Probabilistic Roadmap Path Planning

Reference: Principles of Robot Motion
H. Choset et. al.
MIT Press

Probabilistic Roadmap Path Planning

Explicit Geometry based planners (grown
obstacles, Voronoi etc) impractical in high
dimensional spaces.

Exact solutions with complex geometries are
provably exponential

Sampling based planners can often create plans
in high-dimensional spaces efficiently

Rather than Compute the C-Space explicitly, we
Sample it

Explicitly computing C-Space for more than 3 DOF is prohibitive!

—

T

4

*

\

N\

p

¢ o

e -.\/

-

/\/
-
¢ o

\

*

!

4

Figure 7.1 Snapshots along a path of a planar manipulator with ten degrees of freedom
manipulator has a fixed base and its first three links have prismatic joints—they can ex:s

one and a half times their original length. (From Kavraki [221].)

_L¥J4.

(a) (b)

i

Aty

P
’ !'..';";N

(g)

Figure 7.2 Path-planning problems. (a) Industrial manipulation. (b) Welding. (c) Planning
removal paths for a part (the “robot™) located at the center of the figure. (d) Computer animation.
(e) Planning aircraft motion. (f) Humanoid robot. (g) Folding of a small peptide molecule.
((a) From Bohlin and Kavraki [54]; (b) from Hsu and Latombe [196]: (c¢) courtesy of Latombe;
(d) from Koga, Kondo, Kuffner and Latombe [241]; (e) from Kuffner and LaValle [272];
(f) from Kuffner [248]; (g) from Amato [21].)

Notion of Completeness in Planning

« Complete Planner: always answers a path
planning query correctly in bounded time

* Probabilistic Complete Planner: if a solution
exists, planner will eventually find it, using
random sampling (e.g. Monte Carlo sampling)

* Resolution Complete Planner: same as above
but based on a deterministic sampling (e.g
sampling on a fixed grid).

Sampling Based-Planners

Do not attempt to explicitly construct the C-Space and its
boundaries

Simply need to know if a single robot configuration is in
collision

Exploits simple tests for collision with full knowledge of
the space

Collision detection is a separate module- can be tailored
to the application

As collision detection improves, so do these algorithms

Different approaches for single-query and multi-query
requests

PRM Planner

Roadmap is a graph G(V,E)
Robot configuration g—Q_free is a vertex

Edge (g1, g2) implies collision-free path
between these robot configurations

A metric is needed for d(q1,92) (e.q.
Euclidean distance)

Uses coarse sampling of the nodes, and
fine sampling of the edges

Result: a roadmap in Q_free

PRM Planner: Step 1, Learning the Map

Initially empty Graph G
A configuration g is randomly chosen

If g—Q_free then added to G (collision detection
needed here)

Repeat until N vertices chosen
For each q, select k closest neighbors
Local planner A connects q to neighbor g

If connect successful (i.e. collision free local
path), add edge (q, q')

e e e e e
= I T =

o Do F S B & BB I

Algorithm 6 Roadmap Construction Algorithm

Input:

n : number of nodes to put in the roadmap

k : number of closest neighbors to examine for each configuration
Output:

A roadmap G = (V, E)

V<90
E <«
while |V | < n do
repeat
g < arandom configuration in Q
until g is collision-free
V <~V U/{q}
end while
forallg € V do
N, < the k closest neighbors of g chosen from V according to dist
forall g’ € N, do
if (¢,q') € E and A(q, ¢') # NIL then
E < EU{(q,9")}
end if
end for

- end for

Figure 7.3 Anexample of a roadmap for a point robot in a two-dimensional Euclidean space.
The gray areas are obstacles. The empty circles correspond to the nodes of the roadmap. The
straight lines between circles correspond to edges. The number of & closest neighbors for the
construction of the roadmap is three. The degree of a node can be greater than three since it
may be included in the closest neighbor list of many nodes.

PRM Planner: Step 2, Finding a Path

Given g_init and g_goal, need to connect
each to the roadmap

Find k nearest neigbors of g _init and
g_goal in roadmap, plan local path A

Problem: Roadmap Graph may have
disconnected components...

Need to find connections from q_init,
d_goal to same component

Once on roadmap, use Dijkstra algorithm

2R B®RE2

oA R -

- until a connection was succesful or the set N,

- until a connection was succesful or the set N,
. P <« shortest path(ginit, Ggoat» G)
. if P is not empty then

Algorithm 7 Solve Query Algorithm

Input:
Ginit: the initial configuration
goa: the goal configuration

k: the number of closest neighbors to examine for each configuration

G = (V, E): the roadmap computed by algorithm 6

Output:

A path from gini tO Gooa O failure
N, < the k closest neighbors of gy from V according to dist
Ny,.. < the k closest neighbors of ggoa from V according to dist

V = {Qinil} u {ngai} uv
set ¢’ to be the closest neighbor of g, in N,
repeat
if A(Qinits q!) # NIL then
E « (quisg)VE
else
set ¢ to be the next closest neighbor of gy in N,
end if

it

nit

g 1S €MPLY
set ¢’ to be the closest neighbor of ggoq in N,
repeat
if A(Ggoai» ¢') # NIL then
E o (anals q!) U E
else
set g’ to be the next closest neighbor of gga in N,

Ggoal
end if

Ygoal

Hgoal iS empty

return P

. else

return failure

. end if

Figure 7.4 An example of how to solve a query with the roadmap from figure 7.3. The
configurations ginir and ggea are first connected to the roadmap through ¢’ and ¢”. Then a
graph-search algorithm returns the shortest path denoted by the thick black lines.

PRM Planner — unanswered questions

How are random configurations chosen?
How are closest neighbors found?

How do we choose distance function?
How are local path’s generated?

PRM Sampling and Connectivity

Sampling: Uniform random sampling of Q_free

Can be multi-dimensional (e.g. translation and
rotation, both 2-D or 3-D or higher)

Connectivity: need to find nearest neighbors
Nailve search is O(n)

K-D trees are efficient ways to find nearest
neighbors

Cost: O(sqgrt(n)) for d=2

P2
° P
I o 10 o
Ds l ® g Iy
8 P
® ¥)
P1 p3 D7
[3 . ®
s
P4 bt
I T P9
b
(a) The way the plane is subdivided. (b) The corresponding binary tree.

Figure 7.5 A kd-tree for ten points on a plane.

Applet: http://donar.umiacs.umd.edu/quadtree/points/kdtree.html

http://donar.umiacs.umd.edu/quadtree/index.html

L ocal Planner

* Important aspect of PRM algorithm

 Tradeoff:

— powerful planners are slow, but can find paths
between relatively isolated nodes

— fast planner is less accurate, more nodes
need to be generated, called more often

* Local planner also needed for finding path
from g_init and g_goal to roadmap

L ocal Planner

« Simplest: straight line planner. Connect g
and g’ by linear segment

* Now check the segment for collisions:

— Incremental: use a small step size and iterate
over the linear segment

— Subdivision: use binary search decomposition
to check for collisions

(a) Incremental: The algorithm returns (b) Subdivision: The algorithm returns
failure after five collision checks. failure after three collision checks.

Figure 7.6 Sampling along the straight line path between two configurations ¢ and ¢". The
numbers correspond to the order in which each strategy checks the samples for collision.

Postprocessing: Path Improvement

Once a path is found, it can be optimized

Try connecting non-adjacent
configurations. Choose g 1andq 2
randomly, try to connect.

Greedy approach: try connecting points
g 0,9 1,...q ntog _goal.

If g_k connects to g _goal, do the above
with g _k as q_goal

Original Path

Shorter Path —

-

ith the greedy

shorter path w

the path returned from PRM to get a

ing

Figure 7.7 Process

approach.

Example: 6-DOF Path Planning

Robot: Rigid non-convex object in 3 space
Obstacle: Solid wall with small opening

Random configuration is chosen from R3 for
translation

Axis and angle of rotation randomly chosen for
rotation (quaternion representation)

Collision Detection

* Given configuration g and nearest neighbor
g we can use straight line collision detection

« Each configuration
g=(p,r)=(trans,quaternion)

» Check for collision by interpolating along line
(p,p’) and along spherical interpolation (r,r’).

)

(b

(a)

planning problem where both the robot and the obstacles

10N

Figure 7.8 Anexample of a mot

are a collection of polyhedral objects in three dimensions. Parts of the robot on the other side

of the wall are indicated by the darker color. (a) The

1 and goal configuration of the query.

1000 and £ = 10.

.

mitia

.

video

Ul ri +

A |

DOM
D'l Wil

|
U PTOUUUCCU 1TUIIN a

|

tla

(b)Ap

http://www1.cs.columbia.edu/~allen/F10/NOTES/sixway.mov.mov
allen
Typewritten Text

allen
Typewritten Text

https://youtu.be/I39OrkmHZSs
allen
Typewritten Text
vvd

Distance Calculation for Rigid Object in 3D

Distance function needed between 2 configurations q, q’

|deally, distance is the swept volume of the robot as it moves between
configurations g and q’. Difficult to compute exactly

Method I: Can approximate this distance with an embedding in a Euclidean
metric space: d(q,q’) = || embed(q) - embed(q’)|]|

— Choose set of p points on robot, concatenate them, and create a vector of
size p x dimension of workspace.

— Example of rigid object in 3D: Create vector of size 3p, choosing p points
on the object. Intuitively, a “sampling” of the object’s Euclidean domain.

— For configuration g, embed(q) is the vector of p points transformed by the
translation and rotation that is configuration g. Transform each of the p
points into the vector embed(q).

— Do the same for configuration q’, create embed(q’).
— Distance is now Euclidean distance between the 3p vectors:
d(9,9’) = || embed(q) - embed(q’)||

How do you choose the p points?
Cheaper solution: choose 2 points p1 and p2 of maximum extent on the object.
Me(t)kgol_g)llz Separate a configuration q into a translation X and a rotation R:
gq=(A,
Calculate a weighted distance function d(q,q’) = wl1||X-X'|| + w2 f(R,R’).
Need to use a metric on rotations — quaternions are good for this
Weights w1l and w2 need to be chosen, no real insight into this

OBPRM: Obstacle PRM

If tight, small regions of the Cspace are needed to
create a path (e.g. small opening in the wall),
sampling may miss this

Problem areas tend to be near the obstacles in
tight spaces

Solution: generate configuration q. If q in collision,
choose random direction v and move q away from
obstacle in direction v a small distance. If g now in
Q_free, use this node

Biases sampling near obstacles

Single-Query Sampling Based Planners

* PRM samples the entire space, plans
paths anywhere

* Single query planners don’t explore all of
Q_free, only relevant parts

 PRM can be used this way, inserting q_init
and q_goal in Graph at beginning, then
checking for a path

Random search

Often combined with potential field methods to escape minima

Start

“Filling in” local minima Random walks

random walks are not perfect...

RRT: Rapidly-exploring Random Trees

* |dea: sample Q free for path from q_init to

g_goal
* Use 2 trees, rooted at g _init and q_goal.

* As trees grow, the eventually share a
common node, and are merged into a path

RRTs

1) Maintain a tree of configurations reachable from the starting point. °

2) Choose a point at random from free space

3) Find the closest configuration already in the tree

4) Extend the tree in the direction of the new configuration EXTEND step

connects global & local information

Growth of an RRT

> i

Example gr owth of an RRT - Biased toward the unexplored free space at each step.

Voronoi diagrams

A Mature RRT

. N /L/
\\‘\ i ; P“-'»‘-.-. il P
<R KRB ATRE L\ PR
r ok . -: ‘l._\ _:!' % R ii‘
< LA A
E, AL .
% gl e

B ""'!1* 7 "v
s L A
3 ol s
o ¢ i

] ’ g
é;;«-.:_;
g7 IR
- .

RRT - blue

Voronoi - red

http://msl.cs.uiuc.edu/rrt

http://www.kuffner.org/james/humanoid/planning.php

http://msl.cs.uiuc.edu/rrt

Path Planning with RRT Algorithm

« 21trees, T _init, T _goal, rooted at g _init,
g_goal

* Each tree is expanded by:
— g_rand is generated from uniform dist.
— g_near is found, nearest tree node to q_rand

— move step-size along line (q_near, g _rand) to
g_new. If no collision, add g _new to tree

* If trees merge, path is found

‘ drand

Figure 7.14 Adding a new configuration to an RRT. Configuration g,nq is selected randomly
from a uniform distribution in Qg... Configuration ¢ is the closest configuration in 7" to grang
(this configuration is denoted as gne,r in the algorithm). Configuration gpe, is obtained by
moving g by step_size toward gryg. Only gy and the edge (g, grnew) are added to the RRT.

O B oo A W e

Algorithm 10 Build RRT Algorithm
Input:
qo: the configuration where the tree is rooted
n : the number of attempts to expand the tree
Output:
A tree T = (V, E) that is rooted at gy and has < n configurations
V < {q0)
E <0
fori =1tondo
Granda < a randomly chosen free configuration
extend RRT (7', Grand)
end for
return 7'

02 M Gh B B

Algorithm 11 Extend RRT Algorithm
Input:

T ={(V,.E). ah RRT

q: a configuration toward which the tree 7 is grown
Output:

A new configuration gpe toward ¢, or NIL in case of failure

© Gnear < Closest neighbor of ¢ in T

Grew < PrOZIESS Gnear DY step_size along the straight line in Q between g¢.,.,

{rand

if gyew 1s collision-free then
V < V U {gnew}
E < E U {(gnears Gnew)}
return ..,

end if

return NIL

RRT Algorithm

Algorithm sensitive to step-size

How far do we move along line (q_near,
g_rand)?

Can a greedier algorithm work better?
Why not move all the way to g _rand?

g o1 Sv B8 = L b g

Algorithm 12 Connect RRT Algorithm

Input:

T = (V, E): an RRT

q: a configuration toward which the tree 7" is grown
Output:

connected if g is connected to 7'; failure otherwise

repeat

Gnew <— €xtend RRT (7', q)
until (Qnew= q OF Gnew= NIL)
if g e = g then

return connected
else

return failure
end if

RRT Tradeoffs

* If step-size is small, many nodes
generated, close together

 As number of nodes increases, nearest-
neighbor computation slows down

 May be better to only add the last sample
along the line (g_near, g rand)

Shaping the RRT

g_rand determines what direction we go
What if g_rand == q_goal?

Very greedy algorithm. Introduces too much
bias

Becomes a potential field planner that gets
stuck in local minima

|ldea: use uniform q_rand with occasional
g_rand ==qg_goal (maybe we get lucky?)

Introducing just .05 bias towards goal, results
Improve

Merging RRT's

oal

rand

Figure 7.15 Merging two RRTs. Configuration g,nq is generated randomly from a uniform
distribution in Qf... Configuration g; was extended to 4. ¢> is the closest configuration to
Grand 1N Tyoa1- It was possible to extend g; to Grana. As a result, Tipi and o, Were merged.

Algorithm 13 Merge RRT Algorithm

Input:
Ty: first RRT
T»: second RRT
£: number of attempts allowed to merge 7, and 7>
Output:
merged if the two RRTs are connected to each other; failure otherwise

1: fori =1tofdo

2: granga < arandomly chosen free configuration
3: Gnew.1 < extend RRT (77, Grana)

4: if gpew,1 7 NIL then

5 Gnew,2 < €xtend RRT (73, Gnew.1)

6 if Gnew,1 = Qnew,> then

) return merged

8

9

end if
; SWAP(T;, T5)
10: end if
11: end for

12: return failure

Using RRTs

http://msl.cs.uiuc.edu/rrt/

Bidirectional search

Additional complexity

additional degrees of freedom

Additional complexity

additional degrees of freedom

Ty —hay »

W i

L]] L] [] e Ly
L] L] L]

Xy projections

Additional complexity

additional degrees of freedom

S N,
]]]]]]]]
3
[] [] |] [] n LWy [] |]
]]]]] T m £]]
¢
-] -] - -] -

sl T
J}_J";_:rL'I ' =
V',

10

Xy projections time-lapse paths

Additional complexity

articulated linkages

v

Additional complexity

articulated linkages

-

http://msl.cs.uiuc.edu/rrt
http://www.kuffner.org/james/humanoid/planning.html

http://msl.cs.uiuc.edu/rrt
http://www.kuffner.org/james/humanoid/planning.html

	Probabilistic Roadmap Path Planning
	Probabilistic Roadmap Path Planning
	Slide Number 3
	Slide Number 4
	Notion of Completeness in Planning
	Sampling Based-Planners
	PRM Planner
	PRM Planner: Step 1, Learning the Map
	Slide Number 9
	Slide Number 10
	PRM Planner: Step 2, Finding a Path
	Slide Number 12
	Slide Number 13
	PRM Planner – unanswered questions
	PRM Sampling and Connectivity
	Slide Number 16
	Local Planner
	Local Planner
	Slide Number 19
	Postprocessing: Path Improvement
	Slide Number 21
	Example: 6-DOF Path Planning
	Collision Detection
	Slide Number 24
	Distance Calculation for Rigid Object in 3D
	OBPRM: Obstacle PRM
	Single-Query Sampling Based Planners
	Slide Number 28
	RRT: Rapidly-exploring Random Trees
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Path Planning with RRT Algorithm
	Slide Number 35
	Slide Number 36
	RRT Algorithm
	Slide Number 38
	RRT Tradeoffs
	Shaping the RRT
	Merging RRT’s
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49

	Button1:

