Perception II: Pinhole camera and Stereo Vision
Autonomous Mobile Robots

Davide Scaramuzza
Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart
Mobile Robot Control Scheme

- **Localization**
 - Map Building
 - Environment model
 - Local map

- **Information Extraction**
 - Sensing
 - Raw data

- **Path Planning**
 - Cognition
 - Mission commands
 - "position" global map

- **Path Execution**
 - Acting
 - Actuator commands
 - Path

- **Perception**
 - Real World Environment
 - See-think-act
 - Knowledge, data base

- **Motion Control**
 - See-think-act
 - Raw data

- **Real World Environment**
 - Mobile Robot Control Scheme
Computer vision | definition

- Automatic extraction of “meaningful” information from images and videos

Semantic information

Outdoor scene
City
European...

Geometric information

roof
tower
building
window
plant
car
door

ground

Outdoor scene
City
European...
Computer vision | applications

- 3D reconstruction and modeling
- Recognition
- Motion capture
- Augmented reality:
- Video games and tele-operation
- Robot navigation and automotive
- Medical imaging

Google Earth, Microsoft’s Bing Maps

Mars rover Spirit used cameras for visual odometry
The camera

Sony Cybershot WX1
The camera | image formation

- If we place a piece of film in front of an object, do we get a reasonable image?
The camera | image formation

- If we place a piece of film in front of an object, do we get a reasonable image?
- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening is known as the aperture
The camera | camera obscura (pinhole camera)

- Pinhole model:
 - Captures **beam of rays** – all rays through a single point
 - The point is called **Center of Projection** or **Optical Center**
 - An “inverted” image is formed on the **Image Plane**

- We will use the pinhole camera model to describe how the image is formed
Home-made pinhole camera

What can we do to reduce the blur?

www.debevec.org/Pinhole/
Shrinking the aperture

Why not make the aperture as small as possible?
Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through (must increase the exposure)
- Diffraction effects...
The camera | why use a lens?

- The ideal pinhole: only one ray of light reaches each point on the film
 - \implies image can be very dim; gives rise to diffraction effects
- Making the pinhole bigger (i.e. aperture) makes the image blurry
The camera | why use a lens?

- A lens focuses light onto the film
- Rays passing through the **optical center** are not deviated
The camera | why use a lens?

- A lens focuses light onto the film
- Rays passing through the **optical center** are not deviated
- All rays parallel to the **optical axis** converge at the **focal point**
The camera | pinhole approximation

- What happens if $z \gg f$?

![Diagram of camera pinhole approximation](image)

\[
\frac{h'}{h} = \frac{f}{z} \Rightarrow h' = \frac{f}{z} h
\]
Perspective effects

- Far away objects appear smaller
Perspective effects
Projective Geometry

What is lost?

- Length
- Angles
Projective Geometry

What is preserved?

- Straight lines are still straight
Vanishing points and lines

- Parallel lines in the world intersect in the image at a “vanishing point”

![Train tracks vanishing into the distance](image-url)
Vanishing points and lines

Vertical vanishing point (at infinity)

Vanishing point

Vanishing line
Perspective and art

- Use of correct perspective projection indicated in 1st century B.C. frescoes
- Skill resurfaces in Renaissance: artists develop systematic methods to determine perspective projection (around 1480-1515)
Playing with Perspective

- Perspective gives us very strong depth cues
 \(\Rightarrow \) hence we can perceive a 3D scene by viewing its 2D representation (i.e. image)
- An example where perception of 3D scenes is misleading:

 “Ames room”
 A clip from "The computer that ate Hollywood" documentary. Dr. Vilayanur S. Ramachandran.
Outline of this lecture

- Perspective camera model
- Lens distortion
- Camera calibration
 - DLT algorithm
1 Stereo Imaging: Camera Model and Perspective Transform

We typically use a pinhole camera model that maps points in a 3-D camera frame to a 2-D projected image frame. In figure 1, we have a 3D camera coordinate frame X_c, Y_c, Z_c with origin O_c, and an image coordinate frame X_i, Y_i, Z_i with origin O_i. The focal length is f. Using similar triangles, we can relate image plane and world space coordinates. We have a 3D point $P = (X, Y, Z)$ which projects onto the image plane at $P' = (x, y, f)$. O_c is the origin of the camera coordinate system, known as the center of projection (COP) of the camera.

Using similar triangles, we can write down the following relationships:

\[
\frac{X}{x} = \frac{Z}{f} ; \quad \frac{Y}{y} = \frac{Z}{f} ; \quad x = f \cdot \frac{X}{Z} ; \quad y = f \cdot \frac{Y}{Z}
\]

If $f = 1$, note that perspective projection is just scaling a world coordinate by its Z value. Also note that all 3D points along a line from the COP through a designated position (x, y) on the image plane will have the same image plane coordinates.
We can also describe perspective projection by the matrix equation:

\[
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix} \triangleq \begin{bmatrix}
 s \cdot x \\
 s \cdot y \\
 s
\end{bmatrix} = \begin{bmatrix}
 f & 0 & 0 & 0 \\
 0 & f & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix} \cdot \begin{bmatrix}
 X \\
 Y \\
 Z \\
 1
\end{bmatrix}
\]

where \(s \) is a scaling factor and \([x, y, 1]^T\) are the projected coordinates in the image plane.

We can generate image space coordinates from the projected camera space coordinates. These are the actual pixels values that you use in image processing. Pixels values \((u, v)\) are derived by scaling the camera image plane coordinates in the \(x\) and \(y\) directions (for example, converting \(\text{mm}\) to \(\text{pixels}\)), and adding a translation to the origin of the image space plane. We can call these scale factors \(D_x\) and \(D_y\), and the translation to the origin of the image plane as \((u_0, v_0)\).

If the pixel coordinates of a projected point \((x, y)\) are \((u, v)\) then we can write:

\[
\frac{x}{D_x} = u - u_0; \quad \frac{y}{D_y} = v - v_0;
\]

\[
u = u_0 + \frac{x}{D_x}; \quad v = v_0 + \frac{y}{D_y}
\]

where \(D_x, D_y\) are the physical dimensions of a pixel and \((u_0, v_0)\) is the origin of the pixel coordinate system. \(\frac{x}{D_x}\) and \(\frac{y}{D_y}\) are simply the number of pixels, and we center them at the pixel coordinate origin. We can also put this into matrix form as:

\[
\begin{bmatrix}
 s \cdot u \\
 s \cdot v \\
 s
\end{bmatrix} = \begin{bmatrix}
 \frac{1}{D_x} & 0 & u_0 \\
 0 & \frac{1}{D_y} & v_0 \\
 0 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
 s \cdot x \\
 s \cdot y \\
 s
\end{bmatrix}
\]

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} \triangleq \begin{bmatrix}
 s \cdot u \\
 s \cdot v \\
 s
\end{bmatrix} = \begin{bmatrix}
 \frac{1}{D_x} & 0 & u_0 \\
 0 & \frac{1}{D_y} & v_0 \\
 0 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
 f & 0 & 0 & 0 \\
 0 & f & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix} \cdot \begin{bmatrix}
 X \\
 Y \\
 Z \\
 1
\end{bmatrix}
\]

\(P_{\text{image}} = T_{\text{image}} T_{\text{persp}} T_{\text{camera}} P_{\text{camera}}\)

In the above, we assumed that the point to be imaged was in the camera coordinate system. If the point is in a previously defined world coordinate system, then we also have to add in a standard \(4 \times 4\) transform to express the world coordinate point in camera coordinates:
Summing all this up, we can see that we need to find the following information to transform an arbitrary 3D world point to a designated pixel in a computer image:

- 6 parameters that relate the 3D world point to the 3D camera coordinate system (standard 3 translation and 3 rotation): \((R, T)\)
- Focal Length of the camera: \(f\)
- Scaling factors in the x and y directions on the image plane: \((D_x, D_y)\)
- Translation to the origin of the image plane: \((u_0, v_0)\).

This is 11 parameters in all. We can break these parameters down into **Extrinsic** parameters which are the 6-DOF transform between the camera coordinate system and the world coordinate system, and the **Intrinsic** parameters which are unique to the actual camera being used, and include the focal length, scaling factors, and location of the origin of the pixel coordinate system.

2 Camera Calibration

Camera calibration is used to find the mapping from 3D to 2D image space coordinates. There are 2 approaches:

- **Method I:** Find both extrinsic and intrinsic parameters of the camera system. However, this can be difficult to do. The intrinsic parameters of the camera may be unknown (i.e. focal length, pixel dimension) and the 6-DOF transform also may be difficult to calculate directly.

- **Method 2:** An easier method is the “Lumped” transform. Rather than finding individual parameters, we find a composite matrix that relates 3D to 2D. Given the equation below:

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} =
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \frac{1}{D_x} & 0 & u_0 \\
 0 & \frac{1}{D_y} & v_0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 f & 0 & 0 & 0 \\
 0 & f & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 r_{11} & r_{12} & r_{13} & t_x \\
 r_{21} & r_{22} & r_{23} & t_y \\
 r_{31} & r_{32} & r_{33} & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 wX \\
 wY \\
 wZ \\
 1
\end{bmatrix}
\]

we can lump the 3 \(T\) matrices into a 3x4 calibration matrix \(C\):

\[
P_{\text{image}} = C P_{\text{world}}
\]

\[
C = \begin{bmatrix}
 r_{11} & r_{12} & r_{13} & t_x \\
 r_{21} & r_{22} & r_{23} & t_y \\
 r_{31} & r_{32} & r_{33} & t_z
\end{bmatrix}
\]
• C is a single 3×4 transform that we can calculate empirically.

\[
\begin{bmatrix}
\begin{array}{c}
3 \times 4 \\
C
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
3 \times 1 \\
\begin{array}{c}
x \\
y \\
z \\
1
\end{array}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
4 \times 1 \\
\begin{array}{c}
x \\
y \\
z \\
1
\end{array}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
2 \times 1 \\
\begin{array}{c}
u \\
v \\
w \\
1
\end{array}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
\text{3-D homo. vec} \\
\text{2-D homo. vec} \\
\text{Pixels}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
\text{} \\
\text{where}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
u' \\
v' \\
w
\end{array}
\end{bmatrix}
\begin{bmatrix}
\text{} \\
\begin{array}{c}
\triangle
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
u \\
v \\
w
\end{array}
\end{bmatrix}
\end{array}
\end{bmatrix}
\]

• Multiplying out the equations, we get:

\[
c_{11}x + c_{12}y + c_{13}z + c_{14} = u
\]
\[
c_{21}x + c_{22}y + c_{23}z + c_{24} = v
\]
\[
c_{31}x + c_{32}y + c_{33}z + c_{34} = w
\]

• Substituting $u = u'w$ and $v = v'w$, we get:

1. $c_{11}x + c_{12}y + c_{13}z + c_{14} = u'(c_{31}x + c_{32}y + c_{33}z + c_{34})$
2. $c_{21}x + c_{22}y + c_{23}z + c_{24} = v'(c_{31}x + c_{32}y + c_{33}z + c_{34})$

• How to interpret 1 and 2:

1. If we know all the c_{ij} and x, y, z, we can find u', v'. This means that if we know calibration matrix C and a 3-D point, we can predict its image space coordinates.
2. If we know x, y, z, u', v', we can find c_{ij}. Each 5-tuple gives 2 equations in c_{ij}. This is the basis for empirically finding the calibration matrix C (more on this later).
3. If we know c_{ij}, u', v', we have 2 equations in x, y, z. They are the equations of 2 planes in 3-D. 2 planes form an intersection which is a line. These are the equations of the line emanating from the center of projection of the camera, through the image pixel location u', v', which contains point x, y, z.
We can set up a linear system to solve for c_{ij}: $AC = B$

$$
\begin{bmatrix}
 x_1 & y_1 & z_1 & 1 & 0 & 0 & 0 & 0 & -u'_1x & -u'_1y & -u'_1z \\
 0 & 0 & 0 & 0 & x_1 & y_1 & z_1 & 1 & -u'_2x & -u'_2y & -u'_2z \\
 x_2 & y_2 & z_2 & 1 & 0 & 0 & 0 & 0 & -u'_3x & -u'_3y & -u'_3z \\
 0 & 0 & 0 & 0 & x_2 & y_2 & z_2 & 1 & -v'_2x & -v'_2y & -v'_2z \\
\end{bmatrix}
\begin{bmatrix}
c_{11} \\
c_{12} \\
c_{13} \\
c_{14} \\
c_{21} \\
c_{22} \\
c_{23} \\
c_{24} \\
c_{31} \\
c_{32} \\
c_{33}
\end{bmatrix}
\begin{bmatrix}
u'_1 \\
v'_2 \\
v'_3 \\
v'_4 \\
u'_5 \\
u'_6 \\
u'_7 \\
u'_8 \\
u'_9 \\
u'_{10} \\
u'_{11}
\end{bmatrix}
= \begin{bmatrix}
u_1 \\
v_2 \\
v_3 \\
v_4 \\
v_5 \\
v_6 \\
v_7 \\
v_8 \\
v_9 \\
v_{10} \\
v_{11}
\end{bmatrix}
$$

We can assume $c_{34} = 1$

- Each set of points x, y, z, u', v' yields 2 equations in 11 unknowns (the c_{ij}’s).
- To solve for C, A needs to be invertible (square). We can overdetermine A and find a Least-Squares fit for C by using a pseudo-inverse solution.

If A is $N \times 11$, where $N > 11$,

$$AC = B$$
$$A^TAC = A^TB$$

$$C = \left((A^TA)^{-1} \right) A^TB$$

3 COMPUTATIONAL STEREO

Stereopsis is an identified human vision process. It is a passive, simple procedure that is robust to changes in lighting, scale, etc. Humans can fuse random dot stereograms that contain no high-level information about the objects in the fused images, yet they can infer depth from these stereograms. The procedure is:

- Camera-Modeling/Image-acquisition
- Feature extraction - identify edges, corners, regions etc.
- Matching/Correspondence - find same feature in both images
- Compute depth from matches - use calibration information to back project rays from each camera and intersect them (triangulation)
Interpolate surfaces - Matches are sparse, and constraints such as smoothness of surfaces are needed to “fill in” the depth between match points.

Camera Modeling: An important consideration in computational stereo is the setup of the cameras. The **baseline** between the camera centers determines the accuracy of the triangulation. Large baseline means more accuracy; however as the baseline gets larger, the same physical event in each image may not be found.

The cameras also have to be calibrated and registered. Calibration is relatively straightforward, and a variety of methods exist. Some methods extend the simple least squares model we discussed to include non-linear effects of lens distortion (particularly true with short a focal length lens).

Registration is needed to make use of the epipolar constraint. This constraint consists of a plane that includes both camera’s optical centers and a point in 3-D space. This **epipolar plane** intersects both image planes in a straight line.

Feature Extraction: Identifying features in each image that can be matched is an important part of the stereo process. It serves 2 purposes: 1) data reduction so we are not forced to deal with every single pixel as a potential match, and 2) stability - features are seen to be more stable than a single gray level pixel.

There are 2 approaches: feature-based methods which find primitives such as edges, corners, lines, arcs in each image and match them; and area-based methods that identify regions or areas of pixels that can be matched using correlation based methods. Sometimes both methods are used, with feature-based methods proposing a match and area-based methods centered on the feature used to verify it.

Correspondence: The heart of the stereo problem is a search procedure. Given a pixel in image 1, it can potentially match each of N^2 pixels in the other image. To cut down this search space, cameras are often registered along scan lines. This means that the epipolar plane intersects each image plane along the same scan line. A pixel in image 1 can now potentially match only a pixel along the corresponding scan line in image 2, reducing the search from $O(N^2)$ to $O(N)$. The match criteria can include not only the location of a feature like an edge, but also the edge direction and polarity.

Problems in Matching: A number of problems occur during matching to create false matches: These are occlusions, periodic features such as texture, homogeneous regions without features, baseline separation errors, and misregistered images. Stereo can usually only provide sparse 3-D data at easily identified feature points.
The camera | perspective camera

- For convenience, the image plane is usually represented in front of C such that the image preserves the same orientation (i.e. not flipped)

- A camera does not measure distances but angles!

\[Z_c = \text{optical axis} \]

\[O = \text{principal point} \]

\[C = \text{optical center} = \text{center of the lens} \]
Perspective projection from scene points to pixels

- The Camera point $\mathbf{p}_c = (X_c, 0, Z_c)^T$ projects to $\mathbf{p} = (x, y)$ onto the image plane.

- From similar triangles:

 $$\frac{x}{f} = \frac{X_c}{Z_c} \Rightarrow x = \frac{fX_c}{Z_c}$$

- Similarly, in the general case:

 $$\frac{y}{f} = \frac{Y_c}{Z_c} \Rightarrow y = \frac{fY_c}{Z_c}$$
Perspective projection from scene points to pixels

- To convert \(p \), from the local image plane coordinates \((x, y)\) to the pixel coordinates \((u, v)\), we need to account for:
 - The pixel coordinates of the camera optical center \(O = (u_0, v_0) \)
 - Scale factor \(k \) for the pixel-size

\[
\begin{align*}
 u &= u_0 + kx \Rightarrow u_0 + k \frac{fx_c}{z_c} \\
 v &= v_0 + ky \Rightarrow v_0 + k \frac{fy_c}{z_c}
\end{align*}
\]

- Use Homogeneous Coordinates for linear mapping from 3D to 2D, by introducing an extra element (scale):

\[
p = \begin{pmatrix} u \\ v \end{pmatrix} \quad \tilde{p} = \begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{pmatrix} = \lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}
\]
Perspective projection from scene points to pixels

\[u = u_0 + kx \Rightarrow u_0 + k\frac{fx_c}{z_c} \]
\[v = v_0 + ky \Rightarrow v_0 + k\frac{fy_c}{z_c} \]

- Expressed in matrix form and homogeneous coordinates:
 \[
 \begin{bmatrix}
 \lambda u \\
 \lambda v \\
 \lambda
 \end{bmatrix} =
 \begin{bmatrix}
 kf & 0 & u_0 \\
 0 & kf & v_0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 X_c \\
 Y_c \\
 Z_c
 \end{bmatrix}
 \]

- Or alternatively
 \[
 \begin{bmatrix}
 \lambda u \\
 \lambda v \\
 \lambda
 \end{bmatrix} =
 \begin{bmatrix}
 \alpha & 0 & u_0 \\
 0 & \alpha & v_0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 X_c \\
 Y_c \\
 Z_c
 \end{bmatrix} =
 \begin{bmatrix}
 X_c \\
 Y_c \\
 Z_c
 \end{bmatrix}
 \]

Focal length in pixels
Intrinsic parameters matrix
Perspective projection from scene points to pixels

\[
\begin{bmatrix}
X_c \\
Y_c \\
Z_c
\end{bmatrix} =
\begin{bmatrix}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{bmatrix}
\begin{bmatrix}
X_w \\
Y_w \\
Z_w
\end{bmatrix} +
\begin{bmatrix}
t_1 \\
t_2 \\
t_3
\end{bmatrix} =
\begin{bmatrix}
R & T
\end{bmatrix}
\begin{bmatrix}
X_w \\
Y_w \\
Z_w \\
1
\end{bmatrix}
\]

\[
\lambda \begin{bmatrix}
u \\
v \\
1
\end{bmatrix} = K \begin{bmatrix}
X_c \\
Y_c \\
Z_c
\end{bmatrix}
\]

Perspective Projection Matrix

\[
\lambda \begin{bmatrix}
u \\
v \\
1
\end{bmatrix} = K[R|T] \begin{bmatrix}
X_w \\
Y_w \\
Z_w \\
1
\end{bmatrix}
\]

Extrinsic Parameters
Outline of this lecture

- Perspective camera model
- Lens distortion
- Camera calibration
 - DLT algorithm
- Stereo vision
Perspective projection | radial distortion

No distortion | Barrel distortion | Pincushion
The standard model of radial distortion is a transformation from the ideal coordinates \((u, v)\) (i.e., undistorted) to the real observable coordinates (distorted) \((u_d, v_d)\).

The amount of distortion of the coordinates of the observed image is a nonlinear function of their radial distance. For most lenses, a simple quadratic model of distortion produces good results:

\[
\begin{bmatrix}
u_d \\
v_d
\end{bmatrix} = \left(1 + k_1 r^2\right) \begin{bmatrix}u - u_0 \\v - v_0 \end{bmatrix} + \begin{bmatrix}u_0 \\v_0 \end{bmatrix}
\]

where

\[
r^2 = (u - u_0)^2 + (v - v_0)^2
\]
Summary: Perspective projection equations

• To recap, a 3D world point $P = (X_w, Y_w, Z_w)$ projects into the image point $p = (u, v)$

$$\lambda p = \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} R & T \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \quad \text{where} \quad K = \begin{bmatrix} \alpha & 0 & u_0 \\ 0 & \alpha & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

and λ is the depth ($\lambda = Z_w$) of the scene point

• If we want to take into account for the radial distortion, then the distorted coordinates (u_d, v_d) (in pixels) can be obtained as

$$\begin{bmatrix} u_d \\ v_d \end{bmatrix} = (1 + k_1 r^2) \begin{bmatrix} u - u_0 \\ v - v_0 \end{bmatrix} + \begin{bmatrix} u_0 \\ v_0 \end{bmatrix}$$

where $r^2 = (u - u_0)^2 + (v - v_0)^2$
Outline of this lecture

- Perspective camera model
- Lens distortion
- Camera calibration
 - DLT algorithm
- Stereo vision
Camera Calibration

- Procedure to determine the *intrinsic parameters* of a camera
Camera Calibration

- Use camera model to interpret the projection from world to image plane

- Using known correspondences of $p \leftrightarrow P$, we can compute the unknown parameters K, R, T by applying the perspective projection equation

- … so associate known, physical distances in the world to pixel-distances in image

![Projection Matrix](image)

$$
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix} =
K
R
T
\begin{bmatrix}
w \\
w \\
w \\
w
\end{bmatrix}
$$
Camera Calibration (Direct Linear Transform (DLT) algorithm)

- We know that: \[\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K[R|T] \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \]

- So there are 11 values to estimate: (the overall scale doesn’t matter, so e.g. \(m_{34} \) could be set to 1)

- Each observed point gives us a pair of equations:

\[
\begin{align*}
u_i &= \frac{\lambda u_i}{\lambda} = \frac{m_{11}X_i + m_{12}Y_i + m_{13}Z_i + m_{14}}{m_{31} + m_{32} + m_{33} + m_{34}} \\
v_i &= \frac{\lambda v_i}{\lambda} = \frac{m_{21}X_i + m_{22}Y_i + m_{23}Z_i + m_{24}}{m_{31} + m_{32} + m_{33} + m_{34}}
\end{align*}
\]

- To estimate 11 unknowns, we need at least 6 points to calibrate the camera ⇒ solved using linear least squares
Camera Calibration (Direct Linear Transform (DLT) algorithm)

\[
\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} = K[R | T] \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}
\]

- **what we obtained**: the 3x4 projection matrix,
- **what we need**: its decomposition into the camera calibration matrix \(K \), and the rotation \(R \) and position \(T \) of the camera.

- Use QR factorization to decompose the 3x3 submatrix \((m_{11:33})\) into the product of an upper triangular matrix \(K \) and a rotation matrix \(R \) (orthogonal matrix)

- The translation \(T \) can subsequently be obtained by:

\[
T = K^{-1} \begin{bmatrix} m_{14} \\ m_{24} \\ m_{34} \end{bmatrix}
\]
In this case, the camera has been pre-calibrated (i.e., K is known). Can you think of how the DLT algorithm could be modified so that only R and T need to determined and not K?
Outline of this lecture

- Perspective camera model
- Lens distortion
- Camera calibration
 - DLT algorithm
- Stereo vision
Stereo Vision versus Structure from Motion

- **Stereo vision:**
 is the process of obtaining **depth information** from a pair of images coming from two cameras that look at the same scene from different but **known** positions.

- **Structure from Motion:**
 is the process of obtaining **depth and motion information** from a pair of images coming from the same camera that looks at the same scene from different positions.
Depth from Stereo

- From a single camera, we can only deduce the ray on which each image point lies.
- With a stereo camera (binocular), we can solve for the intersection of the rays and recover the 3D structure.
The “human” binocular system

- **Stereopsys**: the brain allows us to see the left and right retinal images as a single 3D image
- The images project on our retina up-side-down but our brains lets us perceive them as «straight». Radial disotion is also removed. This process is called «rectification»
The “human” binocular system

- **Stereopsys**: the brain allows us to see the left and right retinal images as a single 3D image.
- The images project on our retina up-side-down but our brains lets us perceive them as «straight». Radial disotion is also removed. This process is called «**rectification**»

Make a simple test:
1. Fix an object
2. Open and close alternatively the left and right eyes.
 - The horizontal displacement is called **disparity**
 - The smaller the disparity, the farther the object
The “human” binocular system

- **Stereopsys**: the brain allows us to see the left and right retinal images as a single 3D image.
- The images project on our retina up-side-down but our brains let us perceive them as «straight». Radial disortion is also removed. This process is called «**rectification**».

Make a simple test:
1. Fix an object
2. Open and close alternatively the left and right eyes.
 - The horizontal displacement is called **disparity**
 - The smaller the disparity, the farther the object
Stereo Vision | simplified case

- An ideal, simplified case assumes that both cameras are **identical** and **aligned** with the x-axis.
- Can we find an expression for the depth Z_P of point P_W?
- From similar triangles:
 \[
 \frac{f}{Z_P} = \frac{u_l}{X_P} \quad \text{and} \quad \frac{f}{Z_P} = \frac{-u_r}{b-X_P}
 \]
 \[
 Z_P = \frac{bf}{u_l - u_r}
 \]

- **Disparity** is the difference in image location of the projection of a 3D point in two image planes.
- **Baseline** is the distance between the two cameras.
Stereo Vision - The simplified case

- The simplified case is an ideal case. It assumes that both cameras are identical and are aligned on a horizontal axis.

From Similar Triangles:

\[
\frac{f}{z_p} = \frac{u_l}{X_p}
\]

\[
\frac{f}{z_p} = \frac{u_r}{b - X_p}
\]

\[
z_p = \frac{bf}{u_l - u_r}
\]

Disparity

difference in image location of the projection of a 3D point in two image planes.

Baseline
distance between the optical centers of the two cameras.
Stereo Vision facts

\[Z_P = \frac{bf}{u_l - u_r} \]

1. Depth is inversely proportional to disparity \((u_l - u_r)\)
 - Foreground objects have bigger disparity than background objects

2. Disparity is proportional to stereo-baseline \(b\)
 - The smaller the baseline \(b\) the more uncertain our estimate of depth
 - However, as \(b\) is increased, some objects may appear in one camera, but not in the other (remember both cameras have parallel optical axes)

3. The projections of a single 3D point onto the left and the right stereo images are called ‘correspondence pair’
Stereo Vision | general case

- Two identical cameras do not exist in nature!
- Aligning both cameras on a horizontal axis is very difficult
- In order to use a stereo camera, we need to know the intrinsic extrinsic parameters of each camera, that is, the relative pose between the cameras (rotation, translation) \(\Rightarrow \) We can solve for this through camera calibration
To estimate the 3D position of P_W we can construct the system of equations of the left and right camera

Triangulation is the problem of determining the 3D position of a point given a set of corresponding image locations and known camera poses.
Correspondence Search | the problem

- **Goal:** identify corresponding points in the left and right images, which are the reprojection of the same 3D scene point
 - Typical similarity measures: Normalized Cross-Correlation (NCC), Sum of Squared Differences (SSD), Sum of Absolute Differences (SAD), Census Transform
 - Exhaustive image search can be computationally very expensive! Can we make the correspondence search in 1D?
Correspondence Problem

- **Exhaustive** image search can be computationally very expensive!
- Can we make the correspondence search in 1D?
- Potential matches for p have to lie on the corresponding epipolar line l'
 - The **epipolar line** is the projection of the infinite ray $\pi^{-1}(p)$ corresponding to p in the other camera image.
 - The **epipole** e' is the projection of the optical center in in the other camera image.

\[\pi^{-1}(p) = \lambda K^{-1}p \]
Correspondence Search | the epipolar constraint

- The epipolar plane is defined by the image point p and the optical centers.
- Impose the epipolar constraint to aid matching: search for a correspondence along the epipolar line.
Thanks to the epipolar constraint, corresponding points can be searched for, along epipolar lines → computational cost reduced to 1 dimension!
Example: converging cameras

- **Remember**: all the epipolar lines intersect at the epipole
- As the position of the 3D point varies, the epipolar lines “rotate” about the baseline

![Diagram showing epipolar lines and a 3D point](image)
Example: horizontally aligned cameras
Example: forward motion (parallel to the optical axis)

- Epipole has the **same coordinates** in both images
- Points move along lines radiating from e: “Focus of expansion”
Stereo Rectification

• Even in commercial stereo cameras the left and right image are never perfectly aligned
• In practice, it is convenient if image scanlines are the epipolar lines
• Stereo rectification warps the left and right images into new “rectified” images, whose epipolar lines are aligned to the baseline
Stereo Rectification

- Reprojects image planes onto a common plane parallel to the baseline
- It works by computing two homographies (image warping), one for each input image reprojection

- As a result, the new epipolar lines are horizontal and the scanlines of the left and right image are aligned
Epipolar Rectification - Example

- First, remove radial distortion
Epipolar Rectification - Example

- First, remove radial distortion
- Then, compute homographies (warping) and rectify
Stereo Rectification: example
Stereo Vision | disparity map

- The disparity map holds the disparity value at every pixel:
 - Identify correspondent points of all image pixels in the original images
 - Compute the disparity \((u_l - u_r)\) for each pair of correspondences
- Usually visualized in gray-scale images
- Close objects experience bigger disparity; thus, they appear brighter in disparity map
Stereo Vision | disparity map

- The disparity map holds the disparity value at every pixel:
 - Identify correspondent points of all image pixels in the original images
 - Compute the disparity \((u_l - u_r)\) for each pair of correspondences
- Usually visualized in gray-scale images
- Close objects experience bigger disparity; thus, they appear brighter in disparity map
- From the disparity, we can compute the depth \(Z\) as:

\[
Z = \frac{bf}{u_l - u_r}
\]
Stereo Vision - summary

1. Stereo camera calibration \Rightarrow compute camera relative pose
2. Epipolar rectification \Rightarrow align images & epipolar lines
3. Search for correspondences
4. Output: compute stereo triangulation or disparity map
Correspondence problem

- Now that the left and right images are rectified, the correspondence search can be done along the same scanlines
Correspondence problem

- If we look at the intensity profiles of two corresponding scanlines, there is a clear correspondence between intensities but also noise and ambiguities.
Correspondence problem

- To average noise effects, use a window around the point of interest
- Neighborhood of corresponding points are similar in intensity patterns

Similarity measures:
- Zero-Normalized Cross-Correlation (ZNCC)
- Sum of Squared Differences (SSD),
- Sum of Squared Differences (SAD)
- Census Transform (Census descriptor plus Hamming distance)
Correlation-based window matching

left image band \((x)\)
right image band \((x')\)

cross correlation

disparity = \(x' - x\)
Correspondence Problems:
Textureless regions (the aperture problem)

Textureless regions are non-distinct; high ambiguity for matches.
Solution: increase window size
Effects of window size W

- Smaller window
 - More detail
 - More noise

- Larger window
 - Smoother disparity maps
 - Less detail
Failures of correspondence search

Textureless surfaces

Occlusions, repetition
How can we improve window-based matching?

- Beyond the epipolar constraint, there are “soft” constraints to help identify corresponding points
 - Uniqueness
 - Only one match in right image for every point in left image
 - Ordering
 - Points on same surface will be in same order in both views
 - Disparity gradient
 - Disparity changes smoothly between points on the same surface
Results with window search

Window-based matching

Ground truth

Data
Better methods exist...

For code, datasets, and comparisons all the algorithms: http://vision.middlebury.edu/stereo/
Sparse correspondence search

- Restrict search to sparse set of detected features
- Rather than pixel values (or lists of pixel values) use feature descriptor and an associated similarity metrics
- Still use epipolar geometry to narrow the search further
Template matching

- Find locations in an image that are similar to a template
- If we look at filters as templates, we can use correlation to detect these locations
Template matching

- Find locations in an image that are similar to a *template*
- If we look at filters as templates, we can use correlation to detect these locations
Similarity measures

- Sum of Squared Differences (SSD)
 \[
 SSD = \sum_{u=-k}^{k} \sum_{v=-k}^{k} (H(u, v) - F(u, v))^2
 \]

- Sum of Absolute Differences (SAD) (used in optical mice)
 \[
 SAD = \sum_{u=-k}^{k} \sum_{v=-k}^{k} |H(u, v) - F(u, v)|
 \]
Similarity measures

For slight invariance to intensity changes, the Zero-mean Normalized Cross Correlation (ZNCC) is widely used

\[
ZNCC = \frac{\sum_{u=-k}^{k} \sum_{v=-k}^{k} (H(u,v) - \mu_H)(F(u,v) - \mu_F)}{\sqrt{\sum_{u=-k}^{k} \sum_{v=-k}^{k} (H(u,v) - \mu_H)^2} \sqrt{\sum_{u=-k}^{k} \sum_{v=-k}^{k} (F(u,v) - \mu_F)^2}}
\]

\[
\begin{align*}
\mu_H &= \frac{\sum_{u=-k}^{k} \sum_{v=-k}^{k} H(u,v)}{(2N+1)^2} \\
\mu_F &= \frac{\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v)}{(2N+1)^2}
\end{align*}
\]
Correlation as an inner product

- Considering the filter H and the portion of the image F_x as vectors \Rightarrow their correlation is:

$$\langle H, F_x \rangle = \|H\| \|F_x\| \cos \theta$$

- In ZNCC we consider the unit vectors of H and F_x, hence we measure their similarity based on the angle θ. Alternatively, ZNCC maximizes $\cos \theta$.

$$\cos \theta = \frac{\langle H, F_x \rangle}{\|H\| \|F_x\|} = \frac{\sum_{u=-k}^{k} \sum_{v=-k}^{k} (H(u, v) - \mu_H)(F(u, v) - \mu_F)}{\sqrt{\sum_{u=-k}^{k} \sum_{v=-k}^{k} (H(u, v) - \mu_H)^2} \sqrt{\sum_{u=-k}^{k} \sum_{v=-k}^{k} (F(u, v) - \mu_F)^2}}$$
Choosing the Baseline

- What’s the optimal baseline?
 - **Too small:**
 - Large depth error
 - Can you quantify the error as a function of the disparity?
 - **Too large:**
 - Minimum measurable distance increases
 - Difficult search problem for close objects
Stereo Vision - summary

1. Stereo camera calibration \Rightarrow compute camera relative pose
2. Epipolar rectification \Rightarrow align images & epipolar lines
3. Search for correspondences
4. Output: compute stereo triangulation or disparity map
5. Consider how baseline & image resolution affect accuracy of depth estimates
SFM: Structure From Motion (watch video segment)

- Given image point correspondences, $x_i \leftrightarrow x'_i$, determine R and T
- Keep track of point trajectories over multiple views to reconstruct scene structure and motion
Multiple-view structure from motion

Image courtesy of Nader Salman
Multiple-view structure from motion

- Results of Structure from motion from user images from flickr.com

[Seitz, Szeliski ICCV 2009]