
Robot Localization: Historical Context

• Initially, roboticists thought the world could be modeled exactly

• Path planning and control assumed perfect, exact, deterministic world

• Reactive robotics (behavior based, ala bug algorithms) were developed
due to imperfect world models

• But Reactive robotics assumes accurate control and sensing to react –
also not realistic

• Reality: imperfect world models, imperfect control, imperfect sensing

• Solution: Probabilistic approach, incorporating model, sensor and
control uncertainties into localization and planning

• Reality: these methods work empirically!

Map Learning and High Speed
Navigation in RHINO

Sebastian Thrun, Arno B¨ucken Wolfram
Burgard Dieter Fox,Thorsten Fr¨ohlinghaus
Daniel Hennig Thomas Hofmann Michael

Krell Timo Schmidt

An indoor mobile robot that uses sonar and
vision to map its environment in real-time

Case Study: Map Learning and High Speed Navigation in RHINO

• Distributed and decentralized processing. Control is distributed and decentralized. Several onboard
and offboard machines are dedicated to several subproblems of modeling and control. All
communication between modules is asynchronous. There is no central clock, and no central process
controls all other processes.

• Anytime algorithms. Anytime algorithms are able to make decisions regardless of the time spent for
computation. Whenever possible, anytime algorithms are employed to ensure that the robot
operates in realtime.

• Hybrid architecture. Fast, reactive mechanisms are integrated with computationally intense,
deliberative modules.

• Models. Models, such as the two dimensional maps described below, are used at all levels of the
architecture.

• Whenever possible, models are learned from data.

• Learning. Machine learning algorithms are employed to increase the flexibility and the robustness of
the system. Thus far, learning has proven most useful close to the sensory side of the system, where
algorithms such as artificial neural networks interpret the robot’s sensors.

• Modularity. The software is modular. A plug and play architecture allows us to quickly reconfigure
the system, depending on the particular configuration and application. Sensor fusion. Different
sensors have different perceptual characteristics. To maximize the robustness of the approach, most
of the techniques described here rely on more than just a single type of sensor.

Case Study: Map Learning and High Speed Navigation in RHINO

• Distributed and decentralized processing. Control is distributed and decentralized. Several onboard
and offboard machines are dedicated to several subproblems of modeling and control. All
communication between modules is asynchronous. There is no central clock, and no central process
controls all other processes.

• Anytime algorithms. Anytime algorithms are able to make decisions regardless of the time spent for
computation. Whenever possible, anytime algorithms are employed to ensure that the robot
operates in realtime.

• Hybrid architecture. Fast, reactive mechanisms are integrated with computationally intense,
deliberative modules.

• Models. Models, such as the two dimensional maps described below, are used at all levels of the
architecture.

• Whenever possible, models are learned from data.

• Learning. Machine learning algorithms are employed to increase the flexibility and the robustness of
the system. Thus far, learning has proven most useful close to the sensory side of the system, where
algorithms such as artificial neural networks interpret the robot’s sensors.

• Modularity. The software is modular. A plug and play architecture allows us to quickly reconfigure
the system, depending on the particular configuration and application. Sensor fusion. Different
sensors have different perceptual characteristics. To maximize the robustness of the approach, most
of the techniques described here rely on more than just a single type of sensor.

Requirements of a Map Representation for a Mobile Robot

• The precision of the map needs to match the precision with which the
robot needs to achieve its goals

• The precision and type of features mapped must match the precision
of the robot’s sensors

• The complexity of the map has direct impact on computational
complexity for localization, navigation and map updating

Mapping: Occupancy Grids
• 2D metric occupancy grids are used

• Each grid cell has probability of the cell being occupied, Prob(occ(x,y))

• Occupancy grid integrates multiple sensors (e.g. sonar and stereo)

Sonar Data Interpretation

• Need to translate sonar distances into occupancy values: Prob(occ(x,y))

• Method: Neural Net, trained on sonar responses

• RHINO uses a 360⁰ ring of sonars

• Input to net: 4 readings nearest (x,y) – encoded as polar coordinates

• Output: Prob(occ(x,y))

• Training data: train with physical robot on real known environments or use
robot simulator

• May need to train anew in different environments –wall textures etc.

• Key point: multiple spatial readings needed to overcome noise and sonar
effects

Sonar Sweeps
a Wide Cone	

•  Obstacle could be
anywhere on the arc
at distance D.	

•  The space closer than
D is likely to be free.	

Sonar scan Probabilistic Occupancy Grid

10

StereoStereo

scene pointscene point

focal pointfocal point

image planeimage plane

StereoStereo

Basic Principle: TriangulationBasic Principle: Triangulation
•• Gives reconstruction as intersection of two raysGives reconstruction as intersection of two rays
•• Requires Requires point correspondencepoint correspondence

11

Stereo CorrespondenceStereo Correspondence

Determine Pixel CorrespondenceDetermine Pixel Correspondence
•• Pairs of points that correspond to same scene pointPairs of points that correspond to same scene point

Epipolar Epipolar ConstraintConstraint
•• Reduces correspondence problem to 1D search along Reduces correspondence problem to 1D search along

conjugateconjugate epipolarepipolar lineslines

epipolarepipolar planeplane
epipolarepipolar linelineepipolarepipolar lineline

Stereo Matching AlgorithmsStereo Matching Algorithms

Match Pixels in ConjugateMatch Pixels in Conjugate EpipolarEpipolar LinesLines
•• Assume color of point does not changeAssume color of point does not change

•• PitfallsPitfalls
>> specularities specularities

>> lowlow--contrast regionscontrast regions

>> occlusionsocclusions

>> image errorimage error

>> camera calibration errorcamera calibration error

•• Numerous approachesNumerous approaches
>> dynamic programming [Baker 81,dynamic programming [Baker 81,OhtaOhta 85]85]

>> smoothness smoothness functionalsfunctionals

>> more images (more images (trinoculartrinocular, N, N--ocular) [ocular) [OkutomiOkutomi 93]93]

>> graph cuts [graph cuts [BoykovBoykov 00]00]

Stereo Data Interpretation

• Vertical edges (doorways, vertical corners, obstacles) are found in
each image and triangulated for 3D depth.

• 3D edge points are projected onto the occupancy grid after being
enlarged by the robot radius

• Enlargement allows robot to navigate without hitting corners

• Stereo can miss featureless, homogeneous areas like blank walls

• Integration with sonar can improve mapping accuracy

image Vertical edges

Vertical edge
projection

Occupancy
grid

Results from Stereo matching

Updating over time

• Mobile robot is moving and making multiple measurements at each
sensing time step

• Need to integrate the new values from the sensors with the current
occupancy grid values

• These are probabilistic measures, so a Bayes rule update is used to
find new probability of occupancy (more on this later….)

Integration results

Maps built in a single run (a) using only sonar sensors, (b) using only stereo information, and (c)
integrating both. Notice that sonar models the world more consistently, but misses the two sonar absorbing
Chairs which are found using stereo vision.

Topological Maps

• Compact representation, usually as a graph

• Nodes are distinct places, arcs (edges) represent adjacency

• Regions of free-space are nodes, and edges represent connections for
adjacency

• Method:
• Create Voronoi diagram
• Find critical points – bottlenecks or choke points in the Voronoi diagram
• Formally, a threshold epsilon for minimum distance to obstacle locally
• Find critical lines: partitions between regions at bottlenecks
• Partitions are used to form a graph. Nodes are regions, arcs are adjacent

regions separated by critical lines

Voronoi Path Planning
• Find paths that are not close to obstacles, but in fact as

far away as possible from obstacles.

• This will create a maximal safe path, in that we never

come closer to obstacles than we need.

• Voronoi Diagram in the plane. Let P = {p_i}, set of points

in the plane, called sites. Voronoi diagram is the sub-

division of the plane into N distinct cells, one for each site.

• Cell has property that a point q corresponds to a site p_i iff:
dist(q, p_i) < dist(q, p_j) for all p_j P, j i

Voronoi Graph

• Intuitively: Edges and vertices are intersections of

perpendicular bi-sectors of point-pairs

• Edges are equidistant from 2 points

• Vertices are equidistant from 3 points

• Online demo: http://alexbeutel.com/webgl/voronoi.html

http://alexbeutel.com/webgl/voronoi.html

Voronoi Path on Columbia Campus

To find a path:

Voronoi Path on Columbia Campus

To find a path:

• Create Voronoi graph - O(N log N) complexity in the plane

• Connect q_start, q goal to graph – local search

• Compute shortest path from q_start to q_goal (A* search)

Voronoi Path on Columbia Campus

To find a path:

• Create Voronoi graph - O(N log N) complexity in the plane

• Connect q_start, q_goal to graph – local search

• Compute shortest path from q_start to q_goal using A*

goalstart

Voronoi Diagram

Critical points

Regions
Topological map

Path Planning

• More on this later…for now suffice to use a graph search from a start
region on the map to a goal region.

TopBot:
Topological Mobile Robot

Localization Using Fast Vision
Techniques

Paul Blaer and Peter Allen

Dept. of Computer Science, Columbia University

{psb15, allen}@cs.columbia.edu

GPS

DGPS
Scanner

Network

Camera

PTU
Compass

Autonomous Vehicle for Exploration and

Navigation in Urban Environments

PC

Sonars

Current Localization

Methods:

• Odometry.

• Differential GPS.

• Vision.

The AVENUE Robot:

• Autonomous.

• Operates in outdoor

urban environments.

• Builds accurate 3-D

models.

Range Scanning Outdoor Structures

Italian House: Textured 3-D Model

Main Vision System

Georgiev and Allen ‘02

Topological Localization

• Odometry and GPS can fail.

• Fine vision techniques need an

estimate of the robot’s current

position.

--

Omnidirectional

Camera

Histogram Matching of Omnidirectional

Images:

• Fast.

• Rotationally-invariant.

• Finds the region of the robot.

• This region serves as a starting

estimate for the main vision system.

Related Work
• Omnidirectional Imaging for Navigation.

Ulrich and Nourbakhsh ’00 (with histogramming);

Cassinis et al. ’96; Winters et al. ’00.

• Topological Navigation.

Kuipers and Byun ’91;

Radhakrishnan and Nourbakhsh ’99.

• Other Approaches to Robot Localization.

Castellanos et al. ’98; Durrant-Whyte et al. ’99;

Leonard and Feder ’99; Thrun et al. ’98;

Dellaert et al. ’99; Simmons and Koenig ’95.

--

• AVENUE

Allen, Stamos, Georgiev, Gold, Blaer ’01.

Building the Database

• Divide the environment into a logical set of regions.

• Reference images must be taken in all of these regions.

• The images should be taken in a zig-zag pattern to cover

as many different locations as possible.

• Each image is reduced to three 256-bucket histograms,

for the red, green, and blue color bands.

An Image From the

Omnidirectional Camera

Masking the Image

• The camera points up to get a clear

picture of the buildings.

• The camera pointing down would

give images of the ground’s brick

pattern - not useful for histogramming.

• With the camera pointing up, the sun

and sky enter the picture and cause

major color variations.

• We mask out the center of the image to

block out most of the sky.

• We also mask out the superstructure

associated with the camera.

Environmental Effects

• Indoor environments

• Controlled lighting conditions

• No histogram adjustments

• Outdoor environments

• Large variations in lighting

• Use a histogram normalization with the percentage of color at each

pixel:

BGR

B

BGR

G

BGR

R

 , ,

Indoor Image

Non-Normalized Histogram

Outdoor Image

Normalized Histogram

Matching an Unknown Image with the

Database

• Compare unknown image to each image in the database.

• Initially we treat each band (r, g, b) separately.

• The difference between two histograms is the sum of the

absolute differences of each bucket.

• Better to sum the differences for all three bands into a single

metric than to treat each band separately.

• The region of the database image with the smallest

difference is the selected region for this unknown.

Image Matching to the Database

Image Database

Difference

Histogram

The Test Environments

Indoor

(Hallway View)

Outdoor

(Aerial View)

Outdoor

(Campus Map)

Indoor Results

Region
Images

Tested

Non-Normalized

% Correct

Normalized

% Correct

1 21 100% 95%

2 12 83% 92%

3 9 77% 89%

4 5 20% 20%

5 23 74% 91%

6 9 89% 78%

7 5 0% 20%

8 5 100% 40%

Total 89 78% 80%

Ambiguous Regions

South

Hallway

North

Hallway

Outdoor Results

Region
Images

Tested

Non-Normalized

% Correct

Normalized

% Correct

1 50 58% 95%

2 50 11% 39%

3 50 29% 71%

4 50 25% 62%

5 50 49% 55%

6 50 30% 57%

7 50 28% 61%

8 50 41% 78%

Total 400 34% 65%

The Best Candidate Regions

Correct Region,

Lowest Difference

Wrong Region,

Second-Lowest

Difference

Image Database

Difference

Histogram

Conclusions

• In 80% of the cases we were able to narrow down the robot’s

location to only 2 or 3 possible regions without any prior knowledge

of the robot’s position.

• Our goal was to reduce the number of possible models that the fine-

grained visual localization method needed to examine.

• Our method effectively quartered the number of regions that the

fine-grained method had to test.

Future Work

• What is needed is a fast
secondary discriminator to
distinguish between the 2 or
3 possible regions.

• Histograms are limited in
nature because of their total
reliance on the color of the
scene.

• To counter this we want to
incorporate more geometric
data into our database, such
as edge images.

