
Probabilistic Roadmap Path Planning

Reference: Principles of Robot Motion
H. Choset et. al.

MIT Press

Probabilistic Roadmap Path Planning

• Explicit Geometry based planners (grown
obstacles, Voronoi etc) impractical in high
dimensional spaces.

• Exact solutions with complex geometries are
provably exponential

• Sampling based planners can often create plans
in high-dimensional spaces efficiently

• Rather than Compute the C-Space explicitly, we
Sample it

Explicitly computing C-Space for more than 3 DOF is prohibitive!

Notion of Completeness in Planning

• Complete Planner: always answers a path
planning query correctly in bounded time

• Probabilistic Complete Planner: if a solution
exists, planner will eventually find it, using
random sampling (e.g. Monte Carlo sampling)

• Resolution Complete Planner: same as above
but based on a deterministic sampling (e.g
sampling on a fixed grid).

Sampling Based-Planners

• Do not attempt to explicitly construct the C-Space and its
boundaries

• Simply need to know if a single robot configuration is in
collision

• Exploits simple tests for collision with full knowledge of
the space

• Collision detection is a separate module- can be tailored
to the application

• As collision detection improves, so do these algorithms
• Different approaches for single-query and multi-query

requests

PRM Planner

• Roadmap is a graph G(V,E)
• Robot configuration q→Q_free is a vertex
• Edge (q1, q2) implies collision-free path

between these robot configurations
• A metric is needed for d(q1,q2) (e.g.

Euclidean distance)
• Uses coarse sampling of the nodes, and

fine sampling of the edges
• Result: a roadmap in Q_free

PRM Planner: Step 1, Learning the Map

• Initially empty Graph G
• A configuration q is randomly chosen
• If q→Q_free then added to G (collision detection

needed here)
• Repeat until N vertices chosen
• For each q, select k closest neighbors
• Local planner Δ connects q to neighbor q’
• If connect successful (i.e. collision free local

path), add edge (q, q’)

PRM Planner: Step 2, Finding a Path

• Given q_init and q_goal, need to connect
each to the roadmap

• Find k nearest neigbors of q_init and
q_goal in roadmap, plan local path Δ

• Problem: Roadmap Graph may have
disconnected components…

• Need to find connections from q_init,
q_goal to same component

• Once on roadmap, use Dijkstra algorithm

PRM Planner – unanswered questions

• How are random configurations chosen?
• How are closest neighbors found?
• How do we choose distance function?
• How are local path’s generated?

PRM Sampling and Connectivity

• Sampling: Uniform random sampling of Q_free
• Can be multi-dimensional (e.g. translation and

rotation, both 2-D or 3-D or higher)
• Connectivity: need to find nearest neighbors
• Naïve search is O(n)
• K-D trees are efficient ways to find nearest

neighbors
• Cost: O(sqrt(n)) for d=2

Applet: http://donar.umiacs.umd.edu/quadtree/points/kdtree.html

9

http://donar.umiacs.umd.edu/quadtree/index.html

Local Planner

• Important aspect of PRM algorithm
• Tradeoff:

– powerful planners are slow, but can find paths
between relatively isolated nodes

– fast planner is less accurate, more nodes
need to be generated, called more often

• Local planner also needed for finding path
from q_init and q_goal to roadmap

Local Planner

• Simplest: straight line planner. Connect q
and q’ by linear segment

• Now check the segment for collisions:
– Incremental: use a small step size and iterate

over the linear segment
– Subdivision: use binary search decomposition

to check for collisions

Postprocessing: Path Improvement

• Once a path is found, it can be optimized
• Try connecting non-adjacent

configurations. Choose q_1 and q_2
randomly, try to connect.

• Greedy approach: try connecting points
q_0, q_1, …q_n to q_goal.

• If q_k connects to q_goal, do the above
with q_k as q_goal

Example: 6-DOF Path Planning

• Robot: Rigid non-convex object in 3 space
• Obstacle: Solid wall with small opening
• Random configuration is chosen from R3 for

translation
• Axis and angle of rotation randomly chosen for

rotation (quaternion representation)

Collision Detection

• Given configuration q and nearest neighbor
q’ we can use straight line collision detection

• Each configuration
q=(p,r)=(trans,quaternion)

• Check for collision by interpolating along line
(p,p’) and along spherical interpolation (r,r’).

video

http://www1.cs.columbia.edu/~allen/F10/NOTES/sixway.mov.mov
allen
Typewritten Text

allen
Typewritten Text

https://youtu.be/I39OrkmHZSs
allen
Typewritten Text
vvd

Distance Calculation for Rigid Object in 3D
• Distance function needed between 2 configurations q, q’
• Ideally, distance is the swept volume of the robot as it moves between

configurations q and q’. Difficult to compute exactly
• Method I: Can approximate this distance with an embedding in a Euclidean

metric space: d(q,q’) = || embed(q) - embed(q’)||
– Choose set of p points on robot, concatenate them, and create a vector of

size p x dimension of workspace.
– Example of rigid object in 3D: Create vector of size 3p, choosing p points

on the object. Intuitively, a “sampling” of the object’s Euclidean domain.
– For configuration q, embed(q) is the vector of p points transformed by the

translation and rotation that is configuration q. Transform each of the p
points into the vector embed(q).

– Do the same for configuration q’, create embed(q’).
– Distance is now Euclidean distance between the 3p vectors:

d(q,q’) = || embed(q) - embed(q’)||
• How do you choose the p points?
• Cheaper solution: choose 2 points p1 and p2 of maximum extent on the object.
• Method II: Separate a configuration q into a translation X and a rotation R:

q=(X,R)
• Calculate a weighted distance function d(q,q’) = w1||X-X’|| + w2 f(R,R’).
• Need to use a metric on rotations – quaternions are good for this
• Weights w1 and w2 need to be chosen, no real insight into this

OBPRM: Obstacle PRM

• If tight, small regions of the Cspace are needed to
create a path (e.g. small opening in the wall),
sampling may miss this

• Problem areas tend to be near the obstacles in
tight spaces

• Solution: generate configuration q. If q in collision,
choose random direction v and move q away from
obstacle in direction v a small distance. If q now in
Q_free, use this node

• Biases sampling near obstacles

Single-Query Sampling Based Planners

• PRM samples the entire space, plans
paths anywhere

• Single query planners don’t explore all of
Q_free, only relevant parts

• PRM can be used this way, inserting q_init
and q_goal in Graph at beginning, then
checking for a path

Random search

Random walks

Often combined with potential field methods to escape minima

random walks are not perfect...

“Filling in” local minima

RRT: Rapidly-exploring Random Trees

• Idea: sample Q_free for path from q_init to
q_goal

• Use 2 trees, rooted at q_init and q_goal.
• As trees grow, the eventually share a

common node, and are merged into a path

RRTs

connects global & local information

1) Maintain a tree of configurations reachable from the starting point.

2) Choose a point at random from free space

3) Find the closest configuration already in the tree

4) Extend the tree in the direction of the new configuration EXTEND step

Growth of an RRT

Example growth of an RRT - Biased toward the unexplored free space at each step.

Voronoi diagrams

A Mature RRT

RRT - blue

Voronoi - red
http://msl.cs.uiuc.edu/rrt
http://www.kuffner.org/james/humanoid/planning.php

http://msl.cs.uiuc.edu/rrt

Path Planning with RRT Algorithm

• 2 trees, T_init, T_goal, rooted at q_init,
q_goal

• Each tree is expanded by:
– q_rand is generated from uniform dist.
– q_near is found, nearest tree node to q_rand
– move step-size along line (q_near, q_rand) to

q_new. If no collision, add q_new to tree
• If trees merge, path is found

RRT Algorithm

• Algorithm sensitive to step-size
• How far do we move along line (q_near,

q_rand)?
• Can a greedier algorithm work better?
• Why not move all the way to q_rand?

RRT Tradeoffs

• If step-size is small, many nodes
generated, close together

• As number of nodes increases, nearest-
neighbor computation slows down

• May be better to only add the last sample
along the line (q_near, q_rand)

Shaping the RRT

• q_rand determines what direction we go
• What if q_rand == q_goal?
• Very greedy algorithm. Introduces too much

bias
• Becomes a potential field planner that gets

stuck in local minima
• Idea: use uniform q_rand with occasional

q_rand ==q_goal (maybe we get lucky?)
• Introducing just .05 bias towards goal, results

improve

Merging RRT’s

Using RRTs

http://msl.cs.uiuc.edu/rrt/

Bidirectional search

Additional complexity
additional degrees of freedom

Additional complexity
additional degrees of freedom

xy projections

Additional complexity
additional degrees of freedom

xy projections time-lapse paths

Additional complexity
articulated linkages

Additional complexity
articulated linkages

http://msl.cs.uiuc.edu/rrt
http://www.kuffner.org/james/humanoid/planning.html

http://msl.cs.uiuc.edu/rrt
http://www.kuffner.org/james/humanoid/planning.html

	Probabilistic Roadmap Path Planning
	Probabilistic Roadmap Path Planning
	Slide Number 3
	Slide Number 4
	Notion of Completeness in Planning
	Sampling Based-Planners
	PRM Planner
	PRM Planner: Step 1, Learning the Map
	Slide Number 9
	Slide Number 10
	PRM Planner: Step 2, Finding a Path
	Slide Number 12
	Slide Number 13
	PRM Planner – unanswered questions
	PRM Sampling and Connectivity
	Slide Number 16
	Local Planner
	Local Planner
	Slide Number 19
	Postprocessing: Path Improvement
	Slide Number 21
	Example: 6-DOF Path Planning
	Collision Detection
	Slide Number 24
	Distance Calculation for Rigid Object in 3D
	OBPRM: Obstacle PRM
	Single-Query Sampling Based Planners
	Slide Number 28
	RRT: Rapidly-exploring Random Trees
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Path Planning with RRT Algorithm
	Slide Number 35
	Slide Number 36
	RRT Algorithm
	Slide Number 38
	RRT Tradeoffs
	Shaping the RRT
	Merging RRT’s
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49

	Button1:

