magnetoencephalography (MEG),
- functional magnetic resonance imaging (fMRI),
- electrocorticography (ECoG), and
- intracortical electrode recordings
EEG-BCI Neural Patterns

SSVEP- Steady-State Visual Evoked Potentials

MI- Motor Imagery (Use Sensorimotor Rhythms)

ErrP- Error related Potentials

Affective States
SSVEP

- Visual Stimulus Driven
- Split frequency band (6-9.5Hz) into # options
- 2 Electrodes in Occipital region (O1 & O2)
- canonical correlation analysis (CCA)

Options are presented to human agent as visual stimuli
SSVEP Pros & Cons

Pros

● require no training
● analysis is fairly simple
● reliable and robust response.
● provides high temporal resolution signals for analysis

Cons

● Requires stimuli
● Discomfort over time
● Small Latencies
Robot Autonomy

- **Navigation**
 - SLAM (ROS package)

- **Vision Processing**
 - Point Cloud Segmentation
 - SSVEP Stimuli generation

- **Manipulation**
 - Shape completion
 - Grasp planning (GraspIt!)
 - Trajectory Planning (MoveIt)
Robot Autonomy

- **Navigation**
 - SLAM (ROS package)

- **Vision Processing**
 - Point Cloud Segmentation
 - SSVEP Stimuli generation

- **Manipulation**
 - Shape completion
 - Grasp planning (GraspIt!)
 - Trajectory Planning (MoveIt)
SLAM- Simultaneous Localization and Mapping

- Mapping - building of a model of the environment
- Localization - estimation of the state of the robot
 - Noisy measurement from sensors (e.g. range sensors, odometry)

Position state estimation (ACT and SEE cycle)

- SEE: Laser scanner
 - A range of 25m, 220° field of view, 15Hz update rate
 - Angular resolution of 1/3°
- ACT: Mobile Base
 - 2 active wheels, 2 free turning wheels
 - Wheel Encoders (resolution not in manual)
SLAM

Position state estimation (ACT and SEE cycle)

1. Sense. Update the estimated state from registering landmarks. (SEE)
2. Build Map- Add new landmarks to the current state.
3. Move to a new location (ACT)
4. Update state estimate using the odometry data
Slam Output
Robot Autonomy

- **Navigation**
 - SLAM (ROS package)

- **Vision Processing**
 - Point Cloud Segmentation
 - SSVEP Stimuli generation

- **Manipulation**
 - Shape completion
 - Grasp planning (GrasplIt!)
 - Trajectory Planning (MoveIt)
Point Cloud Segmentation

Euclidean Cluster Extraction

- create a Kd-tree representation for the input point cloud dataset \(P \);
- set up an empty list of clusters \(C \), and a queue of the points that need to be checked \(Q \);
- for every point \(p_i \) in \(P \)
 - add \(p_i \) to the current queue \(Q \);
 - for every point \(p_i \) in \(Q \)
 - search for the set \(P_i^k \) of point neighbors of \(p_i \) in a sphere with radius \(r < d_{th} \);
 - for every neighbor \(p_i^k \) in \(P_i^k \), check if the point has already been processed, and if not add it to \(Q \);
 - when the list of all points in \(Q \) has been processed, add \(Q \) to the list of clusters \(C \), and reset \(Q \) to an empty list.

the algorithm terminates when all points \(p_i \) in \(P \) have been processed and are now part of the list of point clusters \(C \).
Robot Autonomy

- **Navigation**
 - SLAM (ROS package)

- **Vision Processing**
 - Point Cloud Segmentation
 - SSVEP Stimuli generation

- **Manipulation**
 - Shape completion
 - Grasp planning (GraspIt!)
 - Trajectory Planning (MoveIt)
Robot Autonomy

- **Navigation**
 - SLAM (ROS package)
- **Vision Processing**
 - Point Cloud Segmentation
 - SSVEP Stimuli generation
- **Manipulation**
 - Shape completion
 - Grasp planning (Grasplt!)
 - Trajectory Planning (MoveIt)
Hierarchical System

- Home-Assistance Robot
 - Assign Task
 - Clear Table
 - Which table?
 - Fetch a Drink
 - From where?
 - Get a Book
 - Which book?
 - Other task ...
 ...
 ...
 ...
 ...
Hierarchical System - An Instantiation

(a) Start → Select Table → Move to Table → Run Vision → Select Objects
 Repeat until cleared → Place Object
 Select Place Location → Grab Choice Object

(b) Options → Stimuli Generation → BCI Signal Classification → Return Choice Index
Table-Clean Up Experiment

Where do I go?
Go to the table.

What should I grab?
Pick up the drill.

Where do I take it?
Bring it to me...

fetch Robotics

[Image of robot and cleaning supplies]
Video

press for video
Evaluation Criteria

● BCI Success Rate (User Input Detection)

● Mean Time Distribution Between Stages

● Mean Time to Completion

 ○ ranged from 439s to 543s (mean = 481.3s)
Results

TABLE II: User study results for table cleanup task.

<table>
<thead>
<tr>
<th>Subject</th>
<th># of Trials</th>
<th>SSVEP Classification Success (# successful queries / # queries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>15/15 (100%)</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>11/12 (91.7%)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>11/12 (91.7%)</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>14/14 (100%)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>15/15 (100%)</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>14/15 (93.3%)</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>15/15 (100%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 95 / 98 (96.9%)</td>
</tr>
</tbody>
</table>
Mean Time Distribution Between Stages

Duration of Human Input - black dotted line
SSVEP: Performance Considerations

- Stimuli duration
- Number of options

![Graph showing mean classification accuracy vs. duration of signal used for classification (s)]
Summary

Hierarchical system for shared control of a humanoid robot.

- **Shared Autonomy**
 - Leverages the strengths of both humans and robots.
 - Reduces BCI Fatigue
- **Hierarchical and configurable**
- **Intuitive screen-based visualization of the task**
 - Enhances operator understanding and interaction.
 - Web-based System (RoboWebTools); platform-agnostic
- **Robust Assistive Robotics Application**
 - Reliable BCI with SSVEP
- **Benchmark Experimental Setup for Evaluation of BCI Systems**
Current/Next Steps

Benchmark Evaluation of BCI-Robotic Systems

- Simulated Robotic environment
- Compare performance of different BCI Modalities
- SSVEP versus Eye-Tracking
- Hybridize BCI Modalities (SSVEP + fNIRS)

BCI Robot Learning

- Interactive Robot Learning using BCI
Questions? Happy Thanksgiving!