
Scientific EN. Fritsch
Applications Editor

An Algorithm for Planning
Collision-Free Paths
Among Polyhedral Obstacles
Tomfis Lozano-P6rez and Michael A. Wesley
IBM Thomas J. Watson Research Center

This paper describes a collision avoidance algorithm
for planning a safe path for a polyhedral object moving
among known polyhedral objects. The algorithm
transforms the obstacles so that they represent the locus
of forbidden positions for an arbitrary reference point
on the moving object. A trajectory of this reference point
which avoids all forbidden regions is free of collisions.
Trajectories are found by searching a network which
indicates, for each vertex in the transformed obstacles,
which other vertices can be reached safely.

Key Words and Phrases: path finding, collision-free
paths, polyhedral objects, polyhedral obstacles, graph
searching, growing objects

CR Categories: 3.15, 3.64, 3.66, 8.1

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Authors' present addresses: T. Lozano-P6rez, Artificial Intel-
ligence Laboratory, Massachusetts Institute of Technology, Cam-
bridge, MA 02139; M.A. Wesley, IBM Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, NY 10598.
© 1979 ACM 0001-0782/79/I000-0560 $00.75

560

1. Introduction

The problem of avoiding collisions when operating
on computer models of physical objects is central to
model-based manipulation systems. This paper describes
an algorithm for planning safe, that is collision-free,
paths for a polyhedral object among similarly described
obstacles. 1 The algorithm is required to:

(1) find safe paths that might involve going near ob-
stacles, and

(2) guarantee that these paths are short relative to a
prespecified distance metric.

The simplest collision avoidance algorithms fall into
the generate and test paradigm. A simple path from start
to goal, usually a straight line, is hypothesized and then
the path is tested for potential collisions. If collisions are
detected, a new path is proposed, possibly using informa-
tion about the detected collision to help hypothesize the
new path. This is repeated until no collisions are detected
along the path. Roughly, the three steps in this type of
algorithm are:

(1) calculate the volume swept out by the moving ob-
ject along the proposed path,

(2) determine the overlap between the swept volume
and the obstacles, and

(3) propose a new path.

The second step, determining the overlap between the
swept volume and the obstacles, is also known as an in-
tersection or interference calculation [2, 3]. Current com-
puter modeling techniques employ large numbers of sim-
ple surfaces to model accurately even the most common
objects. It can be quite difficult to determine whether two
such models overlap. This general method, which we will
call the swept volume method, has a more fundamental
drawback. The problem is in the relationship between the
se.cond and third steps. Each proposed path provides
only local information about potential collisions, for ex-
ample, the shape of the intersections of the volumes in-
volved, or the identity of the obstacle giving rise to the
collision. This information suggests local path changes
but is not sufficient to determine when a radically differ-
ent path would be better. This lack of a global view can
result in an expensive search of the space of possible
paths with a very large upper bound on the worst case
length of the path.

A radical alternative to the swept volume method is
to compute explicitly the constraints on the position of
the moving object relative to the obstacles. The desired
trajectory is the shortest path which satisfies all the posi-
tion constraints. If the objects are modeled as collections
of convex polyhedra, the position constraints can be
stated in terms of the position of the vertices of the mov-

1 We will henceforth use the term "polyhedron" for closed
figures bounded by "flats" in two or three dimensions.

Communications October 1979
of Volume 22
the ACM Number 10

ing object relative to the planes of the obstacle surfaces.
The trajectory problem can then be posed as an optimi-
zation problem as in Ignat'yev [5]. The difficulty with
this formulation is that these position constraints, al-
though linear, do not all apply simultaneously. It is not
necessary for each point on the moving object to be out-
side all the planes of the obstacles; it is sufficient for each
point to be outside at least one of the planes of each ob-
stacle. This property makes traditional linear optimiza-
tion methods inapplicable.

The algorithm presented in this paper is closely re-
lated to the optimization approach. The constraints on
the position of an arbitrary reference point on the mov-
ing object are computed. Polyhedral obstacles in two or
three dimensions give rise to sets of polyhedral forbid-
den regions; that is, regions corresponding to positions
of the reference point where collisions would occur. This
transformation reduces the problem of finding a safe
path for the polyhedron to the simpler problem of find-
ing a safe path for a point. This last task is accomplished
by finding a path through a graph connecting vertices of
the forbidden regions.

The technique of computing the position constraints
on an object as constraints on a reference point is ex-
tremely powerful and has been applied independently to
different problems. It has been used by Udupa [9] for
planning safe paths for computer-controlled manipula-
tors, by Lozano-Perez [6] for identifying feasible grasp
points on an object, and by Adamowicz and Albano [1]
for two-dimensional template layout.

Udupa uses a simple "growing" transformation on
obstacles to compute approximations to the forbidden
regions for the three-dimensional reference point of a
three degree of freedom subset of a manipulator. The
system maintains a variable resolution description of the
legal positions of the reference point (the]ree space).
Safe paths for the subset manipulator are found by re-
cursively introducing intermediate goals into a straight
line path until the complete path is in free space. This
method has two drawbacks:

(1) Because the complete manipulator has more than
three degrees of freedom, the three-dimensional for-
bidden regions cannot model all the constraints on
the manipulator. When a trajectory fails, Udupa's
system makes a correction using manipulator-de-
pendent heuristics. The use of heuristics tends to
limit the performance of the algorithm in cluttered
spaces.

~ 2) The recursive path finder uses only local informa-
tion to determine a safe path and therefore suffers
from some of the same drawbacks as the swept vol-
ume method.

The algorithm presented in this paper uses a more
accurate growing operation to compute the forbidden
regions in both two and three dimensions. It introduces
a graph searching technique for path finding which pro-

duces optimum two-dimensional paths when only trans-
lations are involved. This technique is then generalized
to deal with three-dimensional obstacles and extended to
deal uniformly with more than three degrees of freedom.
The resulting algorithm no longer guarantees optimum
paths. This algorithm has been used to plan safe trajec-
tories for a seven degree of freedom manipulator. These
trajectories have been successfully executed.

A detailed survey of previous work in collision
avoidance, specifically in connection with computer-
controlled manipulators, can be found in Udupa [9].

The nature of the models used for the obstacles af-
fects the details of any collision avoidance algorithm.
For concreteness, the detailed discussions and examples
in this paper assume that all objects are modeled as sets
of, possibly overlapping, convex polyhedra. Any object
can be modeled to any desired degree of accuracy in this
fashion. A method for finding collision-free paths for a
single convex polyhedron among sets of convex poly-
hedra can be simply extended to plan safe paths for a
complex moving object among complex obstacles. The
extension involves finding the constraints due to each of
the convex components of the moving object relative to
each of the components of all obstacles. The constraints
for the composite moving object are the union of the con-
straints on its components.

The collision avoidance algorithm is defined for three
dimensions. However, the presentation is easier to follow
in two dimensions; for clarity the next sections first de-
velop the complete algorithm for the two-dimensional
case and then consider the extension to three dimensions.
Section 2 presents a simple form of the algorithm for the
case of a polygonal object translating in the plane among
polygonal obstacles. Section 3 considers the effect of al-
lowing the moving object to rotate as well as translate.
Section 4 deals with more complex moving objects with
more degrees of freedom. Section 5 discusses generaliza-
tion to three dimensions. Discussion of the two steps of
the algorithm that are directly affected by the choice of
modeling methodology is relegated to the appendices.
These steps will be functionally described in the body of
the paper.

2. Collision Avoidance on the Plane

Consider the problem, shown in Figure 1, of moving
a point object A from position S to position G while
avoiding the obstacles (shown shaded); the shortest col-
lision-free path from S to G is also shown. The important
property of this path is that it is composed of straight
lines joining the origin to the destination via a possibly
empty sequence of vertices of obstacles. In the case of
motion in the plane with arbitrary polygonal objects, the
shortest collision-free path connecting any two accessible
points always has this property.

The undirected graph VG(N, L) is defined: The node

561 Communications October 1979
of Volume 22
the ACM Number 10

Fig. 1. Fig. 3(a).

G
\ 5 / '

l i i i I

Fig. 2.

\I ', ', ', ', ', ', 1 ;Y"
i¢" / " t

Fig. 3(b) .

I I I I] -
I I I i l i [1%
I I I I I i [¥
I I I i I I

' v ' I I I I

\]111--/

set N is V u (S, G} where V is the set of all vertices of
obstacles and the Link set L is the set of all links (n~, nj)
such that a straight line connecting the ith element of N
to the jth does not overlap any obstacle. The graph
VG(N, L) is called the visibility graph (VGRAPH) of N
since connected vertices in the graph can see each other.
The VGRAPH is shown in Figure 1. The shortest colli-
sion-free path from S to G on the plane is the shortest
path in the VGRAPH from the node corresponding to S
to that corresponding to G when the euclidean metric is
used on the links. We will call this method for finding
collision-free paths for a point by finding the shortest
path in a visibility graph the VGRAPH algorithm. This
method was used for navigating SHAKEY [8], an early
robot vehicle, and is also described in some detail in
Ignat'yev [5].

The simplicity of the VGRAPH algorithm stems
from the fact that the moving object A is a point. This
is a good approximation for moving objects which are
small in relation to the obstacles, but causes problems
otherwise, lgnat'yev [5, p. 241] puts it as follows:

The robot begins to move from the point y0 (S in our example)
along the direction to the xla (a vertex). Here he must consider
his dimensions in order not to run into the obstacles and walls.

This paper shows how a more general form of the colli-
sion avoidance problem can be reduced to the VGRAPH

562

problem. In other words, it concerns how the robot
"must consider his dimensions."

A simple generalization of the problem in Figure 1 is
to make the moving object A a circle with nonnegligible
radius rA. The VGRAPH algorithm can be adapted to
this situation by moving the vertices away from the
obstacles so that they are at least ra away from all the
sides (Figure 2). Moving A so that its center point moves
through the new displaced vertices will still produce a
minimum distance, collision-free path. Notice, however,
that the path found is different from that in Figure 1.
This technique of displacing the vertices was also used
in SHAKEY [8].

The VGRAPH algorithm requires that the moving
object be a point; the obstacles then represent the for-
bidden regions for the position of that point. If the mov-
ing object is not a point, a new set of obstacles must be
computed which are the forbidden regions of some ref-
erence point on the moving object. These new obstacles
must describe the locus of positions of this reference
point which would cause a collision with any of the
original obstacles. The displaced vertices of Figure 2 are,
in fact, approximations to the vertices of these new ob-
stacles when the reference point is the center of A.

The operation of computing a new obstacle O' from
an original obstacle O and a moving object A will be
called growing 0 by A. This name reflects the fact that

Communications October 1979
of Volume 22
the ACM Number 10

the obstacles are being grown so that the moving object
can be shrunk to the reference point. The result of grow-
ing a set of obstacles by A will be indicated by GOS(A),
i.e., the Grown Obstacle Set of ,4. Note that the growing
operation is closely related to that of deriving the path of
a machine tool to cut out a part.

Consider the situation in Figure 3(a). The same ob-
stacles in Figures 1 and 2 are shown but the moving
object ,4 is now a rectangular solid. Figure 3(b) shows
the obstacles after they have been grown by ,4. It also
shows the shortest collision-free path for ,4's reference
point from S to G. This figure demonstrates how the
process of growing obstacles allows representing A as a
point. Notice that the boundary of the obstacle space is
treated as an obstacle and is also grown, thus avoiding
paths which involve moving outside the space.

The growing operation was defined as computing the
locus of positions of the moving object's reference point
that would cause a collision with a given obstacle. The
position of the moving object has been interpreted as its
(x, y) position, i.e., the grown obstacles are polygons in
(x, y) space. This is an arbitrary but natural choice. Dif-
ferent types of moving objects would call for different
choices. Figure 4(a) shows one such case in an (x, y) co-
ordinate system. The moving object `4 can rotate about a
fixed point and can change length. This defines a polar
coordinate system (r, o~). Figure 4(b) shows the region of
the (r, o~) space which is forbidden to the tip of ,4 by the
presence of the obstacle in Figure 4(a); an alternative
way of representing this region is shown in (x, y) coordi-
nates in Figure 4(c). The choice of representation de-
pends on:

(1) the ease of computing the forbidden regions, i.e.,
growing the obstacles, versus

(2) the ease of building the VGRAPH from the grown
obstacles.

The use of polyhedra as the basic unit of shape de-
scription influences our choice of obstacle representa-
tion. Polyhedra (polygons when on the plane) have
boundaries which are linear equations in the coordinate
variables. This property makes them computationally
attractive. In this section we have represented objects as
polygons in a planar cartesian coordinate system. The
natural choice is to express the grown obstacles in the
same space, thus making the growing operation a map-
ping from polyhedra to polyhedra. Notice that in Figure
4(b) the object O was interpreted as a polygon in (x, y)
space and the resulting grown obstacle O' in (r, o~) is not
a polygon in that space.

Another factor in the choice of obstacle representa-
tion is the shape of the path between two nodes in a
VGRAPH. A link connecting two nodes in the VGRAPH
implies that the path between the corresponding loca-
tions does not overlap any of the obstacles. Paths have
so far been shown as straight lines in cartesian space;
since the grown obstacles were in this coordinate space,
the use of straight lines simplifies the detection of over-

Fig. 4(a).

.~A~ ~ , '
• ~ • 117 i

\ " "

Fig. 4(b).

a,-%2

', ~ o'
I
I
I

Fig. 4(c).

/ / /

iii1 /
I I "%JU L~W

i I/ ¢/ ~/

,., . f S ' ~ ll 2

lap. Of course, paths could be more complicated curves
which are best expressed in different coordinate systems.
For example, the object in Figure 4 might move in
straight lines in the (r, a) system. In that case it might be
more efficient to use the polar form of the grown ob-
stacles in detecting overlap.

The choice of representation for the grown obstacles
depends on the geometric details of the application do-
main. The choice should be made so as to simplify the
overall computation. For the sake of simplicity the next
section will continue to assume that the grown obstacles
are polygons in (x, y) space.

563 Communications October 1979
of Volume 22
the ACM Number 10

Fig. 5. Fig. 6.

6

lllllll
lllllll

. l[

/

I [1 5

I I ¢

A B

(a,B)

ha III1-+

3. The Effect of Rotation

It is important to notice that the growing operation as
shown in Figures 2 and 3 is sensitive to the orientation of
A. This was not apparent in Figure 2 because the moving
object was a circle. The orientation dependence follows
from the fact that a grown obstacle is defined as the for-
bidden region for a reference point. The position of a
point on the plane can encode only two degrees of free-
dom, whereas differentiating the legality of two posi-
tions of A with different orientations requires at least
three degrees of freedom. Figure 5 shows that a different
orientation of A from that in Figure 3 will produce dif-
ferent grown obstacles and a different path. To make the
orientation explicit, we will denote the result of growing
all the obstacles with a moving object A, whose orienta-
tion parameter is the angle o~, GOS(A,). The set of ver-
tices of these grown obstacles will be called V,.

To summarize, any position of A at orientation ,~ for
which A's reference point is outside all the elements of
the grown obstacle set is free of collisions. The sides of
each obstacle in GOS(A,) are computed by tracing the
path of A's reference point around each of the original
objects while keeping A in contact with the obstacle. Be-
fore two objects collide they must first touch; therefore
any position of the reference point that would cause a
collision must be inside the obstacle, and any position
outside must be safe. Clearly this condition presupposes
that the orientation of A does not change.

Consider the problem of moving object A from po-
sition S with orientation o~ to G with a different orienta-
tion ft. A safe trajectory cannot be found by simply
computing a path that is free of collisions in GOS(A,)
and GOS(A~) since, in changing the orientation f rom a
to/3, A must pass through the whole range of intermedi-
ate orientations. One way to find a path requires knowing
what positions on the plane will allow the desired rota-
tion to take place. The algorithm can then plan a path
from the start to one of these positions, rotate to the
desired orientation, and move in that orientation to the
goal.

564

For a position to allow a change in orientation there
must be no overlap between the rotating object in any of
its intermediate orientations and any of the obstacles.
Figure 6 shows the area that A traverses in going from
orientation a to fl; this area may be approximated by
another polygon A t,. Ca shown rectangular for simplicity.
This new object, called an envelope, can be used to grow
a new obstacle set GOS(A t~, m), also shown in Figure 6,
which represents the forbidden regions for the reference
point of A in any of the orientations within the interval
[a,/3]. We will refer to this as a transition obstacle set.
By analogy to the vertex set V,, the set Vt,, ~ represents
the set of vertices of obstacles in the transition obstacle
set. In general we can associate with all the elements of
a vertex set an orientation interval (possibly singular) as
well as a position.

The problem in Figure 6 can now be solved by:

(1) finding a path starting with orientation a at S which
avoids the obstacles in G O S (A ,) and which ends at
a point clear of the obstacles in GOS (A t-, ~),

(2) rotating to orientation fl, and
(3) f inding a pa th to G avo id ing the obs tac les in

GOS(A~) .

This can be stated as a V G R A P H problem of finding the
shortest path from S to G in a visibility graph defined as
follows:

VG,~, t~ (N,, 6, L, , ~)

where

N.,~ = Vt~,~l U Vt~ ,~ U Vt~ ,61
V(~,.~ = V . u (S}
Vr~,~l = V~ U {G}
Vt-, ~1 defined as above

and

/_,~,, ~ = { (n . ns)}

n~ ~ Vta,~ and nj ~ Vtc, aj where a, b, c, d are either a or fl

Communications October 1979
of Volume 22
the ACM Number 10

such that the following visibility conditions hold on the
link:

(1) the orientation intervals [a, b] and [c, d] must not
be disjoint,

(2) n~ is outside all the obstacles in GOS(A Ea, ~j),
(3) nj is outside all the obstacles in GOS(A to. dl),
(4) the path from n~ to ni either:

(a) does not overlap any obstacle in GOS(A ta. ~1),
or

(b) does not overlap any obstacle in GOS(A [c, eI)-

A solution path in VG< ~ is a sequence of nodes start-
ing at S and ending at G:

S, n~, n 2 , . . . , nk, a

in which adjacent nodes are connected by a link in L~, ~.
Each n~ e Vt~, ~,1 is defined such that if n~ is outside all
obstacles in GOS(A E~. bl), then the reference point of the
moving object A can be at position nj in any orientation
within the interval [a, b] without danger of collisions. Fol-
lowing the link from ni to nj+~ means that the reference
point of A must make the corresponding translation.
Also, if nj and ni + 1 belong to different vertex sets, Via, ~1
and Vtc, ~1 respectively, then a change of orientation may
also be required. The conditions on L,, ~ require that the
orientation intervals corresponding to the endpoints of a
link must not be disjoint. This means that there is some
orientation x, such that if a _< b and c _< d then max(a, c)
< x < min(b, d), for which A can safely be at either node
of the link. Moving along the link requires first rotating
to the orientation x and then translating from the first
node to the second. Since the translation happens in an
orientation compatible with both nodes of the link, the
visibility conditions on the link require only checking for
overlap with the obstacles in the obstacle set of either one
of the nodes. Alternatively, if the path from n~ to nj+l is
outside all obstacles in both GOS(A t~, ~l) and GOS(A t~.. d~),
then the rotation may take place in conjunction with the
translation along the link.

The use of transition sets, e.g., GOS(A t-, ~]), has two
important drawbacks. The shortest solution path in
VG< ~ is no longer guaranteed to be an optimum solution
to the original problem, and failure to find a solution
path in the V G R A P H does not necessarily mean that no
safe trajectory exists. The reasons are twofold. The first
and most basic is that paths found in this V G R A P H will
change the orientation of the moving object only at loca-
tions where the full rotation can be performed. If the
optimum path involves traversing a narrow passage
where the orientation of A must be within a small sub-
range of the orientations between ,~ and/3, then this path
could not be a solution path in this version of the
V G R A P H algorithm. Secondly, even if the first problem
were avoided, the current formulation considers orienta-
tions only in the range [~, /3]; it could not negotiate a
passage where the moving object could only fit at an
orientation outside the specified range. The latter prob-
lem can be solved simply by expanding the orientation

Fig. 7.

I

\

A "; ' ' . \ [*,. 21 ",,

~l'(5,aO; ~2:(~2,az)

interval, but only at the expense of making the former
problem worse.

The two problems mentioned above can be alleviated
by replacing the single transition obstacle set, GOS
(A [(,, t~]), by the union of several other obstacle sets, each
generated with a smaller orientation interval for the mov-
ing object. In this fashion the range of legal orientations
can also be extended beyond the interval [a, /3]. As
the number of transition obstacle sets increases, the
V G R A P H becomes a better match to the original prob-
lem. Unfortunately, the computational burden also in-
creases rapidly. Each new obstacle set requires growing
all the obstacles with the moving object in a new con-
figuration, though the growing operation can be speeded
up by using approximations, as will be shown later. Also,
the added vertices from the extra obstacle sets make
searching the visibility graph much more time consum-
ing. Alternatively, it may be possible to derive auto-
matically transition sets to handle narrow passages spe-
cifically, and combine these with wider-range transition
sets.

4. More Degrees of Freedom

Transition obstacle sets can be used whenever the
moving object has more degrees of freedom than can be
represented by a point in the obstacle coordinate space.
The only requirement is that it be possible to compute
an envelope At, ' ~1 which is an object of the same type as
A, e.g., a polygon, such that any point inside an A=,
x < z _< y, is also inside A tx, ~J]. This object then can be
used in the growing operation to generate a transition
obstacle set. There are no other restrictions on the nature
of the parameter range Ix, y]; in particular, it need not be
an orientation range and both x and y may also be vec-
tors. A point outside all of the obstacles in GOS(A tx, yl)
indicates a position where each of A~'s configuration
parameters, z~, can safely take on values such that
x~ < z~ _< yi.

565 Communications October 1979
of Volume 22
the ACM Number 10

Figure 7 repeats the example of Figure 4 except that
now the moving object can translate in x and y as well as
rotate and change its length. The choice of a coordinate
system for the grown obstacles will also determine which
of the coordinate variables is to be used for the config-
uration parameters. For example, if the grown obstacles
are represented as polygons in (x, y), then (r, a) are con-
figuration parameters and vice-versa.

Configuration parameters can also be used to deal
with a moving object whose shape can change due to
changes in the relative positions of its components. The
object shown in Figure 8 is composed of two rectangles
that are free to rotate about a common point. The shape
of this object relative to a stationary obstacle can be
described by:

(1) the shape of its components,
(2) their relative displacements,
(3) the two angles 0 and O indicated in Figure 8.

In this example only the angles can change during a
motion; therefore the obstacle set for this moving object
must be parameterized by the value of both 0 and p. Gen-
erally the configuration parameters describe not only the
global orientation or position of the object but also the
relative positions of its components.

In general, objects need not be grown in the full di-
mensional configuration space; instead, repeated use is
made of operations on lower dimensional, partitioned,
configuration spaces which allows the growing operation
to work in a convenient subspace of the full configuration
space. The VGRAPH algorithm described in Sections 2
and 3 remains unchanged except that the scalar para-
meters and intervals are replaced by vector parameters
and intervals.

S. Collision Avoidance in Three Dimensions

The VGRAPH algorithm has so far been presented
as an algorithm for collision avoidance on the plane.
This section examines how three-dimensional obstacles
affect the algorithm. This generalization does not affect
the statement of the algorithm but does affect the details
of the obstacle growing and graph searching. These sub-
jects are discussed irt the appendices.

The generalization to three dimensions has an un-
fortunate side effect. The shortest path around a poly-
hedral obstacle does not in general traverse only vertices
of the polyhedron (Figure 9). That is, the shortest path in
a VGR AP H whose node set contains only vertices of the
grown obstacles is not guaranteed to be the shortest colli-
sion-free path. In general, the shortest path will involve
going via points on edges of the obstacles. Our approach
is to introduce additional vertices along edges of the
grown obstacles so that no edge is longer than a prespe-
cified maximum length. This method generally results in
a good approximation to the optimum path.

The use of three-dimensional obstacles also has a

Fig. 8.

Fig. 9.

significant effect on the execution time of the algorithm.
The three-dimensional growing operation is much more
time consuming than the corresponding operation in two
dimensions. Grown obstacles in three dimensions are
generally much more complex than the underlying ob-
jects (Appendix 1). The larger vertex sets also increase
the time necessary to search the visibility graph. These
effects make the use of approximations necessary for
practical applications.

A great saving can be realized by using the detailed
growing operation sparingly. Many application domains
have the property that the moving object need only be
close to obstacles at a small number of points along the
path. These care points usually include the start and goal
of the path. Elsewhere the requirements on the path are
less strict; in fact, it is often undesirable to move close to
the obstacles when away from the care points. This prop-
erty can easily be exploited in the V G RA P H algorithm;
instead of executing the detailed growing operation on
each of the known obstacles, it need only be executed on
those obstacles close to the care points. Away from the
care points drastic approximations can.safely be used.
Complex objects, built up from many polyhedra, can be
approximated by a single enclosing polyhedron. The
moving object can be similarly approximated so as to
further simplify the process. In addition, a very simple
form of the growing operation (Appendix 1) can be used

566 Communications October 1979
of Volume 22
the ACM Number I0

Fig. 10.

Fig. 11.

I
I

L ,

,,
i

P
I
I

I

I

L - I

4 1 - - - - - - I
I

O ' l I

I

rithm is to use heuristics in the graph search operation.
This is discussed briefly in Appendix 2 which deals with
searching the VGRAPH.

6. Summary and Discussion

This paper has shown how the simple visibility graph
algorithm used for navigation of SHAKEY [8] can be
extended to more general collision avoidance problems.
The mechanism necessary to achieve this involves grow-
ing the obstacles and shrinking the moving object to a
point. This approach has the desirable property of pro-
viding two subproblems, growing the obstacles and
searching a visibility graph, which can be pursued inde-
pendently. A description of our current approach to
these problems is included in the appendices.

The most important remaining problem with the
VGRAPH algorithm is the quantization of configuration
parameters into intervals. Paths that require almost con-
tinuous changes of orientation as well as position require
small quantization intervals, resulting in many transition
obstacle sets, and are therefore expensive to compute.

The VGRAPH algorithm as described in this paper
has been implemented in PL/1 on an IBM 370/168. It
has been used to plan collision-free trajectories for a
seven degree of freedom computer-controlled manipu-
lator [10]; these trajectories have been successfully exe-
cuted in the laboratory.

which, at the expense of accuracy, is faster and results in
simpler objects.

The key to using this approximation technique is an
effective way of determining which objects are close to
the care points. Clearly a care point is close to an object
if it is inside or close to one of the sides of the grown
obstacle resulting from it. This means that the moving
object when located at the care point is either inside or
close to a side of the object. Approximating both the
moving and the stationary objects will cause the care
point to be inside the grown obstacle. This condition can
be used as a criterion for careful growing. When the
moving object is large relative to the obstacles, approxi-
mating it as a single object results in detailed growing of
too many obstacles. The larger the moving object, the
worse a simple approximation is likely to be. In particu-
lar, some part of the moving object, relatively far from
the care point, will cause the grown obstacle to include
the care point. The solution is to have a hierarchic de-
composition of the moving object; that is, if the test fails
for the roughest description, then use a slightly better
approximation. In this way the source of potential colli-
sion can be better isolated. The other components of the
moving object which are not involved need not be con-
sidered carefully. Udupa [9] proposed a similar variable
level of detail approximation scheme.

Another way to increase the efficiency of the algo-

567

Appendix 1: Growing the Obstacles

This appendix describes the componen t of the
VGRAPH algorithm that computes from an obstacle de-
scription the shape of the forbidden regions for the posi-
tion of the moving object's reference point. This is called
growing the obstacle. The ideas will be developed in two
dimensions and then extended to their three-dimensional
counterparts. In the initial two-dimensional case the de-
grees of freedom used for growing will be the x and y
position of the moving object.

Consider growing a polygonal obstacle by a circular
solid as in Figure 10. The simplest growing algorithm
moves each of the sides of the original obstacle by a con-
stant amount ra and then intersects the lines to obtain
the vertices of the grown polygon. The drawbacks of this
algorithm are twofold:

(1) It works well only for moving objects that are
nearly circular.

(2) It generates wasted space near pointed corners, as
seen by the dark shaded regions in Figure 10. This
problem can be alleviated by clipping the corners
of the grown polygon.

This was the form of the growing algorithm used by
Udupa [9].

Communications October 1979
of Volume 22
the ACM Number 10

Fig. 12(a). Fig. 12(b).

P 2 PI
r , ,\ ~ -k

x

x ~V// \ \ v/I

C'.. S I D E i

'J I ;1 \
. . . . -, \

s ,oE j

A simple variation of this procedure will solve prob-
lem 1 above. Figure 11 shows a convex polygon O and a
moving object A; both are rectangular and both are
aligned with the global coordinate axes. R, the reference
point of A, coincides with one of the vertices of A. The
boundary of the forbidden region for the position of A is
the locus of positions of R for which A is in contact with
O. This locus defines another convex polygon O' shown
in Figure 11. Clearly any point inside this polygon im-
plies a collision between A and O. This grown polygon
has side nside~ corresponding to each side sidez of the
original obstacle. The distance from nside~ to side~ is the
perpendicular distance of R from side~ minus the perpen-
dicular distance to the point where A would first contact
sidez. The distance from sidez to this contact point on A
is the minimum perpendicular distance of all of the ver-
tices of A from side~. Once the sides are displaced by
this amount, the lines can be intersected to generate the
grown polygon.

This method only makes use of the distance from the
reference point to the contact point for a side. In poly-
gons with interior angles of less than a right angle the
method described above produces wasted space at the
vertices. This waste can be reduced by simply cutting the
corner at a conservative distance. A more accurate grow-
ing procedure can b~ obtained by determining the actual
locus of motion of R along each side~ as the contact
point slides along the side. Figure 12(a) shows the line
segments traced out by this procedure (bold lines). No-
tice that the line segments do not intersect and that the
endpoints of these line segments correspond to the posi-
tion of R when the contact point of A with O is at a
vertex of O. These positions will be referred to as maxi-
mal locus points.

To complete the figure, notice that the locus of R as
A moves from its contact point with side~ to its contact
point with the adjacent sides traces successive edges of A
between the two contact points on A. In the course of
connecting all the maximal locus points, all the edges of
A are traced out in reverse order (heavy dashed lines). A
simple algorithm for growing convex polygons exists

568

which is based on merging a list of displaced edges of O
with a reverse order list of displaced edges of A. To
simplify the geometry of the grown object, the locus of
R between successive contact points can be conserva-
tively estimated by a straight line c'~j which is parallel to
the line cu connecting the maximal locus points but dis-
placed to the position of the point on the actual locus
furthest from the line c~j as shown in Figure 12(b) .

The approximate method for growing a convex poly-
approach is to grow each face of the polyhedron inde-
pendently and then introduce new faces to complete the
grown polyhedron. The steps in the process of growing
a rectangular solid O with a rotated rectangular solid A
are shown in Figure 13. The locus of R as the contact
point of A moves along each edge of [ace~ is called the
maximal locus edge, Figure 13(a). Such edges define po-
tential new edges for the faces of the grown polyhedron.
Each edge of O generates two adjacent maximal loci.
These edges have to be connected in a manner analogous
to the way in which maximal locus points are connected
in a grown polygon, Figure 12(b). The edge has to be dis-
placed to compensate for points on A which are closer to
O than the plane defined by the two adjacent maximal
locus edges and passing through the corresponding con-
tact points. Faces are introduced to connect each pair of
edges of the grown faces arising from a common edge,
Figure 13(b). These new faces introduce new edges, each
of which connects two points on the grown faces arising
from a common vertex of A. All the edges corresponding
to a single vertex also define a new set of faces, Figure
13(c). The total number of faces in a polyhedron grown
from an object O in this fashion is equal to the sum of
the numbers of faces, edges, and vertices of O.

The operation of growing a polyhedron is related to
an operation known as mixing polyhedra [7]. A mixed
polyhedron is the set of points which can be expressed as
a linear combination of points from the two starting poly-
hedra. A polyhedron isomorphic to a grown obstacle can
be ob ta inedby mixing the underlying obstacle with a
nega t ive image of the mov ing ob jec t , as in con-
volution.

Communications October 1979
of Volume 22
the ACM Number 10

Fig. 13(a).

Fig. 13(b).

Fig. 13(c).

Appendix 2: Finding a Path

A generalized visibility graph VG(N, L) contains a
node set N and a link set Lsj of links between node pairs
(ni, nj) for which a visibility function l(n~, nj) is true. A
node is a representation of a region in an n-dimensional
parameter space; for each node the associated region is
represented by two n-dimensional parameter vectors 4,1
and q~z. Individual elements of the difference vector 8 q~ =
,~1 -- q~z will be zero when the corresponding parameter
has a fixed value, or nonzero when the parameter has a
range of values.

The path finding problem is defined as: Given a node
set N with an associated parameter vector set, a start
node ns, and a goal node n~, find a sequence of nodes
from n, to ng, by way of an ordered set of intermediate

nodes n l , . . . , nk, which may be null, such that the visi-
bility function for each node pair in sequence:

L1 = l(ns, nl)
L2 = l(nl, n2)

, . o

Zk+l ~- l(nk, ny)

is true, and that a cost function

C = ~c(n~, nj)

where c(n~, nj) >_ 0 is minimized.
A direct approach to finding an optimum path is to

enumerate all possible paths and choose one for which C
is minimum. For node sets whose cardinality is of prac-
tical interest (e.g., > 50) the computational load of the
direct approach is prohibitive, and more efficient heuris-
tic based search methods may be used.

The A* algorithm of Har t et al. [4] allows use of
efficient heuristic information. For each node, an esti-
mate hhat is made of the cost h to travel from the node to
the goal. Initially, n~ is placed on a list of candidate
nodes for examination (the OPEN list). At each step of
the algorithm, the node with minimum total path cost
estimate (i.e., actual cost of reaching the node along the
trial path plus hhat) is moved onto a CLOSE list and its
minimum cost estimate visible successor nodes are
placed on the OPEN list.

Har t et al. have shown that the A* algorithm finds an
optimum path when hhat is a lower bound estimate of the
true cost h. When the estimator for hhat is zero and some
c(ns, nj) --, =/= 0 n~, nj e N, the estimate gives no heuristic
information to assist in the choice of a path; as hhat---~h,
the heuristic information increases and the average num-
ber of unsuccessful trial paths is reduced. In the context
of this paper, the lower bound requirement for hhat, i.e.,
hhat <_ h, may be met by assuming l(n~, n,j) to be true and
computing hhat~ = c(n~, n~j).

The cost function c(ns, n j) may be tailored to suit the
requirements of a particular problem environment, for
example:

-d i s tance to be traveled in a subspace of the para-
meter space;

- funct ions of distances in parameter space, for ex-
ample, time to complete a change based on allow-
able rate of change of parameters, with the option
of selecting the limiting (i.e., slowest)dimension;

--special costs may be assigned to particular node
sequence pairs to allow, for example, costs to be
assigned depending on whether the pair allows the
motion to proceed without a speed change, as op-
posed to pairs requiring a change of speed or an
intermediate halt.

The form of the visibility function l(n~, n~) depends
on the semantics of the parameters. Two mutually ex-
clusive classes of parameters are considered as described
in Section 3 :

569 Communications October 1979
of Volume 22
the ACM Number 10

- those that may vary continuously, that is, those em-
bodied in the growing operation;

--those that may occupy only discrete ranges, that is,
those that are represented by transition obstacle
sets.

Note that this distinction between continuous and dis-
crete parameters is an artifact introduced to simplify the
handling of spaces of high dimensionality (i.e., n > 3)
and that the partitioning of the parameter set is not
unique: In general, either linear or rotary motions may
be represented by continuous or discrete ranges. In the
case of discrete range parameters, specific values must
be chosen to enable l and hhat to be evaluated. In all
cases of parameter change, a path function defines the
motion effect of the change, as either linear or nonlinear
motions in parameter space.

In the formalization for path planning described in
the body of this paper, an obstacle A is grown under
some parameter dependent transformation to produce
GOS(A~1, ,/,2) where (~1, ~2) represents a range of para-
meters. Three parameters represent continuous motion,
and the rest represent discrete motions. The visibility
function is line of sight in three-dimensional orthogonal
cartesian space, with the provision that visibility is pos-
sible only when the discrete parameter ranges at the
start and end of the path segment overlap, and values
assigned to these parameters are in the overlap region.

In many practical situations, the computational cost
of evaluating l is very much greater than that of evalu-
ating hhat for candidate successor nodes. In such cases
it is compfftationally efficient to select a candidate suc-
cessor node in terms of minimum hhat before comput-
ing I.

6. Lozano-P6rez, T. The design of a mechanical assembly
system. Rep. No. AI-TR-397, Artif. Intell. Lab., MIT,
Cambridge, Mass., Dec. 1976
7. Lyusternik, L.A. Convex Figures and Polyhedra. Dover
Publications, N.Y., 1963. (Translated from the Russian by
T.J. Smith; original copyright Moscow, 1956.)
8. Nilsson, N.J. A mobile automaton: An application of
artificial intelligence techniques. Proc. Int. Joint Conf. Artif.
Intell., 1969, pp. 509-520.
9. Udupa, S. Collision detection and avoidance in computer
controlled manipulators. Ph.D. Th., Calif. Inst. of Technology,
Pasadena, Calif., 1977.
10. Will, P.M., and Grossman, D.D. An experimental system for
computer controlled mechanical assembly. IEEE Trans. Comptrs.
(1975), 879-888.

Acknowledgments. We would like to thank P. Will
for providing the support, guidance, and encouragement
for this work. D. Grossman and L. Lieberman contribu-
ted useful discussions and criticism as well as program-
ming advice and assistance. Conversations with R. Taylor
triggered the development of the multiple obstacle set
approach.

Received June 1978; revised August 1979

References
1. Adamowicz, M., and Albano, A. Nesting two-dimensional
shapes in rectangular modules. Comptr. Aided Design 8, 1 (Jan.
1976), 27-33.
2. Boyse, J.W. Interference detection among solids and surfaces.
Comm. ACM. 22, 1 (Jan. 1979), 3-9.
3. Braid, I.C. Designing with Volumes. Cantab Press,
Cambridge, England, 1973.
4. Hart, P., Nilsson, N.J., and Raphael, B. A formal basis for
the heuristic determination of minimum cost paths. 1EEE Trans.
Syst. Sci. CybernetiesSSC-4, 2 (July 1968), 100-107.
5. Ignat'yev, M.B., Kulakov, F.M., and Pokrovskiy, A.M.
Robot manipulator control algorithms. Rep. No. JPRS 59717,
NTIS, Springfield, Va., Aug. 1973.

570 Communications October 1979
of Volume 22
the ACM Number 10

