

MATLAB Simulator for the
iRobot Create

Function Specifications

Author: Cameron Salzberger
Advisors: Dr. Hadas Kress-Gazit

Dr. K-Y Daisy Fan
Supported By: The MathWorks

Updated: 2/18/2013 by Kevin Wyffels

CORNELL UNIVERSITY

2

Contents

Disclaimer ... 4

Overview 4

AllSensorsReadRoomba .. 5

AngleSensorRoomba .. 6

BatteryChargeReaderRoomba ... 7

BatteryVoltageRoomba ... 7

BeepRoomba ... 8

BumpsWheelDropsSensorsRoomba .. 8

ButtonsSensorRoomba.. 9

CameraSensorCreate .. 9

CliffFrontLeftSensorRoomba .. 10

CliffFrontLeftSignalStrengthRoomba .. 10

CliffFrontRightSensorRoomba ... 11

CliffFrontRightSignalStrengthRoomba ... 11

CliffLeftSensorRoomba ... 12

CliffLeftSignalStrengthRoomba ... 12

CliffRightSensorRoomba .. 13

CliffRightSignalStrengthRoomba .. 13

CurrentTesterRoomba... 14

DemoCmdsCreate 14

DistanceSensorRoomba .. 15

LidarSensorCreate... 15

OverheadLocalizationCreate .. 16

ReadBeacon.. 16

ReadSonar ... 17

ReadSonarMultiple ... 17

RoombaInit 18

SetDriveWheelsCreate ... 19

SetFwdVelAngVelCreate ... 20

SetFwdVelRadiusRoomba .. 20

SetLEDsRoomba 21

3

travelDist 21

turnAngle 22

VirtualWallSensorCreate .. 22

Contact Information ... 23

Contributing Parties ... 23

4

Disclaimer

Copyright © 2010 Cornell University. All rights reserved.

The software and documentation are licensed under the open-source FreeBSD license. A copy of
this should be provided with the software. If it is not, email CreateMatlabSim@gmail.com for a
copy. By using this software you are agreeing to the terms and conditions specified in the license.

Overview

This document assumes you have read the User Manual for the simulator toolbox. This is intended
to provide descriptions of all simulator functions that the autonomous control program may call.
This document is duplicates much of the “help” comments at the beginning of each function. The
majority of these functions have the same input/output specifications as those in the MATLAB
Toolbox for the iRobot Create (MTIC), but there a few new ones for the User-Added sensors
(sonars, LIDAR, camera, and overhead localization). The functions should work equivalently on the
real Create, assuming the hardware is installed the same. See the MTIC Documentation to double-
check those functions:
http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/Matlab_Toolbox_iRobot_create_do
c.pdf

The sonar sensor functions are designed to work with the WOOSH board that interfaces between
the Bluetooth Adaptor Module (BAM) and the cargo bay connector on the Create. The sonar
functions are specific to that board’s firmware. The LIDAR, camera, and overhead localization
functions are specific to a unique setup at Cornell, and will probably require adaptation to use
anywhere else. The WOOSH board specifications can be found at the site below:
http://tomyumcorp.com/whoosh

mailto:CreateMatlabSim@gmail.com
http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/Matlab_Toolbox_iRobot_create_doc.pdf
http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/Matlab_Toolbox_iRobot_create_doc.pdf
http://tomyumcorp.com/whoosh

5

AllSensorsReadRoomba
[BumpRight BumpLeft BumpFront Wall virtWall CliffLft ...
 CliffRgt CliffFrntLft CliffFrntRgt LeftCurrOver ...
 RightCurrOver DirtL DirtR ButtonPlay ButtonAdv Dist ...
 Angle Volts Current Temp Charge Capacity pCharge]= ...
AllSensorsReadRoomba(obj)

Summary
On the real Create this function reads a series of sensors in a row. Because of the data streaming
serial communication capabilities on the real Create, this function will execute faster than reading
each of the sensors individually. On the simulator there is no similar advantage. If the control
program is designed for the simulator only, it is recommended to only read the sensors it requires.

The sensors read by this function are explained more fully in the User Guide on pages 7-10.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
BumpRight – Double of Boolean value, 1 if the right bump sensor is pressed, 0 if not.
BumpLeft – Double of Boolean value, 1 if the left bump sensor is pressed, 0 if not.
BumpFront – Double of Boolean value, 1 if the front bump sensor is pressed, 0 if not.
Wall – Double of Boolean value, 1 if a wall is detected next to the wall sensor, 0 if not.
virtWall – Double of Boolean value, 1 if a virtual wall is detected by the IR receiver, 0 if not.
CliffLft – Double of Boolean value, 1 if a cliff is detected under the left cliff sensor, 0 if not. The
simulator will always return 0.
CliffRgt – Double of Boolean value, 1 if a cliff is detected under the right cliff sensor, 0 if not. The
simulator will always return 0.
CliffFrntLft – Double of Boolean value, 1 if a cliff is detected under the front left cliff sensor, 0
if not. The simulator will always return 0.
CliffFrntRgt – Double of Boolean value, 1 if a cliff is detected under the front right cliff sensor, 0
if not. The simulator will always return 0.
LeftCurrOver – Double of Boolean value, 1 if the left motor is receiving more than 1 A of current,
0 if not. The simulator will always return 0.
RightCurrOver – Double of Boolean value, 1 if the right motor is receiving more than 1 A of
current, 0 if not. The simulator will always return 0.
DirtL – Double, always 0 since there are no dirt sensors in either the real Create or the simulator.
DirtR – Double, always 0 since there are no dirt sensors in either the real Create or the simulator.

6

ButtonPlay – Double of Boolean value, 1 if the Play (>) button is pushed, 0 if not. Note the
difference between button pushes in the simulator and the real Create as described in the User
Guide on page 7.
ButtonAdv – Double of Boolean value, 1 if the Advance (>>|) button is pushed, 0 if not. Note the
difference between button pushes in the simulator and the real Create as described in the User
Guide on page 7.
Dist – Double, meters traveled since last call to AllSensorsReadRoomba or
DistanceSensorRoomba. The value saturates at ± 32.768 m.
Angle – Double, radians turned since last call to AllSensorsReadRoomba or
AngleSensorRoomba. The value saturates at ± 571 rad.
Volts – Double, voltage of the battery in volts. The value should be between 17.2 and 0 V. The
simulator will always return a full battery.
Current – Double, current through the battery in amps. Positive indicates a charging battery,
negative is discharging. The simulator will always output -3 A.
Temp – Double, temperature of the battery in Celsius. The simulator always assumes the battery to
be at room temperature (25°C).
Charge – Double, remaining charge in the battery in milliamp-hours. The simulator always
assumes a fully charged battery at 3000 mAh.
Capacity – Double, totally possible charge in the battery in milliamp-hours. The simulator always
assumes a new battery at 3000 mAh.
pCharge – Double, charge remaining in the battery as a percentage of the capacity. The simulator
always assumes a fully charged battery at 100%.

AngleSensorRoomba
AngleR= AngleSensorRoomba(obj)

Summary
The function reads the angular odometry value stored in the robot. It will return the angle that the
robot has turned since the last call to this function or AllSensorsReadRoomba. The odometry
can store no angle larger than ± 571 radians, so the odometry must be read at frequent intervals to
avoid saturation.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
Angle – Double, radians turned since last call to AllSensorsReadRoomba or
AngleSensorRoomba. The value saturates at ± 571 rad.

7

BatteryChargeReaderRoomba
[Charge Capacity Percent]= BatteryChargeReaderRoomba(obj)

Summary
On the real Create, this function reads several charge-related values from the battery. This may be
used to end autonomous code execution if the battery is low. In the simulator, the values will be
constant no matter when the function is called.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
Charge – Double, remaining charge in the battery in milliamp-hours. The simulator always
assumes a fully charged battery at 3000 mAh.
Capacity – Double, total possible charge in the battery in milliamp-hours. The simulator always
assumes a new battery at 3000 mAh.
Percent – Double, charge remaining in the battery as a percentage of the capacity. The simulator
always assumes a fully charged battery at 100%.

BatteryVoltageRoomba

Voltage= BatteryVoltageRoomba(obj)

Summary
On the real Create, this function returns the voltage level of the battery. The simulator will always
assume a perfect battery.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
Voltage – Double, voltage of the battery in volts. The value should be between 17.2 and 0 V. The
simulator will always return a full battery.

8

BeepRoomba
BeepRoomba(obj)

Summary
This function will cause the Create to beep. The simulator uses the MATLAB beep function that
will play the computer’s default beep (can sound like an error message pop-up). Speakers must be
turned on to hear this for the simulator.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

BumpsWheelDropsSensorsRoomba
[BumpRight BumpLeft WheDropRight WheDropLeft WheDropCaster ...
 BumpFront]= BumpsWheelDropsSensorsRoomba(obj)

Summary
This function will read the bump and wheel drop sensors on the robot. On the real Create, the
wheel drop sensors will activate if the wheels move over empty space and fall to their extended
position. In the simulator, there are no cliffs so the wheel drop sensors will always remain inactive.
The bump sensors work similarly for both the simulator and the real Create.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
BumpRight – Double of Boolean value, 1 if the right bump sensor is pressed, 0 if not.
BumpLeft – Double of Boolean value, 1 if the left bump sensor is pressed, 0 if not.
WheDropRight – Double of Boolean value, 1 if the right wheel is in the extended position, 0 if not.
The simulator will always return 0.
WheDropLeft – Double of Boolean value, 1 if the left wheel is in the extended position, 0 if not.
The simulator will always return 0.
WheDropCaster – Double of Boolean value, 1 if the caster wheel is in the extended position, 0 if
not. The simulator will always return 0.
BumpFront – Double of Boolean value, 1 if the front bump sensor is pressed, 0 if not.

9

ButtonsSensorRoomba
[ButtonAdv ButtonPlay]= ButtonsSensorRoomba(obj)

Summary
This function will read the state of the Play (>) and Advance (>>|) buttons on the robot. On the
real Create, this function will only indicate a button is active if it is being held down. In the
simulator, the button functionality is provided by toggle buttons. Read more about the difference in
the User Guide on page 7.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
ButtonAdv – Double of Boolean value, 1 if the Advance button is active, 0 if not.
ButtonPlay – Double of Boolean value, 1 if the Play button is active, 0 if not.

CameraSensorCreate
[angle dist color]= CameraSensorCreate(obj)

Summary
This function will return the output from a generic blob-detection algorithm that processes the
camera’s view. It is assumed that the blob-detection algorithm is looking for circles of various
specific colors. The simulator also assumes that that camera detects beacons perfectly up to the
range of the camera, then no further. Empty vector output indicates that no beacons were seen.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
angle – Vertical array of doubles, each entry being the angular position in radians of the observed
beacon relative to the forward heading of the robot. Positive values indicate the beacon is to the
left of the front of the robot, negative values indicate the right.
dist – Vertical array of doubles, each entry being the distance in meters from the camera to the
observed beacon.
color – Matrix of doubles (3 columns wide), each row being the color vector of the beacon.

10

CliffFrontLeftSensorRoomba
state= CliffFrontLeftSensorRoomba(obj)

Summary
This function will sense for a cliff beneath the front-left cliff sensor. There are no cliffs in the
simulator.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
state – Double of Boolean value, 1 if there is a cliff, 0 if not. The simulator always returns 0.

CliffFrontLeftSignalStrengthRoomba
strg= CliffFrontLeftSignalStrengthRoomba(obj)

Summary
On the real Create, this function will read the signal strength of the front-left cliff sensor. This value
is proportional to the reflectivity of the ground, which usually correlates to the color of the ground.
In the simulator, the normal ground is considered to be white, while lines are considered black. The
cliff sensor signal strength will be much lower over lines than over the ground.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
strg – Double, signal strength of the cliff sensor as a percentage of the maximum.

11

CliffFrontRightSensorRoomba
state= CliffFrontRightSensorRoomba(obj)

Summary
This function will sense for a cliff beneath the front-right cliff sensor. There are no cliffs in the
simulator.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
state – Double of Boolean value, 1 if there is a cliff, 0 if not. The simulator always returns 0.

CliffFrontRightSignalStrengthRoomba
strg= CliffFrontRightSignalStrengthRoomba(obj)

Summary
On the real Create, this function will read the signal strength of the front-right cliff sensor. This
value is proportional to the reflectivity of the ground, which usually correlates to the color of the
ground. In the simulator, the normal ground is considered to be white, while lines are considered
black. The cliff sensor signal strength will be much lower over lines than over the ground.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
strg – Double, signal strength of the cliff sensor as a percentage of the maximum.

12

CliffLeftSensorRoomba
state= CliffLeftSensorRoomba(obj)

Summary
This function will sense for a cliff beneath the left cliff sensor. There are no cliffs in the simulator.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
state – Double of Boolean value, 1 if there is a cliff, 0 if not. The simulator always returns 0.

CliffLeftSignalStrengthRoomba

strg= CliffLeftSignalStrengthRoomba(obj)

Summary
On the real Create, this function will read the signal strength of the left cliff sensor. This value is
proportional to the reflectivity of the ground, which usually correlates to the color of the ground. In
the simulator, the normal ground is considered to be white, while lines are considered black. The
cliff sensor signal strength will be much lower over lines than over the ground.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
strg – Double, signal strength of the cliff sensor as a percentage of the maximum.

13

CliffRightSensorRoomba
state= CliffRightSensorRoomba(obj)

Summary
This function will sense for a cliff beneath the right cliff sensor. There are no cliffs in the simulator.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
state – Double of Boolean value, 1 if there is a cliff, 0 if not. The simulator always returns 0.

CliffRightSignalStrengthRoomba

strg= CliffRightSignalStrengthRoomba(obj)

Summary
On the real Create, this function will read the signal strength of the right cliff sensor. This value is
proportional to the reflectivity of the ground, which usually correlates to the color of the ground. In
the simulator, the normal ground is considered to be white, while lines are considered black. The
cliff sensor signal strength will be much lower over lines than over the ground.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
strg – Double, signal strength of the cliff sensor as a percentage of the maximum.

14

CurrentTesterRoomba
Current= CurrentTesterRoomba(obj)

Summary
On the real Create, this function reads the current flowing in or out of the battery. A positive value
indicates the battery is charging. A negative value indicates the battery is discharging (the robot is
in use). The simulator will always give the same value for a discharging battery.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
Current – Double, current through the battery in amps. The simulator will always output -3 A.

DemoCmdsCreate
DemoCmdsCreate(obj,DemoNum)

Summary
On the real Create this function will display a variety of behaviors based on the input. The
simulator does not yet have the demo functionality, so it will display a message instead.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.
DemoNum – Double, number designating the demo to run. Must be an integer between -1 and 9.

-1 - Abort current demo
0 - Cover a room using a combination of behaviors
1 - Cover a room unless signal from Home Base is found

Note: Home base will not be found in the simulator
2 - Spirals outward then inward
3 - Searches for a wall, then drives along the wall
4 - Drives in a figure-8
5 - Drives forward when pushed while avoiding obstacles

Robot cannot be pushed in the simulator
6 - Drives towards a virtual wall
7 - Bounces between 2 virtual walls
8 - Plays Pachelbel's Cannon when cliff sensors are triggered
9 - Plays a different note for each cliff and bump sensor

15

DistanceSensorRoomba
Distance= DistanceSensorRoomba(obj)

Summary
This will return the odometry reading of the distance the Create traveled since the last call to
DistanceSensorRoomba or AllSensorsReadRoomba. After calling either of those functions,
the ‘distance sensor’ will reset.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
Distance – Double, distance in meters since last call to function. Positive distance indicates
forward movement, while negative indicates backward. The ‘sensor’ will saturate at ±32.768 m.

LidarSensorCreate

distScan= LidarSensorCreate(obj)

Summary
This function will return distance readings for each of the points of measurement on the LIDAR
sensor. This will be a very long array, and will take a few seconds to compute. It would be best if
the robot were not moving during this function call.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
distScan – Array of doubles, each entry corresponding to the distance in meters from the LIDAR
to the nearest obstacle at a certain angle, or to the range of the LIDAR if no obstacle is close enough.
Readings will be returned as the minimum range of the LIDAR if the distance to an obstacle is below
the minimum detectable distance. The array will have the number of entries based on #entries =
angularRange/angularResolution.

16

OverheadLocalizationCreate
[x y th]= OverheadLocalizationCreate(obj)

Summary
This function returns the position and orientation of the Create in global coordinates, as seen from
the overhead localization system. The simulator is designed for a system of cameras and 2-
dimensional barcodes, but any system with a high degree of accuracy should work.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
x – Horizontal position of the center of the robot in meters. Uses the Cartesian coordinate system.
y – Vertical position of the center of the robot in meters. Uses the Cartesian coordinate system.
th – Orientation of the robot (angle the robot is facing) in radians. Values are relative to the
positive x-axis, and positive counter-clockwise, negative clockwise, between –π and π rad.

ReadBeacon
[X,Y,Z,ROT,Ntag]= ReadBeacon(obj)

Summary
This function returns the position and orientation in camera coordinates, as well as AR Tag Number
of each beacon within the field-of-view of the sensor.

Camera coordinates are defined as:

X: Points to the robots left, parallel to the positive robot Y-axis
Y: Points up (is set to zero for all AR tags, since the simulation is planar)
Z: Parallel to the positive robot X-axis

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
X – Vector of x-coordinates of each beacon in the camera field-of-view as seen from camera coords.
Y – Vector of y-coordinates of each beacon in the camera field-of-view as seen from camera coords.

17

Z – Vector of z-coordinates of each beacon in the camera field-of-view as seen from camera coords.
ROT – Vector of orientation values of each beacon in the camera field-of-view. Orientation is
assumed zero for all beacons in simulation.
Ntag – Vector of beacon numbers for each beacon in the camera field-of-view

ReadSonar

distance= ReadSonar(obj)
distance= ReadSonar(obj,sonarNum)

Summary
This function returns the distance reading from the front sonar sensor. It is based off of the WOOSH
board. Note that the functionality has been changed significantly from the original function.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.
sonarNum - Double, number specifying which sonar is to be read. Must be an integer between 1
and 4. 1 corresponds to the right sonar, 2 – front, 3 – left, 4 – back. This input argument is optional.
Note that the original

Output
distance – Double, distance to the nearest wall in front of the robot, or the range of the sonar if
no wall is within range.

ReadSonarMultiple
distance= ReadSonarMultiple(obj,sonarNum)

Summary
This function returns the distance reading from the specified sonar sensor. It is designed to be
compatible with the WOOSH board and the latest firmware. The simulator assumes that the sonar
sensors are connected in a certain order to the WOOSH board (see sonarNum specification).

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.
sonarNum – Double, number specifying which sonar is to be read. Must be an integer between 1
and 4. 1 corresponds to the right sonar, 2 – front, 3 – left, 4 – back.

18

Output
distance – Double, distance to the nearest wall in front of the robot, or the range of the sonar if
no wall is within range.

RoombaInit
obj= RoombaInit(obj)

Summary
On the real Create this function establishes the serial port connection on the inputted
communication port number then starts the robot and confirms connection. In the simulator this
function has no purpose since the robot object is already created. It will simply output the same
object that is inputted.
It is recommended that the autonomous control program does not include the function
RoombaInit in it. It would avoid unnecessary opening and closing of the serial port if
RoombaInit is called prior to running the real Create, and the serial port object is passed into the
autonomous control program in the input argument. This will work the same way in the simulator
(although RoombaInit does not need to be called prior to running the simulator).

19

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
obj – User-defined object of class CreateRobot, should be used as the first input argument to all
subsequent functions.

SetDriveWheelsCreate
SetDriveWheelsCreate(obj,rightWheel,leftWheel)

Summary
This command will set the linear velocity of each of the drive wheels individually. To set the
angular velocity of the wheels the radius of the wheels must be known. To set the total linear and
angular velocities of the Create with this function the distance between the drive wheels must be
known.

Note that the velocity limits on each wheel expressed here apply during the execution of other
functions as well. Thus, for functions such as SetFwdVelRadiusRoomba or SetFwdVelAngVel
movement at the maximum forward and also maximum angular velocity is impossible. The velocity
combination must be set such that each wheel does not exceed the limits. Otherwise the function
will automatically limit the wheel speeds, which may change the curvature of the robot’s path.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.
rightWheel – Linear velocity of the right wheel in meters per second. Positive values indicate
forward movement, negative indicates backwards. Values must be between -0.5 and 0.5 m/s.
leftWheel – Linear velocity of the left wheel in meters per second. Positive values indicate
forward movement, negative indicates backwards. Values must be between -0.5 and 0.5 m/s.

20

SetFwdVelAngVelCreate
SetFwdVelAngVel(obj,FwdVel,AngVel)

Summary
This command will set the overall forward and angular velocities of the Create. This is probably the
most easily controlled movement command.

See the note in the summary of SetDriveWheelsCreate for information on wheel limits.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.
FwdVel – Linear velocity of the Create in meters per second. Positive values indicate forward
movement, negative indicates backwards. Values must be between -0.5 and 0.5 m/s.
AngVel – Angular velocity of the Create in radians per second. Positive values indicate counter-
clockwise rotation, negative indicates clockwise. Values must be between -2.5 and 2.5 rad/s.

SetFwdVelRadiusRoomba

SetFwdVelRadiusRoomba(obj,FwdVel,Radius)

Summary
This command will move the robot in an arc with the specified radius. This is useful for circular
and spiral-type movement paths, or making smooth turns. See below for special-case inputs.

See the note in the summary of SetDriveWheelsCreate for information on wheel limits.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.
FwdVel – Double, linear velocity of the robot in meters per second. Positive values indicate
forward movement, negative values indicate reverse. Values must be between -0.5 and 0.5 m/s.
Radius – Double, turning radius for the robot path in meters. Positive values indicate counter-
clockwise turning, negative values go clockwise. Special cases are listed below. Values must be
between -2 and -eps m or eps and 2 m. eps is a MATLAB built-in variable indicating the lowest
value above 0. This is done to ensure that a turning direction is known.

inf – Travel in a straight line
eps – zero-point turn (turn in place) counter-clockwise
-eps – zero-point turn clockwise

21

SetLEDsRoomba
SetLEDsRoomba(obj,LED,pColor,pIntensity)

Summary
This will change the settings for the three LEDs on the button panel of the Create. The LEDs next to
the Play (>) and Advance (>>|) buttons will be referred to as Play and Advance. These two LEDs
can be switched on and off, while the LED next to the power button can be a range of shades
between green and red, and a range of brightness settings.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.
LED – Double, controls the state of the Play and Advance LEDs. Must be an integer between 0 and 3.

0 – Both off
1 – Advance on, Play off
2 – Advance off, Play on
3 – Both on

pColor – Double, controls the color of the power LED. Must be between 0 and 100. 0 is pure
green, 100 is pure red, numbers scale in between.
pIntensity – Double, controls the brightness of the power LED. Must be between 1 and 100. 1 is
very dim, 100 is very bright, numbers scale in between. Think percentage of intensity.

travelDist

travelDist(obj,speed,distance)

Summary
This command will make the robot move the specified distance in a straight line at the specified
speed. The function will continue to execute until the movement is complete, so no other functions
will be available during that time. The distance traveled is dependent on the odometry, so it will
not be exact if the odometry sensor is noisy. This function is not recommended for frequent use.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.
speed – Double, linear speed at which the robot moves in meters per second. This value must be
positive, between 0.025 and 0.5 m/s.
distance – Double, distance the robot will travel before stopping in meters. This also controls the
direction of movement, positive moves forward, negative moves backwards.

22

turnAngle
turnAngle(obj,speed,angle)

Summary
This command will make the robot turn the specified angle at the specified speed. The function will
continue to execute until the movement is complete, so no other functions will be available during
that time. The angle turned is dependent on the odometry, so it will not be exact if the odometry
sensor is noisy. This function is not recommended for frequent use.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.
speed – Double, speed at which the robot turns in radians per second. This value must be positive,
between 0 and 0.2 rad/s.
angle – Double, angle to turn in degrees. The value must be between -360° and 360°. In actuality,
this is more like the angle to end up at. The robot will turn to take the shortest path to the specified
angle. So commands between 0° and 180° and between -180° and -360° will turn counter-
clockwise. Commands between 180° and 360° and between 0° and -180° will turn clockwise.

VirtualWallSensorCreate

state= VirtualWallSensorCreate(obj)

Summary
This function checks if the robot’s IR sensor is detecting a virtual wall. This requires a direct line of
sight between the virtual wall emitters and the Create’s IR sensor.

Input
obj – User-defined object of class CreateRobot, the same object that is the input to the
autonomous control program.

Output
state – Double of Boolean value, 1 if a virtual is detected, 0 if not.

23

Contact Information

Suggestions and bugs can be reported in the appropriate forum on the project’s SourceForge page:
Forums: https://sourceforge.net/projects/createsim/forums/forum/1204154

Other inquiries can be directed to:
Email: CreateMatlabSim@gmail.com

For more information, visit:
Website: http://web.mae.cornell.edu/hadaskg/CreateMATLABsimulator/createsimulator.html
SourceForge: https://sourceforge.net/projects/createsim

Contributing Parties

Author:
Cameron Salzberger

Advising Professors:
Dr. Hadas Kress-Gazit
Dr. K-Y Daisy Fan

Coding and Testing Assistance:
Jason Hardy
Francis Havlak
Ankit Arora

Creaters of the MATLAB Toolbox for the iRobot Create:
Joel M. Esposito
Owen Barton
http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/
2008

Code Resources:
Nassim Khaled (inside_triangle on MATLAB Central)
Zhenhai Wang (circle on MATLAB Central)

Sponsor:

The MathWorks
http://www.mathworks.com/

https://sourceforge.net/projects/createsim/forums/forum/1204154
mailto:CreateMatlabSim@gmail.com
http://web.mae.cornell.edu/hadaskg/CreateMATLABsimulator/createsimulator.html
https://sourceforge.net/projects/createsim/
http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/
http://www.mathworks.com/

	Disclaimer
	Overview
	AllSensorsReadRoomba
	AngleSensorRoomba
	BatteryChargeReaderRoomba
	BatteryVoltageRoomba
	BeepRoomba
	BumpsWheelDropsSensorsRoomba
	ButtonsSensorRoomba
	CameraSensorCreate
	CliffFrontLeftSensorRoomba
	CliffFrontLeftSignalStrengthRoomba
	CliffFrontRightSensorRoomba
	CliffFrontRightSignalStrengthRoomba
	CliffLeftSensorRoomba
	CliffLeftSignalStrengthRoomba
	CliffRightSensorRoomba
	CliffRightSignalStrengthRoomba
	CurrentTesterRoomba
	DemoCmdsCreate
	DistanceSensorRoomba
	LidarSensorCreate
	OverheadLocalizationCreate
	ReadBeacon
	ReadSonar
	ReadSonarMultiple
	RoombaInit
	SetDriveWheelsCreate
	SetFwdVelAngVelCreate
	SetFwdVelRadiusRoomba
	SetLEDsRoomba
	travelDist
	turnAngle
	VirtualWallSensorCreate
	Contact Information
	Contributing Parties

