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Introduction | probabilistic map-based localization
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 Map-based localization
 The robot estimates its position using perceived information and a map
 The map 
 might be known (localization) 
 Might be built in parallel (simultaneous localization and mapping – SLAM)

 Challenges
 Measurements and the map are inherently error prone
 Thus the robot has to deal with uncertain information
→ Probabilistic map-base localization

 Approach
 The robot estimates the belief state about its position 

through an ACT and SEE cycle

Localization | Introduction to Map-Based Localization 3

Localization | definition, challenges and approach

Where am I?
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 Robot is placed somewhere in the 
environment → location unknown

 SEE: The robot queries its sensors
→  finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors again
→  finds itself next to a pillar

 Belief updates (information fusion)

Localization | Introduction to Map-Based Localization 4

Concept | SEE and ACT to improve belief state
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 The robot moves and estimates its position through its proprioceptive sensors
 Wheel Encoder (Odometry)

 During this step, the robot’s state uncertainty grows

Localization | Introduction to Map-Based Localization 11

ACT | using motion model and its uncertainties
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 The robot makes an observation using its exteroceptive sensors
 This results in a second estimation of the current position

Localization | Introduction to Map-Based Localization 12

SEE | estimation of position based on perception and map
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 The robot corrects its position by combining its belief before the observation 
with the probability of making exactly that observation

 During this step, the robot’s state uncertainty shrinks

Localization | Introduction to Map-Based Localization 13

Belief update | fusion of prior belief with observation
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 Information (measurements)
is error prone (uncertain)
 Odometry
 Exteroceptive sensors (camera, laser, …)
 Map

→ Probabilistic map-based localization

Localization | Introduction to Map-Based Localization 14

Map-based localization | the estimation cycle (ACT-SEE)
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a) Continuous map with 
single hypothesis probability distribution ሺݔሻ

b) Continuous map with 
multiple hypotheses probability distribution ሺݔሻ

c) Discretized metric map (grid ݇) with 
probability distribution ሺ݇ሻ

d) Discretized topological map (nodes ݊) with 
probability distribution ሺ݊ሻ

Localization | Introduction to Map-Based Localization 15

Probabilistic localization | belief representation
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 SEE: The robot queries its sensors
→  finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors 
again →  finds itself next to a pillar 

 Belief update (information fusion)
Localization | Introduction to Map-Based Localization 16

Take home message | 
ACT - SEE Cycle for Localization
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 Mobile robot localization has to deal with error prone information
 Mathematically, error prone information (uncertainties) is best represented by 

random variables and probability theory

  ݔ ൌ ሺܺ ൌ ܺ probability that the random variable	ሻ:ݔ has value	ݔ .(is true	ݔ)
 ܺ: random variable
 .ܺ might assume	a specific value that:ݔ
 The Probability Density Functions (PDF) describes 

the relative likelihood for a random variable to take on 
a given value

 PDF example: The Gaussian distribution:

Localization | Refresher on Probability Theory

Probability theory | how to deal with uncertainty
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  ,ݔ ݕ : joint distribution representing the probability that the random variable 
ܺ takes on the value ݔ and that ܻ takes on the value ݕ
→ ݔ and ݕ	is true.

 If ܺ and ܻ are independent we can write:

Localization | Refresher on Probability Theory

Basic concepts of probability theory | joint distribution

 ,ݔ ݕ ൌ ሻݕሺሻݔሺ
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  ݔ ݕ : conditional probability that describes the probability that the random 
variable ܺ takes on the value ݔ	conditioned on the knowledge that ܻ for sure 
takes ݕ.

and if ܺ and ܻ are independent (uncorrelated) we can write:

Localization | Refresher on Probability Theory

Basic concepts of probability theory | conditional probability

 ݔ ݕ ൌ
,ݔሺ  ሻݕ
ሻݕሺ

 ݔ ݕ ൌ
 ݔ  ሻݕሺ
ሻݕሺ ൌ ሻݔሺ
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 The theorem of total probability (convolution) originates from the axioms of 
probability theory and is written as:

for discrete probabilities

for continuous probabilities

 This theorem is used by both Markov and Kalman-filter localization algorithms 
during the prediction update.

Localization | Refresher on Probability Theory

Basic concepts of probability theory | theorem of total probability

 ݔ ൌ ݔ ݕ  ݕ
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 The Bayes rule relates the conditional probability  ݔ ݕ to its inverse  ݕ ݔ .
 Under the condition that  ݕ  0, the Bayes rule is written as:

 ൌ ሻିଵݕሺ normalization factor ( ൌ 1ሻ

 This theorem is used by both Markov and Kalman-filter localization algorithms 
during the measurement update.

Localization | Refresher on Probability Theory

Basic concepts of probability theory | the Bayes rule
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 Probability theory is widely and very successfully used for mobile robot 
localization

 In the following lecture segments, its application to localization will be 
illustration
 Markov localization
 Discretized pose representation 

 Kalman filter
 Continuous pose representation and Gaussian error model

 Further reading:
 “Probabilistic Robotics,” Thrun, Fox, Burgard, MIT Press, 2005.
 “Introduction to Autonomous Mobile Robots”, Siegwart, Nourbakhsh, Scaramuzza, MIT Press 2011

Localization | Refresher on Probability Theory

Usage | application of probability theory to robot localization

7
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 Information (measurements)
is error prone (uncertain)
 Odometry
 Exteroceptive sensors (camera, laser, …)
 Map

→ Probabilistic map-based localization

Localization | the Markov Approach 2

Markov localization | applying probability theory to localization
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 Discretized pose representation ݔ௧ →  grid map

 Markov localization tracks the robot’s belief state ܾ݈݁ ௧ݔ using an arbitrary 
probability density function to represent the robot’s position

 Markov assumption: Formally, this means that the output of the estimation 
process is a function ݔ௧ only of the robot’s previous state ݔ௧ିଵ	and its most 
recent actions (odometry) ݑ௧ and perception .௧ݖ

 Markov localization addresses the global localization problem, the position 
tracking problem, and the kidnapped robot problem.

Localization | the Markov Approach 3

Markov localization | basics and assumption

 ௧ݔ ,ݔ ௧ݑ ,ݑ⋯ ௧ݖ ݖ⋯ ൌ  ௧ݔ ,௧ିଵݔ ,௧ݑ ௧ݖ
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 ACT | probabilistic estimation of the robot’s new belief state ܾ݈݁	ሺݔ௧ሻ based on 
the previous location ܾ݈݁ሺݔ௧ିଵሻ and the probabilistic motion model 
 ௧ݔ ,௧ݑ ௧ିଵݔ 	with action ݑ௧ (control input). 

→ application of theorem of total probability / convolution

for continuous probabilities

for discrete probabilities

Localization | the Markov Approach 5
4

Markov localization | applying probability theory to localization 

ܾ݈݁ ௧ݔ ൌ න ௧ݔ ,௧ݑ ௧ିଵݔ ܾ݈݁ ௧ିଵݔ ௧ିଵݔ݀

ܾ݈݁ ௧ݔ ൌ   ௧ݔ ,௧ݑ ௧ିଵݔ ܾ݈݁ ௧ିଵݔ
௫షభ
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 SEE | probabilistic estimation of the robot’s new belief state ܾ݈݁ ௧ݔ as a 
function of its measurement data ݖ௧ and its former belief state ܾ݈݁	ሺݔ௧ሻ:

→ application of Bayes rule

where  ௧ݖ ܯ,௧ݔ is the probabilistic measurement model (SEE), that is, the 
probability of observing the measurement data ௧ݖ given the knowledge of the map 
ܯ and the robot’s position ݔ௧. Thereby  ൌ ሻିଵݕሺ is the normalization factor so 
that ∑ ൌ 1 .

Localization | the Markov Approach 5
5

Markov localization | applying probability theory to localization 

ܾ݈݁ ௧ݔ ൌ  ௧ݖ ܯ,௧ݔ ܾ݈݁ ௧ݔ
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 Markov assumption: Formally, this means that the output is a function ݔ௧ only 
of the robot’s previous state ݔ௧	and its most recent actions (odometry) ݑ௧ and 
perception .௧ݖ

Localization | the Markov Approach 5
6

Markov localization | the basic algorithms for Markov localization

For all ݔ௧ do

ܾ݈݁ ௧ݔ ൌ ∑  ௧ݔ ,௧ݑ ௧ିଵݔ ܾ݈݁ ௧ିଵ௫షభݔ (prediction update) 

ܾ݈݁ ௧ݔ ൌ  ௧ݖ ܯ,௧ݔ ܾ݈݁ ௧ݔ (measurement update)

endfor

Return  ܾ݈݁ሺݔ௧ሻ
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ACT | using motion model and its uncertainties
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ACT | using motion model and its uncertainties
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Localization | the Markov Approach 9

SEE | estimation of position based on perception and map
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Figure 5.23 Markov localization using a grid-map.

(a)

(b)

(c)

(d)

bel x0 

bel x1 
(e)

p x1 u1 x0 

bel x1 

p z1 x1 M 

p x1 2=  p x0 0= p u1 2=  0.125= =

p x1 3=  p x0 0= p u1 3=  p x0 1= p u1 2= + 0.25= =

p x1 4=  p x0 1= p u1 3=  p x0 2= p u1 2= + 0.25= =

p x1 5=  p x0 2= p u1 3=  p x0 3= p u1 2= + 0.25= =

p x1 6=  p x0 3= p u1 3=  0.125= =



|
Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart 

ASL
Autonomous Systems Lab

 The real world for mobile robot is at least 2D (moving in the plane)
→ discretized pose state space (grid) consists of ݔ, ,ݕ ߠ
→ Markov Localization scales badly with the size of the environment

 Space: 10 m x 10 m with a grid size of 0.1 m 
and an angular resolution of 1°
→ 100 ∙ 100 ∙ 360 ൌ 3.6	10 grid points (states)
→ prediction step requires in worst case

3.6	10 ଶ	multiplications and summations
 Fine fixed decomposition grids result in a huge state space
 Very important processing power needed
 Large memory requirement

Localization | the Markov Approach 10

Markov localization | extension to 2D
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 Adaptive cell decomposition
 Motion model (Odomety) limited to a small 

number of grid points 
 Randomized sampling
 Approximation of belief state by a representative subset 

of possible locations
 weighting the sampling process with the probability 

values
 Injection of some randomized (not weighted) samples

 randomized sampling methods are also known as 
particle filter algorithms, condensation algorithms, and 
Monte Carlo algorithms.

Localization | the Markov Approach 11

Markov localization | reducing computational complexity
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 Continuous pose representation ݔ௧
 Kalman Filter Assumptions: 
 Error approximation with normal distribution: 
ݔ ൌ ܰሺߤ,  (Gaussian model)	ଶሻߪ

 Output ݕ௧ distribution is a linear (or  linearized) 
function of the input distribution: ݕ ൌ ଵݔܣ  ଶݔܤ

 Kalman filter localization tracks the robot’s 
belief state  ௧ݔ typically as a single 
hypothesis with normal distribution.

 Kalman localization thus addresses the 
position tracking problem, but not the 
global localization or the kidnapped robot 
problem.

Localization | the Kalman Filter Approach

Kalman Filter Localization | Basics and assumption
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Kalman Filter Localization | in summery

ሻݔሺ

ݔ

௧ݔ

Observation:
Probability of 

making this 
observation

ො௧ݔ

Prediction:
Robot’s belief 
before the 
observation

௧ݔ

Estimation:
Robot’s belief 

update

௧ݔ

1. Prediction (ACT) based on previous estimate and odometry
2. Observation (SEE) with on-board sensors
3. Measurement prediction based on prediction and map
4. Matching of observation and map
5. Estimation → position update (posteriori position)




