

MATLAB Simulator for the
iRobot Create

Code Documentation

Advisors: Dr. Hadas Kress-Gazit
Dr. K-Y Daisy Fan

Supported By: The MathWorks
Updated: 2/18/2013 by Kevin Wyffels

Author: Cameron Salzberger

CORNELL UNIVERSITY

2

Contents

Disclaimer ... 4

Introduction 4

Design Intent ... 5

Simplifications and Known Issues .. 5

Physics Engine 5

Sensors.. 8

Structure of the Program .. 9

Map File Generation .. 9

Configuration File Generation ... 10

Simulator Initialization .. 10

Environment Setup .. 11

Manual Mode .. 12

Autonomous Mode ... 13

Replay and Debugging .. 14

Function Descriptions.. 15

Conventions 15

MapMakerGUI 15

Important UserData ... 15

Map File Parsing Algorithm .. 15

Clear Functionality ... 16

Undo Functionality ... 16

Save Functionality .. 17

Map Size 17

ConfigMakerGUI .. 17

Configuration File Parsing Algorithm ... 17

Save Functionality .. 17

SimulatorGUI 18

Important UserData ... 18

Enabling the Simulator ... 18

Updating the Simulator .. 19

Visualization Efficiency .. 19

3

Input File Parsing Algorithms .. 19

Create Button Functionality ... 19

Autonomous Code Execution ... 20

CreateRobot 20

Constant Properties ... 20

Other Properties .. 20

Constructor Function .. 21

Simulator Control Functions .. 21

Sensor Functions ... 23

Computational Functions .. 29

State Manipulator Functions (Physics Engine)... 34

Translator Functions ... 44

updateSim 45

ReplayGUI 46

Important UserData ... 46

Data Format 47

Visualization 47

Contact Information ... 48

Contributing Parties ... 48

4

Disclaimer

Copyright © 2010 Cornell University. All rights reserved.

The software and documentation are licensed under the open-source FreeBSD license. A copy of
this should be provided with the software. If it is not, email CreateMatlabSim@gmail.com for a
copy. By using this software you are agreeing to the terms and conditions specified in the license.

Introduction

This document is intended to help users who want a more in-depth understanding of the coding
behind the simulator toolbox. This may be used to help modify the code to fit your specific robot
setup, or to add or modify other functionalities. This document will describe the process of the
simulation, and the algorithms within individual functions. This document is intended to supple-
ment, but not replace, the comments contained within the code. Therefore, if a function is very
simple or clearly explained by the comments, it will not be mentioned in this document. This is the
case for many functions that simply ‘get’ or ‘set’ various robot object properties.

This document assumes that you have read both the User Guide and the documentation for the
MATLAB Toolbox for the iRobot Create. It also assumes a more in-depth knowledge of MATLAB
than is necessary to simply use the simulator. If you wish to modify all or part of the simulator, you
should first have background knowledge of what you want to change. This may include knowledge
of how to create and program GUIs, create and use timers, define and manipulate user-defined ob-
jects (object oriented programming), open and manipulate data and text files, and a background of
basic physics (mechanics).

External resources will be handy even for experienced users. These are some that were referenced
during the creation of the simulator.
GUIs:
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/f16-40727.html
http://blinkdagger.com/matlab/
Timers:
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f9-38012.html
Object Oriented Programming:
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/brk7uzk.html

mailto:CreateMatlabSim@gmail.com
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/f16-40727.html
http://blinkdagger.com/matlab/
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f9-38012.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/brk7uzk.html

5

Design Intent

Some of the user-defined requirements for this simulator are listed here so you can understand the
design intent behind the programming choices.

− Must simulate the robot movement relatively close to reality
− Physics need only be simulated to the extent of collision, corners, and wall friction
− Autonomous control program must work on both the real Create and the simulator without

modification
− One input argument to the control program is allowed
− Simulator must be started first, before starting autonomous program
− Must have a GUI that is intuitive to use with minimal MATLAB knowledge
− ‘Helper’ GUIs (input file builders and debugger) must be independent of the simulator and

the robot object definition

Simplifications and Known Issues

Physics Engine

The physics engine treats all walls and lines on the ground as linear, not rectangular. This is done
to simplify the computations by not worrying about thickness of the wall. This assumption is only
valid if the walls are thin compared to the radius of the robot (about 1-2 cm thick). If the walls are
any thicker they will have to be modeled as rectangles.

The simulator only allows for straight lines to be used in creating all shapes for walls and lines.
Multiple lines may be used to make a fairly accurate representation of a curved surface, but straight
surfaces would probably fit the needs of the robot better.

There are no ‘out-of-bounds’ areas in the simulator maps. Therefore, the user is able to place the
robot over a wall or in an area that would normally be inaccessible. The behavior exhibited by the
robot will be irregular in these instances, and not representative of reality. Note that the user is
unable to place obstacles or the robot off of the axes by clicking elsewhere in the figure window.
However, they are able to use the toolbar to pan and zoom to different areas of the map, and the
robot is able to drive off the map, so this does not constitute an ‘out-of-bounds’.

6

If colliding with more than two walls, the simulation only takes into account the two closest walls.
The simulator should still work when it’s hitting more walls since if the robot starts to move to-
wards the undetected wall, it will become one of the two walls that is detected. However there is
the possibility that the robot could inch its way through a corner by bouncing off of different walls
but always heading towards them. This should not be a problem though, since most maps should
have corners between two walls that are larger than the robot.

If colliding with the side of a wall and a corner, the simulator only takes into account the wall. This
is to avoid confusion when contacting something like a right-angle corner, so that the robot doesn’t
try to rotate around the corner while also sliding along the wall. However, this can cause problems
when the corner is not connected to the wall.

If colliding between multiple corners, the simulator only takes into account the closest corner. This
is to simplify the computation, but can run into similar problems as with the multiple walls case. If
there are multiple corners of walls the robot can enter between the walls and get stuck.

Problematic
situation

Problematic
situation

Intended
situation

Problematic
situation

7

Intended
VelocityNormal

Component

Tangential
Component

The simulator assumes force is proportional to intended velocity. However, the actual force pro-
duced by the robot is unknown, so this assumption may be completely invalid. This is done to cal-
culate the reduction in velocity due to friction while sliding along a wall. An example calculation is
below.

𝑣⃑𝑡 − 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑣⃑𝑖𝑛𝑡 − 𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑛� − 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙
𝑡̂ − 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑜 𝑤𝑎𝑙𝑙
𝜇𝑘 − 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
𝑣⃑𝑡 = 𝑣⃑𝑖𝑛𝑡 ∙ 𝑡̂ − (𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�) ∗ 𝜇𝑘

The simulator assumes there is only friction from the walls, not from the wheels on the ground.
Therefore if the robot is not contacting any walls, and is told to go forward at a certain velocity, the
robot will move forward at that velocity.

The simulator also assumes that the wheels never get stuck, and that they will never slip except
when running into a wall. This is not realistic, but it is difficult to model random wheel slips or
catching. However, the odometry is not assumed to be perfect, since the noise added should be rel-
ative to the errors in odometry.

The simulator assumes infinite acceleration and constant velocity. If a change velocity command is
sent to the robot, it changes to that velocity instantly and remains at that velocity until told other-
wise. This makes simulating sensors that use acceleration difficult. Therefore, no IMU functionality
was added to the simulator.

The simulator assumes that there is no bouncing from collisions into walls. This is somewhat valid
due to the robot moving at low speeds, but there is still always some recoil that may affect the posi-
tion or direction of the real Create in action.

The simulator assumes that beacons are not obstacles and can be driven over. Though colored golf
balls are probably the optimal beacons to use for the real Create, the simulator assumes that they
are more akin to circles of colored tape on the ground. The simulator also assumes that virtual wall
emitters can be driven through. This is not the case at all, but it would be too complicated to model
reality. If the real Create hits a virtual wall emitter, it will probably knock it over or at least move it.
To promote reality in the simulator and avoid damage with the real Create, the robot should proba-
bly be programmed to move away from virtual walls.

8

Sensors

The simulator assumes that all sensor noise can be modeled as normally distributed about a mean.
For many sensors, this mean will be 0, but this is more fully explained in the User Guide on page 14.
An exception to this is that the sonar noise values are limited such that they do not cause the sensor
to saturate. That is, if the true distance is within sensor range, the noisy measurement will also be
within sensor range. This was done to avoid sparse data for noisy sensors, and is not necessarily a
reflection of true sonar behavior. This can result in a deviation from Gaussian noise for sensors
whose noise parameters are relatively large compared to their range.

The virtual wall field is assumed to be triangular and without noise. Through experimentation, it
was determined that the virtual wall field is not actually triangular, but more diamond-shaped or
even pentagonal. However, this would be even more difficult to model and unnecessarily compli-
cated. In reality, the effective linear and angular range of the virtual wall beam varies widely, but
these can be adjusted to the closest observed parameters as explained in this document on pages
25-26.

The virtual wall halo is modeled as being emitted from same location as the beam. In reality (at
least with the Virtual Wall Scheduler product) the halo emitter is a few cm behind the beam emitter.
However, this is small enough of a difference that it is justified as being modeled at the same loca-
tion.

The bump sensors and overhead localization system are modeled as having no noise. The bump
sensors may or may not be activated on a glancing hit with the wall, and also may activate either the
front or one of the side sensors in the same location depending on how hard the bumper is pushed.
However, they tend to perform consistently enough to model the sensor as noiseless. The overhead
localization system is supposed to be a very accurate method of determining the position and orien-
tation of the robot. This means that the noise should be low enough to be negligible. More infor-
mation about the system and modifying the code relating to it can be found on page 28.

The overhead localization system is assumed to be equally accurate everywhere on the map. This is
not necessarily a realistic assumption, but the variations in accuracy based on location and orienta-
tion of the robot can be difficult to calculate and very dependent on the system. It is also assumed
to be able to detect the robot anywhere on the infinite plane, which is impossible for any real sys-
tem. To improve the usage of the robot in reality and realism in the simulator, a wall should proba-
bly be constructed around the border of the region of valid readings from the overhead localization
system.

9

Structure of the Program

Map File Generation

One of the first steps is to generate the map file for input into the simulator. This can be done using
MapMakerGUI, or any text file editor. The generation process is explained more in the User Guide
on pages 11-13.

10

Configuration File Generation

The other first step is to generate the configuration file for input into the simulator. This can be
done using ConfigMakerGUI, or any text file editor. The generation process is explained more in
the User Guide on pages 14-16.

Simulator Initialization

When SimulatorGUI is called, it performs several tasks during the initialization process. Two of
the most important are creating the robot object, and setting up the timer object. The robot object
is an instance of the user-defined class CreateRobot, which contains a great many properties and
non-static methods. The timer object has the name CreateSim, and the task to update the simula-
tor at a regular interval.

11

SimulatorGUI will pass the handles to all the GUI controls to the robot object during the con-
struction method. These handles will be stored in the property handlesGUI. SimulatorGUI
will also set up the timer function updateSim so that it is passed the robot object and the handles
to the GUI controls as input arguments.

Environment Setup

Once SimulatorGUI is open, the user will need to set up the environment and other parameters
of the robot. The simulator is immediately usable without executing these steps though. The map
will default to blank, the noise and communication delay parameters will default to zero, and the
position of the robot will default to the origin facing right. To adjust these values the user will load
the map and configuration files, and set the robot’s position and orientation manually.

When the map or configuration file is loaded, the data is imported from the text file, parsed in the
SimulatorGUI program, and stored in the robot object. The map data will be stored in the prop-
erties mapWalls, mapLines, mapBeacs, and mapVWalls. The noise data from the configuration
file will be stored in the property noise, and the communication delay will be stored in the proper-
ty comDelay.

12

Manual Mode

Manual mode in the simulator is automatically active after initialization and while autonomous
code is not being executed. This allows the user to drive the robot with the keyboard or the GUI
controls, as well as visualize the sensors and reading their values at any point in time. The use of
these functionalities is explained more fully in the User Guide on pages 18-19.

During both manual and autonomous mode, the timer object (CreateSim) will periodically call
the function updateSim to recalculate the position of the robot and update the plot accordingly. If
the viewpoint control is set to Robot Centric, updateSim will shift the plot so that it is centered at
the robot. Also, updateSim will call a function in CreateRobot to replot the positions of the
sensors that are being visualized. There are a few more function calls and purposes in updateSim
that will be explained in more detail on pages 45-46. The keyboard and manual control buttons on
the simulator will call a function in CreateRobot that changes the intended velocities of the ro-
bot. The property values that are changed are velInt and wInt, for the intended linear and angu-
lar velocities respectively.

13

Autonomous Mode

When the user starts the autonomous control program, all manual movement controls are disabled.
The simulator setup buttons are also disabled, along with the autonomous start button. If enabled
and pressed during autonomous code execution, none of these would cause errors. They are disa-
bled merely to ensure pure autonomous execution with no user input beyond what is possible on
the real Create.

Other than the disabled functionalities, other processes still work mostly the same as in manual
mode. The sensor visualization options still work. The timer still calls updateSim, which updates
the robot position according to the intended velocities, among other things. Also, the Read Sensors
button is still active, allowing users to get sensor data at any point in time. Note that this will tem-
porarily stall the autonomous code execution while the sensor data is computed.

The main difference between autonomous and manual mode is that the autonomous control pro-
gram sets the intended velocities and reads sensors. This is filtered through the Translator Func-
tions in CreateRobot, that all have the same name and functionality of those in the MATLAB
Toolbox for the iRobot Create.

14

If the Save Data checkbox is marked, when the autonomous code finishes executing (either by push-
ing the stop button or reaching the end of the code, but not by closing the GUI) a data file will be
created for debugging purposes. The robot object property dataHist will be used to make this
data file. More information about this data file can be found in the User Guide on page 21. Note that
the data will be recorded to dataHist independent of whether the box is marked, so the box need
only be marked by the end of the autonomous code execution to save the data. However, this may
be considered inefficient and should possibly be changed.

Autonomous code execution is halted when the control program finishes execution, the autono-
mous Stop button is pressed, or the GUI is closed. When stopping before the code is done executing,
SimulatorGUI will set a property (autoEnable) in the robot object so that the next Translator
Function to be called will throw an exception (error) and the autonomous code will quit. The ex-
ception will be caught back in the simulator though, so no message will display in the command
window. More information about this can be found on pages 20-21.

Replay and Debugging

The output data file from autonomous code execution can be used for debugging in two ways. It
can be inspected by importing it into the workspace and looking at datahistory in the MATLAB
variable editor. The alternative is to open ReplayGUI and import the data file. ReplayGUI usage
is explained more in the User Guide on pages 20.

15

Function Descriptions

Conventions

The GUI controls are tagged with the convention of the uicontrol object style, underscore, and then
name (e.g. push_fwd is the tag for the manual control button to drive forward in Simulator-
GUI). Pushbuttons have the prefix ‘push’, toggle buttons have ‘toggle’, radio buttons – ‘radio’,
checkboxes – ‘chkbx’, edit text boxes – ‘edit’, static text boxes – ‘text’, tables – ‘table’, axes –
‘axes’, and GUI figure – ‘figure’. Only uicontrol objects that will be used are specifically tagged,
so some static text boxes and uibutton groups retain their default tags. The callback functions and
other functions retain their default names and input arguments. This usually is in some form of
uicontroltag_Callback(hObject,eventdata,handles).

Many important values or matrices that are frequently used by the GUIs are stored in the User Data
property of the various uicontrol objects. Usually the data will be related to the uicontrol object,
but in some cases the logical connection is not there. Check the following function descriptions for
the relevant GUI to determine where particular values are stored.

Sensor names are intended to remain constant throughout the toolbox to improve readability and
reduce errors. These names are used in the function and variable names that pertain to that sensor
(e.g. genSensor or rangeSensor). The designation for the infrared wall detector is ‘IR’, for the
bump sensors is ‘Bump’, cliff sensors (signal strength) – ‘Cliff’, wheel encoders (odometry) –
‘Odom’, sonar devices – ‘Sonar’, LIDAR device – ‘Lidar’, camera (for detecting beacons) – ‘Cam-
era’, overhead localization system – ‘Overhead’.

In general, variable names follow a few rules with a couple exceptions. Commonly used variables
have short names; rarely used variables have longer ones. Index or count variables are ‘i’ or ‘j’.
The variables ‘x’ and ‘y’ only ever refer to Cartesian positions, and ‘th’ refers to angle relative to
the positive x-axis (positive counter-clockwise). Variable names are lowercase except when made
of multiple words (e.g. twoWords). Underscores are only used in local variables that require a
great deal of clarity to distinguish between similar variable names.

All units are in meters, radians, and seconds unless otherwise specified.

MapMakerGUI

Important UserData
figure_mapmaker – Cell array of strings to be outputted to the map text file
edit_beacon – Boolean value of whether user edited the text box since starting the GUI

Map File Parsing Algorithm
This method of loading the map file is used in all three of MapMakerGUI, SimulatorGUI, and
ReplayGUI. When the Load button is pressed, the user will be able to choose a file to input. Each

16

line is extracted as a string from the map file and processed. The rules for creating allowable map
files can be found in the User Guide on page 13.

Each line is first processed through the built in functions lower and strtrim to account for up-
percase characters and whitespace at the beginning and end of the string. Unfortunately this also
makes beacon IDs convert to lowercase, but this is probably not a big deal. Next it is check to see if
the line is empty or a comment (signified by ‘%’). If it is not, the first grouping of characters is ex-
tracted and compared to valid words. If it is recognized to be a wall, line, or virtual wall, the rest of
the line is converted to numbers and stored in the appropriate matrix. If it is instead recognized as
a beacon, the position and color values are converted to numbers and the ID is converted to a
string, and all the information is stored in the cell array. If the first word is unrecognized, then the
parser will display a warning to the command window.

The elements are then plotted to the map using simple plot-lines for walls, lines, and the edges of
the virtual wall fields. A line approximation of a circle (20 lines) is used to show the halo radius of
the virtual wall field. Different markers are used to plot the virtual wall emitter point, as well as the
beacons. The beacons are also labeled by text next to the marker. Different colors and line styles
are used to differentiate between the different map elements, although the beacon marker color is
set by the color of the actual beacon.

Clear Functionality
The map and map data are cleared before a new map is loaded, or when the Clear button is pushed.
This process involves deleting all the children on the plot (the children property of the axes con-
tains handles to all plotted items). The User Data property that contains the map information is re-
set to contain only the comments that tell the user about formatting.

Undo Functionality
The Undo function erases the last action taken in most instances. When the Undo button is pressed,
the plot is checked to see if it has any items plotted (children), verifying that there is actually some-
thing to undo. If there are plotted items, the element that was last plotted is deleted and the last
string in the cell array containing the map data is deleted. It must first be checked that children is
not empty to prevent errors, and to make sure the lines of the cell array that are the beginning
comments are not deleted. Note that beacons involve two plotted items and virtual walls involve
three, so multiple entries in children will need to be deleted for those cases.

Because of this method of implementation, the Undo button can be pressed until all elements are
deleted. There is no ‘redo’ functionality. The Undo button will not be able to undo a Clear action,
which is the reason for the confirmation pop-up. Undo will delete entries one by one if a Load ac-
tion has just been performed. It also will not undo saving a file, but will undo normally instead.

17

Save Functionality
The Save button will open a dialogue box allowing the user to enter their filename. The file will on-
ly be saved if there is no file by the same name in the current directory, or if the user confirms that
they wish to overwrite it. The save is executed by simply writing the map data to the file, one line
per cell.

Map Size
The default size and placement of the map is 10 m x 10 m, centered at the origin. The user is able to
pan and zoom to control their viewing of the map. Oddly though, MATLAB does not allow zooming
out further than the initial zoom. The available area to place obstacles and such though is theoreti-
cally infinite. If you wish to change the default viewing size, enter guide into the MATLAB com-
mand prompt. Navigate to MapMakerGUI.fig and open it. Double click on axes_map to bring
up the properties inspector, and change the values in the XLim and YLim properties to match the
desired map size.

ConfigMakerGUI

Configuration File Parsing Algorithm
This method of loading the configuration file is used by both ConfigMakerGUI and Simulator-
GUI. The initial loading and processing is done the exact same way as the map file parser in Map-
MakerGUI. The difference is once the first word is recognized as a valid sensor name; the rest of
the line is converted to numeric values and stored in the table for noise. The first word could also
be recognized as the communication delay indicator, in which case the edit text box for setting that
is updated.

Save Functionality
The set up of the method of saving the data is similar to MapMakerGUI. The only difference is that
the noise data must be extracted from the table and printed to the line. The precision of the num-
bers is adjustable inside the fprintf statement. The communication delay is extracted from the
edit text box and printed last. That precision is similarly adjustable.

18

SimulatorGUI

Important UserData
text_title – Robot object of class CreateRobot (commonly stored in variable obj)
figure_simulator – Array of two handles for the plot of the robot

1. Circle
2. Direction line

axes_map – Array of handles to the visualization plots of the sensors
1. IR wall
2. Front sonar
3. Left sonar
4. Back sonar
5. Right sonar
6. Right bump
7. Front bump
8. Left bump
9. Right cliff
10. Front right cliff
11. Front left cliff
12. Left cliff
13. Right LIDAR
14. Front right LIDAR
15. Front LIDAR
16. Front left LIDAR
17. Left LIDAR

Enabling the Simulator
In previous versions of the simulator there were measures in place to ensure that the autonomous
control program called the simulator translator functions rather than the functions from the
MATLAB Toolbox for the iRobot Create. The first version set a flag in the autonomous control pro-
gram to indicate a run with the simulator or real robot. This was undesired as the control program
should be able to work without modification on both the simulator and real robot. In beta versions,
the simulator set the MATLAB search path so that when SimulatorGUI ran, the simulator func-
tions would be prioritized. When SimulatorGUI was closed, the path was reset.

The path setting was determined to be unnecessary as MATLAB automatically detects the class of
the input arguments when calling a function. Since the input argument for all of the Translator
Functions will be of the user-defined class CreateRobot, MATLAB will only make function calls to
the public methods in there. This necessitates that the autonomous control program receives the
instance of CreateRobot as its input argument so that it can access the correct RoombaInit and
other functions.

19

Updating the Simulator
One other difficulty with the simulator is ensuring that updating of the visualization of the robot
occurs independently of processing or function calls made by the control program. The first pro-
gram that was used as inspiration for the simulator, updates the visualization at every Translator
Function call. However, if there is heavy processing going on with the autonomous code, calls to
functions travelDist or turnAngle, or simple pauses, this will enormously delay the visualiza-
tion. To avoid these problems, a timer is used. This timer (CreateSim) regularly interrupts other
processing and calls a function to update the simulator (by calling function updateSim). This in-
terruption is done infrequently enough, and the update finishes fast enough, to avoid appearing to
slow down the control program execution. This timer is created upon loading the simulator, and
deleted upon exit to avoid excessive memory usage.

Visualization Efficiency
In order to speed up the updating of the map and robot visualization, the plotted items are only up-
dated, not replotted. It would take far more time to clear the axes and replot the map, robot, and
sensor visualization than to simply update the data of the currently plotted object. For this pur-
pose, the handles to the robot lines and the sensor visualizations are stored in the robot object. At
every update the robot representation is updated, and the sensor visualizations that are marked are
updated as well.

Only a few issues come out of this method. One is that both the robot and the sensor visualization
representations must be plotted upon the opening of the simulator. The sensor visualization
checkboxes, though, default to being unmarked, so the plotted objects have their visibility property
turned off. When the sensor is marked, the plot is turned visible and the position will be corrected
at the next update. This means that when a sensor is marked, it is immediately plotted in the incor-
rect position, but this is fixed fast enough not to matter too much. The data itself coming from the
sensor is correct at all times.

Input File Parsing Algorithms
The parsing algorithms for the map and configuration files are exactly the same as in Map-
MakerGUI and ConfigMakerGUI. See the appropriate section for details.

Create Button Functionality
There are three buttons on the real Create: Power, Play, and Advance. Obviously the Power button
functionality does not need to be added, but the control program could use the Play or Advance but-
tons as input. However, the function ButtonsSensorsRoomba on the real Create, will only re-
turn true for the buttons while they are depressed. MATLAB GUIs on the other hand, do not have a
function for holding and releasing a button. ButtonsSensorRoomba needs to read a value, so the
callback function of a push button would not exactly work, since there is nothing that would indi-
cate if the button is being held down or just released. Using the WindowsButtonDownFcn property
would increase inefficiency because it would be called on every mouse click, and it is only active on
a figure anyway, not over a uicontrol. The best available option seemed to be to make the Create
button representations on the simulator into toggle buttons. This would allow the buttons to be

20

pushed and held, and multiple buttons to be depressed at one time. It does not exactly match the
user interface on the real Create, but it seems to be close enough.

Autonomous Code Execution
In order to allow an arbitrarily named control program to execute, the built-in function feval
needs to be used. When the Start button is pressed, the simulator will allow the user to select the
control program file and then will run it with the input argument of the robot object. The autono-
mous code is then allowed to execute unhindered until either the simulator is closed or the Stop
button is pushed. In both cases, the property autoEnable of the robot object is set to 0, meaning
autonomous mode is disabled. The next Translator Function that tries to execute will throw an er-
ror.

Unless stopped by a try-catch statement, errors will always force-quit the function that throws the
error, and the error will propagate up through all calling functions. When the error is thrown in the
function autoCheck, it quits that function, as well as the Translator Function that called it, then
the autonomous control program, then is received back at the feval statement. This will end all
code execution in the try block that surrounds the feval statement, and continue execution in
the catch block. This is done mostly to avoid outputting the error message to the command win-
dow, since even without the catch block the simulator will continue to work. If the error is not
recognized as the one that is intended to terminate autonomous mode, the error is rethrown so it
propagates out to the command window for debugging the control program.

The main problem with this method (besides poor programming practice) is delay. The autono-
mous code will continue to execute until the next call to a Translator Function. If there are frequent
pause commands in the code, or a time-consuming computation, the code may not stop execution
for some time. Also, if the autonomous code gets stuck in an infinite loop or computation that does
not involve calls to Translator Functions, the Stop button will do nothing to break the cycle and the
program may freeze. Fortunately, Ctrl+C works just as well as normal, and should also allow the
simulator to keep running, at which point pushing the Stop button will re-enable manual mode.

CreateRobot

Constant Properties
These properties cannot be changed by any of the functions. They are used for setting the parame-
ters relevant to the robot and the sensors that are not set in the configuration file. These values
may be modified manually to adjust or exaggerate certain features in the simulator (e.g. friction).
The use of these properties is explained sufficiently by the comments.

Other Properties
These properties can be set by any of the methods contained within CreateRobot, but the ‘pri-
vate’ permissions make it impossible to extract or set them from external methods. If at least some
of them were set to ‘public’, many of the get… or set… methods (e.g. getMap) would not need to be
written. However, it seems to be better programming practice not to have ‘public’ properties.

21

The input-related properties noise and comDelay, as well as all of the map properties, will con-
tain information from the input files. Also, handlesGUI is the handles structure for Simulator-
GUI, mostly used for the LED and Play/Advance button functions.

The output-related properties are autoEnable, timeElap, and dataHist. autoEnable is
used to determine if autonomous code is still running. timeElap is used purely to store the
timestamp of the step in the data history output. The timer property InstantPeriod could also
be used here, but the tic-toc functions are used for convenience. dataHist stores the output
data, to possibly be saved at the end of autonomous mode execution.

The rest of the properties vary as the simulator runs. The odom properties store the odometry da-
ta, obviously. The Int properties (velInt, wInt) are set by the user or the control program to
specify the intended velocities for input to the physics engine. Finally, the Abs properties give the
absolute position and velocities of the robot are calculated by the physics engine and used to de-
termine the new pose of the robot.

Constructor Function
CreateRobot:
This function follows the rules for user-defined object constructor functions that can be found at:
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_oop/brd2m9e-1.html
It sets default values to all the properties that have not already been defined. The default is an emp-
ty map with no noise or communication delay. The robot starts stationary, at the origin, facing
right, with the simulator in manual mode.

The reason for using varargin as the input parameter is so that the handles structure from
SimulatorGUI can be passed in and stored in the object, but if the robot object is created from
the command window instead of through SimulatorGUI, no input argument need be passed.
This is to allow object creation for simple testing and debugging purposes. Not all of the simulator
functionalities will work without running the GUI, but some methods can be tested.

Simulator Control Functions
manualKeyboard:
This function is used to control the robot’s movement during manual mode. The arguments are the
intended increase or decrease in the robot’s velocities, rather than the new intended velocities.
This is done to avoid requiring that SimulatorGUI knows the robot’s current velocities to set the
new ones. However, that means that a different type of input is required to stop the robot’s move-
ment entirely, since manualKeyboard(obj,0,0) would just leave the velocities how they are.
Thus, the stop commands will send NaN as the input argument.

The velocities are limited based on the physical restriction on the individual wheel speeds of the
Create. Each wheel is only able to move at 0.5 m/s, so if the velocity combination results in exceed-

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_oop/brd2m9e-1.html

22

ω

v

r

vRvL

ing this, each wheel speed will be reduced to within the limits and the total velocities will be recal-
culated from that. The wheel speeds are calculated as shown below:

Wheel speeds from total speeds:
𝑣𝑅 = 𝑣 + 𝜔𝑟
𝑣𝐿 = 𝑣 − 𝜔𝑟

Total speeds from wheel speeds:

𝑣 =
𝑣𝑅 + 𝑣𝐿

2

𝜔 =
𝑣𝑅 − 𝑣𝐿

2𝑟

updateSensorVisualization:
This function is called on every call to the timer function updateSim. Because the sensor func-
tions take a bit of time to execute, this function will only attempt to update each sensor representa-
tion on the plot if that sensor’s checkbox is marked. When a sensor’s checkbox is marked, the plot
for that sensor’s representation is made visible. However, it is not updated until the next call to
updateSim. This means that for a brief moment after marking a sensor checkbox, the plot will
display in the wrong location. Even if all the checkboxes are marked, the simulation is not slowed
down dramatically. However, to avoid clutter as well as increased computation, unneeded sensors
should be unmarked.

Most of the sensors make a call to their generating function (e.g. genSonar) to receive the neces-
sary data for plotting. However, since the call to genLidar produces readings for all of the points
in the LIDAR sensor’s range, it would be inefficient to call it in order to find only a couple distances.
Therefore, the line orientations are calculated and calls are made to findDist, just the same as
inside genLidar, but without so many iterations. Currently the LIDAR visualization only shows
the five lines interspaced through the angular range.

updateOutput:
This function adds another row on the end of the cell array dataHist for output at the end of au-
tonomous code execution. Note that it only inputs values for timestamp, position, and orientation,
not for the function calls. The function call representations are added by addFcnToOutput at
every call to a translator function.

addFcnToOutput:
This function inserts the representation of the translator function call into the current row of
dataHist for output at the end of autonomous execution. All translator function calls made by the
control program after one call to updateSim but before the next one will be retained in the last
line and last cell of dataHist. If no translator function calls are made, that cell remains empty. If
one call is made, then that cell will contain the string representation of that call. If multiple calls are
made, then a that cell contains another cell array which holds all the string representations.

23

Sensor Functions
The noise is added to the sensors inside the generating functions (e.g. genSonar) because the sen-
sor visualizations and command window output (from the Read Sensors button) make use of the
generating functions instead of translator functions. This way, the noise can actually be visualized
for demonstration purposes. Also, the Read Sensors button can be used to see what kind of data the
autonomous code will receive when reading sensors in particular situations.

genBump:
To determine if the robot is intersecting a wall or not, this function makes use of findColli-
sions. The original implementation of genBump created a line representation of the robot circle
(only the relevant angles), and checked it against each wall using polyxpoly. However, the algo-
rithm used in findCollisions is theoretically faster, although it requires checking for collisions
on all angles of the robot surface. The speed difference has not been tested.

Approximate effective angles of the bump sensors are below. Most hits within the orange region
will trigger the front sensor. Hits within the blue and red regions will trigger the left or right sen-
sors respectively. Note that the angle values were taken from experimentation, but cannot be taken
as infallible. A sensor may not be activated at all on a glancing or soft hit. Whether the front versus
one of the side sensors are activated also depends on the strength and angle of the hit on the wall.
The simulator does not take these effects into account though. Despite these possibilities, there is
no noise added into the bump sensor readings.

~48.6°

24

Note also that the real Create only has two physical bump sensors on the left and right side. Thus,
when the front of the bumper is hit, both sensors are usually activated. Thus the toolbox for the
real Create interprets this as a front bumper hit. Therefore, if the robot were to wedge itself in a
corner when both the left and right bumpers are pressed by two different walls, the real Create will
interpret this as a front bumper hit. The simulator has this functionality as well.

genCliff:
This function uses the same algorithm as findCollisions, but instead looks at lines instead of
walls. The reasons for using this algorithm over polyxpoly are explained more under genBump.
Note that since findCollisions only looks at walls, the entire algorithm is copied into gen-
Cliff with “Lines” substituted for “Walls”. Coding inefficiency could be easily reduced by mak-
ing findCollisions have an additional input deciding whether it’s looking at walls or lines.

Approximate angles of the cliff sensors are below. In reality, the cliff sensors are only checking a
single point on the ground, while it is the lines that have thickness. However, in the simulator, the
lines have no thickness, so the point that the cliff sensors check is increased to a range. In the simu-
lator, the cliff sensor will activate if a line intersects with the robot perimeter within 5.85° of the
sensor.

~13°

~60°

25

The cliff sensors on the real Create are actually reading the reflectivity of the ground. If there is no
ground under the sensor, the amount of signal reflected back will be very low (usually 0%). If there
is a black or dark surface under the sensor, reflectivity tends to be low (around 3%), and a lighter
surface tends to reflect more (up to about 20%). The real Create toolbox function
Cliff[Direction]SensorRoomba will only return a true value for actual cliffs, while
Cliff[Direction]SignalStrengthRoomba will return the numerical percentage value
based on reflectivity. The simulator duplicates this functionality, and returns false for all calls to
Cliff[Direction]SensorRoomba (since there are no cliffs in the simulator). For
Cliff[Direction]SignalStrengthRoomba it will return high values when over regular
ground, and low values while over lines. The exact values depend on the inputted noise, but with-
out noise they will be 21.5% and 1.5% respectively. The cliff sensor visualization though will show
up if the value of the cliff sensor is below 5.4%, indicating it has detected a line.

genIR:
This function generates the reading for the infrared wall sensor. It makes use of findDist, de-
spite the fact that the actual distance will not be used. This is to prevent coding inefficiency by rep-
licating the majority of the findDist algorithm. There is not too much extra computation associ-
ated with using findDist, so there is little inefficiency.

genVWall:
The constants relating to the virtual walls are only used in this function. Therefore, they are only
defined in this function, not as constant properties for the robot object as is customary. These con-
stants are diagrammed below.

The virtual walls that were used in determining properties for the simulator are the iRobot Virtual
Wall Schedulers. They have three settings for the power of the infrared signal, and the effective
range and angle change depending on the setting, while the halo radius appears to stay the same.
These values were determined by experimentation, and should be changed to more closely match
the user’s virtual wall system.
Halo radius: 0.45 m
 0-3’ 4’-7’ 8’+
Range 2.13 m 5.56 m 8.08 m
Angle 19° 28° 35°

26

Areas equal Areas unequal

This function uses a slightly inefficient algorithm of checking to see if it is in the field of all of the
virtual walls before completing. The efficiency could be improved by putting the check into a while
loop that will terminate if it checks all the virtual walls, or if the robot is found to be in one of the
fields. Efficiency could also be improved by only checking against virtual walls that have their emit-
ter within range of the robot. Also since the algorithm to see if the robot is in the halos is quite sim-
ple, that check could be done first, before next seeing if it is within the triangular fields. These
methods would need testing to see if they really would improve the processing time of this function
though.

When checking the sensor against each individual wall, genVWall first compares the sensor posi-
tion to that of the emitter to see if the robot is within the halo (a simple distance formula). If it is
not in the halo, it uses an area algorithm to see if the sensor position is inside the triangular field.
The area of a triangle is calculated from the vertices of the triangle using the determinant method:

𝐴𝑟𝑒𝑎 =
1
2
�det �

𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3
1 1 1

��

The function calculates the area of the triangular field, and then the area of the three triangles
whose vertices are two vertices from the field and the sensor position. If the sensor is within the
field, then the area of the field is equal to the sum of the areas of the other three triangles. If not, the
area of the three triangles is greater than the area of the field.

Note that a tolerance is used to determine the equality of the areas since when MATLAB calculates
the area algorithm; the areas tend to be off by a small amount due to rounding errors.

The final check if the robot is determined to be within the field of a particular virtual wall emitter is
to ensure that there is no wall between the robot and the virtual wall. For this purpose, findDist
is used. The range given is the distance from the emitter to the sensor. If that same distance is re-
turned from findDist, then there are no walls in between the sensor and the emitter. Note that
this assumes the walls are high enough to block the infrared signal from virtual walls (at least 10
cm high).

27

genSonar:
The simulator assumes that there are four sonar sensors, placed in the cardinal directions on the
edges of the robot. This makes it easy to check each sensor since they are evenly spaced around the
circumference. If the sensors on the user’s robot are placed differently, the code for calculating the
position and direction of the sensors will need to be changed in the for loop. If the sensors are not
uniformly spaced, the position and direction may need to be hard-coded into this function. Note the
difference between the order of output of genSonar ([front left right front]), and the sonar sensors
that ReadSonar (right) and ReadSonarMultiple ([right front left back]) actually call.

Note that this function calls randn for calculating the noise in all iterations of the loop. Calculating
the noise value before entering the loop will result in all sensors having the same noise. Using the
same standard deviation and mean, but calling randn multiple times will result in different noise
values for each sensor, which is closer to reality.

Note that the noise values are capped such that they cannot cause a sensor to saturate. That is, if
the true distance is within sensor range, the noisy measurement will also be within sensor range.
This was done to avoid sparse data for sensors with noise parameters large in comparison to their
sensor range (not common in reality, but could arise in simulation), and is not necessarily a reflec-
tion of true sonar sensor behavior. This will also cause sensors with large noise parameters rela-
tive to their range to deviate from Gaussian noise.

genLidar:
The simulator assumes that the LIDAR sensor is located on the front of the robot. If the location is
different, then the code to set the position should be changed in this function. Like genSonar, this
function calls findDist to get the reading for each point in the LIDAR field of view. It also chang-
es all readings below the minimum allowable to the minimum distance. It calculates the noise in all
iterations so that the noise value for each data point is different.

genCamera:
This function first uses the normal angle and distance formulae to get the heading and range to each
beacon from the sensor. Then it checks the beacon to see if it is in range of the camera (within both
the angular and linear range). Finally, it checks to see if there is a wall between the beacon and the
camera, using the same method that genVWall uses. Every beacon within range that is not behind
a wall is then recorded.

The same noise parameters are used for both the angle and distance readings. However, randn is
called twice, so the two readings will not get the same noise value. This is not a very accurate rep-
resentation of reality, but the simulator noise functionality was intended to just give some idea of
what variance does to a program. If accuracy of noise is important for the user’s simulator, the
functionality should be added for separate noise values for angle and distance, or model the noise
based on real readings.

28

updateOdom:
This function is called at every execution of the timer function updateSim. Since updateSim
should be executing quite frequently, the movement of the robot between two calls should be small.
This can be used to simplify the algorithm in two ways. First, the odometry distance is calculated
by using a linear approximation of the distance traveled between the previous location and the cur-
rent one. The magnitude of the change in odomDist comes from a simple distance formula. The
sign of the change is more complicated. If the robot is moving in the direction it is pointing, the
odometry will increase, and vice-versa.

 𝑠𝑖𝑔𝑛�𝑣⃑ ∙ �sin(𝜃)
cos(𝜃)��

The assumption that the angle turned is small also simplifies calculating the angular odometry. The
angle turned on a given step is calculated from the start thAbs, and the end thAbs, with no
knowledge of which path is taken. The path could be determined from wAbs, but that would be
more difficult than just assuming that the robot turns the shorter amount. This is especially im-
portant when the robot turns through π or –π radians, since thAbs is automatically wrapped to
between those values. In the diagram below, the odometry will be changed by the small angle of
the two (β). It will be increased if wAbs is positive, and decreased if negative. This method may
cause errors if the max allowable turning speed is large compared to the time between updates
from the timer.

Similarly to the camera, odometry uses the same noise parameters for both the angle and distance
sensor. The noise values are different though, since randn is called twice. This is inaccurate and
could do with improving, in the same method as described under genCamera.

genOverhead:
The overhead localization system is assumed to be very accurate, so it outputs the exact location
and orientation of the robot with no noise. If the user’s localization system is not as accurate, the
functionality for noise should be added to the simulator. If some noise is desired, but accuracy is
not important, one noise parameter could be used. Otherwise, separate noise parameters should be
created for position and orientation. This will probably be more useful since ‘drift’ in the orienta-

𝑣⃑

θ

sin(θ)

cos(θ)

αβ

3𝜋
4

−
3𝜋
4

29

x

y

(xsensor,ysensor)

(xrange,yrange)

(x1,y1)
(x2,y2)

tion reading of an object tends to be more of a problem than the position reading with these types
of systems.
Computational Functions
findDist:
This function is used to find the distance to the nearest wall as seen by a particular sensor. The
known information is the location, orientation, and range of the sensor, as well as the endpoints of
all the walls. From this, it is easy to get the end point of the sensor range. The example below is
calculating the distance received by the left sonar sensor.

𝑥𝑟𝑎𝑛𝑔𝑒 = 𝑥𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑟𝑎𝑛𝑔𝑒 ∗ cos(𝜃𝑠𝑒𝑛𝑠𝑜𝑟)
𝑦𝑟𝑎𝑛𝑔𝑒 = 𝑦𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑟𝑎𝑛𝑔𝑒 ∗ sin(𝜃𝑠𝑒𝑛𝑠𝑜𝑟)

30

msensor

bsensor

bwall

mwall

Next, the equations (of the form y = mx + b) for the sensor line and walls are calculated. It is theo-
retically faster to find the intersections of lines using the equations rather than using polyxpoly,
although this has not been tested. The disadvantage is that the intersections are first found on the
infinite sensor and wall lines, so they will require some pruning.

𝑚𝑠𝑒𝑛𝑠𝑜𝑟 =
𝑦𝑟𝑎𝑛𝑔𝑒 − 𝑦𝑠𝑒𝑛𝑠𝑜𝑟
𝑥𝑟𝑎𝑛𝑔𝑒 − 𝑥𝑠𝑒𝑛𝑠𝑜𝑟

𝑚𝑤𝑎𝑙𝑙 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

Lines that are vertical or horizontal don’t always return infinite or zero slopes, so they must be ac-
counted for.

𝑚 =

⎩
⎨

⎧ −∞ , 𝑚 < −1014
 0 , |𝑚| < 10−14

∞ , 𝑚 > 1014
 𝑚 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The intersections between the infinitely long sensor line and the wall lines are found simply by
solving the equations algebraically.

𝑏𝑠𝑒𝑛𝑠𝑜𝑟 = 𝑦𝑠𝑒𝑛𝑠𝑜𝑟 − 𝑥𝑠𝑒𝑛𝑠𝑜𝑟 ∗ 𝑚𝑠𝑒𝑛𝑠𝑜𝑟
𝑏𝑤𝑎𝑙𝑙 = 𝑦1 − 𝑥1 ∗ 𝑚𝑤𝑎𝑙𝑙

31

(xhit,yhit)

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑚𝑠𝑒𝑛𝑠𝑜𝑟 = 𝑚𝑤𝑎𝑙𝑙

𝑥ℎ𝑖𝑡 = 𝑥𝑠𝑒𝑛𝑠𝑜𝑟
𝑦ℎ𝑖𝑡 = 𝑚𝑤𝑎𝑙𝑙 ∗ 𝑥ℎ𝑖𝑡 + 𝑏𝑤𝑎𝑙𝑙, 𝑚𝑠𝑒𝑛𝑠𝑜𝑟 = ∞

𝑥ℎ𝑖𝑡 = 𝑥1
𝑦ℎ𝑖𝑡 = 𝑚𝑠𝑒𝑛𝑠𝑜𝑟 ∗ 𝑥ℎ𝑖𝑡 + 𝑏𝑠𝑒𝑛𝑠𝑜𝑟

, 𝑚𝑤𝑎𝑙𝑙 = ∞

𝑥ℎ𝑖𝑡 = 𝑏𝑤𝑎𝑙𝑙−𝑏𝑠𝑒𝑛𝑠𝑜𝑟
𝑚𝑠𝑒𝑛𝑠𝑜𝑟−𝑚𝑤𝑎𝑙𝑙

𝑦ℎ𝑖𝑡 = 𝑚𝑠𝑒𝑛𝑠𝑜𝑟 ∗ 𝑥ℎ𝑖𝑡 + 𝑏𝑠𝑒𝑛𝑠𝑜𝑟
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The function then determines if the intersection point is on the finite wall line and sensor line by
checking that the point is within the x and y limits of the lines. Note that all limits must be checked
to account for vertical and horizontal lines, and they must be checked with tolerances since
MATLAB produces rounding errors that could result in the intersection being slightly off of a verti-
cal or horizontal line.

32

(xint,yint)

dist

Finally, the function calculates the distance to all of the remaining intersection points and chooses
the lowest distance to output.

33

x

y

(xwall,yrobot)

(xrobot,ywall)

(x0,y0)

(xrobot,yrobot)
(x1,y1)

(x2,y2)

x

y

bwall

bbridge

mbridge

mwall

findCollisions:
The method of finding the collision points is to first find the closest points on all the walls to the
center of the robot. Each wall is inspected individually, first determining the line equation (in the
form y = mx + b). Note that if the wall is vertical the closest point will be (xwall,yrobot). If it is hori-
zontal, the closest point will be (xrobot,ywall). Otherwise, the closest point (x0,y0) must be calculated
by using the line equations.

Equation for wall line:
𝑚𝑤𝑎𝑙𝑙 =

𝑦2 − 𝑦1
𝑥2 − 𝑥1

𝑏𝑤𝑎𝑙𝑙 = 𝑦1 − 𝑚𝑤𝑎𝑙𝑙 ∗ 𝑥1

Equation for line from closest point on wall to robot center (bridge):

𝑚𝑏𝑟𝑖𝑑𝑔𝑒 = −
1

𝑚𝑤𝑎𝑙𝑙

𝑏𝑏𝑟𝑖𝑑𝑔𝑒 = 𝑦𝑟𝑜𝑏𝑜𝑡 − 𝑚𝑏𝑟𝑖𝑑𝑔𝑒 ∗ 𝑥𝑟𝑜𝑏𝑜𝑡

34

Now the intersection of the two lines can be found using the same method as in findDist.

𝑥0 =
𝑏𝑏𝑟𝑖𝑑𝑔𝑒 − 𝑏𝑤𝑎𝑙𝑙
𝑚𝑤𝑎𝑙𝑙 − 𝑚𝑏𝑟𝑖𝑑𝑔𝑒

𝑦0 = 𝑚𝑏𝑟𝑖𝑑𝑔𝑒 ∗ 𝑥0 + 𝑏𝑏𝑟𝑖𝑑𝑔𝑒

The intersection point is then checked to ensure that it is on the finite-length wall line by making
sure the point is within both the x and the y limits on the wall. The point does not need to be
checked against the bridge line, since that line is essentially infinitely long. If the point is not on the
finite-length wall line, then the closest endpoint of the wall must be the actual closest point. The
endpoint flag is also set, and the reason for this is explained on page 45.

If the closest point, whether it is an intersection between the lines or the corner of the wall, is with-
in the radius of the robot to the center, then it is recorded as a collision point. It may be beneficial
to reduce the required radius by a bit to ensure that the robot is truly colliding and not just brush-
ing by the wall, but this is probably a negligible difference. Note again that the simulator makes no
distinction between points that are completely inside the robot and points that are on the edge. It is
assumed that the timer updates frequently enough that a wall will be caught before it gets too far
inside the robot.

Finally, only the two closest collision points are kept to be passed as output. The ‘closest’ qualifica-
tion assumes that the closest points will affect the robot the most. It may create a simulation closer
to reality if another qualification is chosen, such as the two most angularly separated points, or the
points closest to the heading of the robot, but those claims will need to be tested. The reason only
two points are retained is the simplifications done by the physics engine (explained on page 6).

State Manipulator Functions (Physics Engine)
All physics engine functions are called by updateSim (which is called by the timer interrupt). One
of the input arguments from updateSim is tStep, which is the time since the last update (∆t).
Under the normal simulation speed option, tStep will be the actual time since the last update.
However, when either the 2x or 3x radio buttons are chosen for the Sim Speed option, tStep will
be multiplied by these options before being passed to the physics engine functions. More about the
Sim Speed option is on page 46.

driveNormal:
This function determines the position and orientation of the robot in the new time step based on
the position, orientation, and intended velocities from the previous time step. This function is
called when the robot is not interacting with any walls, so the dynamics are much easier to resolve.

The function first checks the case of straight driving, since this is easiest to calculate. If the intend-
ed angular velocity is zero, then the robot will drive in a straight line. The change in the distance is
simply:

∆𝑑𝑖𝑠𝑡 = 𝑣𝑖𝑛𝑡 ∗ ∆𝑡

35

vint
ωint

θ
(x,y)

r

θnew

(xnew,ynew)

Δθ/2

îloc

ĵloc

The next case checked is pure turning, where the intended forward velocity is zero. In this case, the
robot will simply rotate based on the equation:

∆𝜃 = 𝜔𝑖𝑛𝑡 ∗ ∆𝑡

If the robot has non-zero angular and non-zero linear velocity, then the computation becomes more
complicated. The information known at the start is the position, orientation, intended angular and
linear velocities, and the length of the time step.

Since the angular and linear velocities are considered to be constant, the robot path will be an arc
with a constant radius. The new orientation can be easily calculated in the same way in the pure
turning case. The turning radius can be calculated simply by relating linear and angular velocity to
arc length (and thus to radius).

∆𝜃 = 𝜔𝑖𝑛𝑡 ∗ ∆𝑡

𝑟 =
𝑣
𝜔

To figure out the change in the position of the robot, some simple trigonometry will be used. This
will be computed off of the right triangle formed by the chord (similar to secant line) from the old
position to the new, and the change of position in local coordinates. The local x-axis will be in the
direction the robot is pointing. The angle inside the triangle closest to the old position will be half
of the angle turned.

36

lchord

Δxloc

Δyloc

Δx

Δy

Next, the length of the chord line must be computed, and then converted to displacements in the
local x and y directions. Note that in the code, the direction of the intended linear velocity is used to
account for the robot backing up and turning.

𝑙𝑐ℎ𝑜𝑟𝑑 = 2𝑟𝑠𝑖𝑛 �
∆𝜃
2
�

∆𝑥𝑙𝑜𝑐 = 𝑙𝑐ℎ𝑜𝑟𝑑 cos�
∆𝜃
2
�

∆𝑦𝑙𝑜𝑐 = 𝑙𝑐ℎ𝑜𝑟𝑑 sin �
∆𝜃
2
�

Finally, the displacements in local coordinates can be converted to absolute coordinates and added
to the old position to find the new one. This is done using a simple matrix rotation (usually used to
transform vectors).

�∆𝑥∆𝑦� = �cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃) � �

∆𝑥𝑙𝑜𝑐
∆𝑦𝑙𝑜𝑐

�

𝑥𝑛𝑒𝑤 = 𝑥 + ∆𝑥
𝑦𝑛𝑒𝑤 = 𝑦 + ∆𝑦

37

ṯ
ṉ

(x1,y1)

(x2,y2)

(x,y)

r

θ
vint

ωint

(xc,yc)

drive1Wall:
One of the problems with the walls in the physics engine is the inability to know how exactly it re-
lates to the robot. To resolve this, several conditional blocks are used to set values. The wall end-
points are first chosen with the convention that the left-most point will be (x1,y1), and the right-
most will be (x2,y2).

The unit vectors that determine direction of movement are calculated next. The convention for
point1 and point2 of the wall is necessary to help determine the correct direction of the tangential
vector, relative to the robot. The simulator convention is to have the tangential vector point coun-
ter-clockwise around the robot. This is to help determine the relationship between the effect on
actual velocity by the linear and angular intended velocities. The normal vector is calculated from
the collision point to the center of the robot. Theoretically, the tangential and normal vectors
should be perpendicular, but this is not guaranteed with this type of method. An alternative might
be to calculate the tangential vector from the cross product of the normal and the z-axis. This
would avoid some of the messy conditionals. Note the direction of the normal vector, so if the robot
moves towards the wall, it is in the direction opposite the normal.

𝑡̂ = �

(𝑥2−𝑥1)𝚤̂+(𝑦2−𝑦1)𝚥̂
�(𝑥2−𝑥1)2+(𝑦2−𝑦1)2

, 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑏𝑒𝑙𝑜𝑤 𝑟𝑜𝑏𝑜𝑡
(𝑥1−𝑥2)𝚤̂+(𝑦1−𝑦2)𝚥̂
�(𝑥1−𝑥2)2+(𝑦1−𝑦2)2

, 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑎𝑏𝑜𝑣𝑒 𝑟𝑜𝑏𝑜𝑡

𝑛� =
(𝑥 − 𝑥𝑐)𝚤̂+ (𝑦 − 𝑦𝑐)𝚥̂

�(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2

38

vint

vt,int

vn,int

vt,int
ωint vt,int

ωint

vn,int vn,int

vt,int

ωint

vn,int

Once the normal and tangential vectors are determined, it’s simple enough to find the normal and
tangential components of intended velocity. Also, the normal component of the actual velocity is
simple to calculate since friction does not factor in at all. If the intended normal velocity is negative
(towards the wall), obviously the actual normal velocity will be zero since the robot cannot pene-
trate the wall. If the intended normal velocity is positive, then it will be equal to the actual normal
velocity since no wall will affect the robot.

𝑣𝑡,𝑖𝑛𝑡 = 𝑣𝑖𝑛𝑡 ∙ 𝑡̂
𝑣𝑛,𝑖𝑛𝑡 = 𝑣𝑖𝑛𝑡 ∙ 𝑛�

𝑣𝑛 = �
0, 𝑣𝑛,𝑖𝑛𝑡 ≤ 0

𝑣𝑛,𝑖𝑛𝑡 , 𝑣𝑛,𝑖𝑛𝑡 > 0

Now the robot can be thought of as a wheel against the ground. If the wheel is turning such that the
outer edge is moving faster than the intended tangential velocity, and in the opposite direction (i.e.
the robot spins clockwise while the tangential velocity is positive, and vice-versa), then the rotation
will assist in moving the robot along. If the robot spins too slowly, or in the same direction, then the
robot edge will drag along the wall and slow down the tangential velocity. In the first case, the tan-
gential movement of the robot will speed up the rotation of the robot. In the second case, it will
slow it down. These are all very rough approximations of dynamics, and much more accurate for-
mulas could be implemented. Note that if the intended normal velocity is away from the wall, the
friction will not impact the robot at all. Also note that the assumption about friction calculations on
page 7 becomes relevant here.

First Case

𝑣𝑡 = 𝑣𝑡,𝑖𝑛𝑡 + 𝑣𝑛,𝑖𝑛𝑡 ∗ 𝜇𝑠

𝜔 = 𝜔𝑖𝑛𝑡 +
𝑣𝑛,𝑖𝑛𝑡 ∗ 𝜇𝑠

𝑟

Second Case
𝑣𝑡 = 𝑣𝑡,𝑖𝑛𝑡 − 𝑣𝑛,𝑖𝑛𝑡 ∗ 𝜇𝑠

𝜔 = 𝜔𝑖𝑛𝑡 −
𝑣𝑛,𝑖𝑛𝑡 ∗ 𝜇𝑠

𝑟

Third Case
𝑣𝑡 = 𝑣𝑡,𝑖𝑛𝑡
𝜔 = 𝜔𝑖𝑛𝑡

39

(xc1,yc1) (xc2,yc2)

(x21,y21)

(x21,y21)

(x12,y12)

(x22,y22) ṯ1

ṯ2

ṉ1ṉ2

Friction will only slow down movement; it does not have the ability to reverse its direction. There-
fore, the actual values for tangential and angular velocities are checked against their intended val-
ues. If the signs are opposite, the actual values are reduced to zero. This is to prevent an extreme
amount of normal force from influencing the frictional force into overriding a small tangential ve-
locity and forcing the robot in the other direction, or similar situations.

Finally, the components of the tangential and normal velocities in the x and y directions are extract-
ed and used to compute the new position with a simple kinematic formula. The new orientation is
calculated similarly from angular velocity.

𝑥𝑛𝑒𝑤 = 𝑥 + 𝑣𝑥 ∗ ∆𝑡
𝑦𝑛𝑒𝑤 = 𝑦 + 𝑣𝑦 ∗ ∆𝑡
𝜃𝑛𝑒𝑤 = 𝜃 + 𝜔 ∗ ∆𝑡

drive2Wall:
This function starts similarly to drive1Wall. It determines the tangential and normal vectors of
both walls such that the tangential vectors point counter-clockwise around the robot, and the nor-
mal vectors go from the collision points to the middle of the robot. The normal component of the
intended velocity is then found for both walls.

At this point, there are three possible types of movement. If the robot is touching both walls and
heading into the corner, it will not move. If the robot is heading away from both walls, it can drive
normally with no friction. If the robot is heading away from one wall, but towards the other, it will
drive the same as if the only wall there was the one it’s heading towards. The difficulty comes in
determining which situation is in effect.

40

ṯ1
ṉ1

ṯ2

ṉ2

The methods for determining which situation is in effect differ depending on the angle of the walls.
Acute angles between walls will be explored first. The robot will be stuck in the corner if the veloci-
ty points between the normal vectors on the wall. There are several methods of determining this,
but some are simpler than others. The easiest is if the intended velocity has a component in the op-
posite direction of both normal vectors. However, this leaves out two areas in which the velocity
could be pointing, and still be driving into the corner. This area is trickier to compute, since the
tangential vector is required, but it is not known which tangential vector points towards the corner,
and which points away. The following conditions will cover all cases. Note that the first case is
used, even though it is covered by both of the other two cases since it is much faster computational-
ly. If this case is found to be true, then the other two cases do not have to be checked. In any of
these situations, the velocities will be zeroed and the robot will not move anywhere.

𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�1 ≤ 0
AND

𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�2 ≤ 0

𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�1 ≤ 0
AND

(𝑣⃑𝑖𝑛𝑡 ∙ 𝑡̂1 ≤ 0
XOR

𝑡̂1 ∙ (𝑛�1 + 𝑛�2) < 0)

𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�2 ≤ 0
AND

(𝑣⃑𝑖𝑛𝑡 ∙ 𝑡̂2 ≤ 0
XOR

𝑡̂2 ∙ (𝑛�1 + 𝑛�2) < 0)

41

ṯ1
ṉ1

ṯ2

ṉ2

The next possibility is that the robot will drive away from the corner, but still towards one of the
walls. This will occur if the intended velocity points opposite of one of the normal vectors. Note
that this does also include a case where it is driving towards the corner, but that case has already
been checked so it will be handled correctly. If the intended velocity is pointing negative to the first
normal vector, drive1Wall will be called, with the only wall used now the first wall (and similarly
for the second wall).

𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�1 ≤ 0 𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�2 ≤ 0

The final situation occurs in the only area not yet covered, where the intended velocity has a com-
ponent in the positive direction of both normal vectors. In this situation, the robot will drive with-
out any interference from friction. The function driveNormal could be called, but this is probably
an unnecessary amount of computation since this situation will only occur for one or two time steps
(when the robot moves far enough to no longer contact the wall). Instead, the robot will move
based only on linear velocity, and turn based on angular velocity. There will be no path-arc compu-
tation.

𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�1 > 0 𝐴𝑁𝐷 𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�2 > 0

42

ṯ1

ṯ2

ṉ1ṉ2

ṉ1 ṉ2

Next, the arrangement where the walls are at obtuse angles with each other must be examined. The
first situation is where the robot can drive freely away from the corner. This where occur when the
intended velocity has a component in the direction of both normal vectors.

𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�1 > 0 𝐴𝑁𝐷 𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�2 > 0

If the normal movement condition is not met, the condition for driving along one of the walls is
checked. If the intended velocity has components in the direction of both tangent vectors, or in the
negative direction of both tangent vectors, then the robot is driving towards a wall. Since it is not
specified which wall is which (1 or 2 on the left or right), these conditions alone cannot tell us
which wall should be considered. If the intended velocity has a larger component in the opposite
direction of a normal vector than in the opposite direction of the other normal vector, then it is
driving towards that wall.

𝑠𝑔𝑛(𝑣⃑𝑖𝑛𝑡 ∙ 𝑡̂1) = 𝑠𝑔𝑛(𝑣⃑𝑖𝑛𝑡 ∙ 𝑡̂2)

𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�1 < 𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�2 𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�1 > 𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�2

43

Finally, the only situation left is the robot being stuck in the corner. This will happen most of the
time when the intended velocity has a component in the opposite direction of both normal vectors,
but this region will also overlap slightly with the above areas for driving into the wall. Thus, this
situation is left for the else statement.

driveCorner:
The remaining physics engine function operates when the robot is contacting the corner of one or
two walls. There are only two situations considered here, the robot moving towards the corner,
and the robot moving away. In reality, much more complex algorithms could be used to determine
if the robot is stuck on the corner, sliding along it, bouncing off of it, or completely stalled. Howev-
er, this simplified version of a physics engine seems sufficient to give an idea of what a real robot
would do in this situation.

The normal vector is set to be the line from the corner to the middle of the robot. If the intended
velocity of the robot has a component in the direction of the normal vector, then it is driving away
from the corner, and thus will proceed unhindered. The function driveNormal is called in this
situation.

𝑣⃑𝑖𝑛𝑡 ∙ 𝑛� ≥ 0

The other situation is when the intended velocity is in the other direction, towards the corner. In
this case, the robot will execute a rolling motion around the corner. The center of the robot will
move in a circular path about the corner, while the heading of the robot will rotate oppositely, as if
glancing off the corner. The heading will also be affected by the angular velocity of the robot miti-
gated by friction from the corner. This combination of behavior types is probably not the most real-
istically accurate, and would probably be better off replaced with different types of behavior based
on incident angles of intended velocity on the corner.

44

ṯ

ṉ

α

α
(xnew,ynew)

(x,y)

r
ṯ

ṉ

Determining which direction the robot will roll around the corner on is done by calculating the
‘tangent’ vector from the corner (cross product of the normal and z-axis vectors), and comparing
the intended velocity to that. The tangent vector will always point counter-clockwise around the
robot, so if the intended velocity is also in that direction then the robot center will rotate clockwise
about the corner. The opposite situation produces the opposite results.

𝑣⃑𝑖𝑛𝑡 ∙ 𝑛� < 0
𝑡̂ = 𝑛� × 𝑘�

𝛼 = −𝑣�⃑ 𝑖𝑛𝑡∙𝑡̂
𝑟

∗ 𝑡𝑠𝑡𝑒𝑝

𝑥𝑛𝑒𝑤 = 𝑥 + ∆𝑛�����⃑ ∙ 𝚤̂+ ∆𝑡����⃑ ∙ 𝚤 ̂
𝑦𝑛𝑒𝑤 = 𝑦 + ∆𝑛�����⃑ ∙ 𝚥̂ + ∆𝑡����⃑ ∙ 𝚥̂

𝜃𝑛𝑒𝑤 = 𝜃 − 𝛼 + (𝜔𝑖𝑛𝑡 + (𝑣⃑𝑖𝑛𝑡 ∙ 𝑛�) ∗ 𝜇𝑘) ∗ 𝑡𝑠𝑡𝑒𝑝
∆𝑛�����⃑ = 𝑟 ∗ (cos(𝛼) − 1) ∗ 𝑛�
∆𝑡����⃑ = −𝑟 ∗ sin(𝛼) ∗ 𝑡̂

Translator Functions
Each of the functions falling into this category are used as the ‘middle function’ between the
autonomous control program and the simulator’s raw algorithms and data. Each translator
function follows a pattern that serves different purposes in making the simulator work or helping
the user test their program.

1. Check for valid input. If the robot object is not passed properly, and any other input
parameters are not within acceptable values, an error with the message ID
Simulator:invalidInput will be thrown. Note that this will not check for input out of
acceptable ranges that are checked for later (e.g. SetFwdVelAngVelCreate).

45

2. Call the autoCheck function. This will throw an exception (error) with the message ID
Simulator:autonomousDisabled if autonomous mode is not in effect. This is done so
that the Stop button in SimulatorGUI will work. See page 20 for more information
about this process. Note that this means none of the translator functions will work from the
command window without first changing the autoEnable property. The translator
functions should only be used by loading an autonomous program into SimulatorGUI
anyway.

3. Pause for communication delay. The length of the pause is determined by the property
comDelay, which is set by the configuration file. The pause is in the same location (before
the main code execution) on both sensor and command type functions. A more accurate
representation may be to only pause for half of the delay on command functions where no
values are returned, but this seems unnecessary.

4. Execute the main body of code. This is where an appropriate sensor function is called, or
certain values are set depending on the function specification. All output to the command
window from the equivalent function in the real Create toolbox is duplicated here.

5. Create string representation of function call and add to output. Note that arguments will be
omitted if the function has none, and the robot object argument is omitted in all functions.
Note also that only five of the data points in a call to LidarSensorCreate are added to
this string, since all of them would be far too many to handle, and only one beacon
information is displayed for CameraSensorCreate. This can be adjusted in the function. The
string representation is made in a similar format to the following:
[argOut1 argOut2]= FcnName(argIn1,argIn2)

6. Catch all unexpected errors. The catch statement at the end of each translator function is
to help in debugging. The default MATLAB error messages are not always helpful in
determining the problem. If the issue has not already been checked (e.g. invalid input) then
this is intended to give a more informative error message. The original exception will be
allowed to propagate through though to allow debugging from the original message. Note
that the error used to quit autonomous mode will not cause a message to be displayed.

updateSim

The first objective of updateSim is to move the robot to its new position. One of the four physics
engine functions will be called depending on the output from findCollisions. If no walls are
being hit, then driveNormal is called. If one wall is hit, but not on its corner, or if two walls are
hit, but only one is hit on the corner, then drive1Wall is called. In the two-wall case, it will be
called with the one wall that is contacting the robot not on its corner. If two walls are contacted,
both not on their corners, then drive2Wall is called. Finally, if only one wall is hit on the corner
or two walls both on corners, then driveCorner is called. Only the corner closest to the robot is
used in the two-wall case.

46

Each of the physics engine functioned mentioned above require a time step argument that is the
time since the last update. This will allow them to calculate the new robot position based on the
very basic rule, xnew = xold + v*tstep. SimulatorGUI gives the option to the user to “speed up” the
simulation to 2 or 3 times faster. This does not actually speed up any computation, update regulari-
ty; it just acts as a multiplier to tStep so that the robot will move 2 or 3 times farther when it is
traveling at the same velocity, which causes some issues. If the user’s autonomous control program
utilizes tic-toc functions or anything that measures real-time, the program’s timing relative to
the robot’s movement will be changed. Also, because updateSim is not called any more frequent-
ly than at normal speed, the robot will sometimes move significantly further into the wall before the
physics functions catch it. There is also evidence of other effects, the exact details and causes of
which are unknown. The Sim Speed option may help users when roughly testing a long-running
control program, but for quality runs the simulation should be left at normal speed.

The updateSim function next creates a new row in the data output cell array and adds the posi-
tion and orientation data by calling updateOutput. Then, the old position and the new position
are passed to updateOdom, to update the odometry data stored in the robot object. If the camera
focus is set to Robot Centric, the focus of the camera is shifted if necessary to center the robot.

The final purpose of updateSim is to change the plot to reflect the current positions of the robot
and sensor visualizations. The robot is represented by a circle (made of 20 lines) and a line indicat-
ing the heading. The sensor visualization is updated using the aptly named CreateRobot method
updateSensorVisualization.

ReplayGUI

Important UserData
figure_simulator – Array of three handles for the plot of the robot and path

1. Circle
2. Direction line
3. Robot path line

text_IOData – Double of current index of the playback
check_path – Double of the starting index of the plot of the robot path
edit_display – Cell array of the output data from SimulatorGUI
push_slow_back – Boolean of whether the playback should be rewinding slowly
push_slow_forward – Boolean of whether the playback should be moving slowly forwards
push_play – Boolean of whether the playback should be moving at normal speed forwards

47

Data Format
The format of the output data from SimulatorGUI is a cell array ? x 5. The ‘?’ is variable, since it
depends on how long the autonomous code executes for. The first four entries in a row are all dou-
bles: timestamp, x-position, y-position, orientation. The final entry in a row will be in one of three
formats: empty vector, string, cell array of strings. The empty vector will indicate that there were
no translator function calls during that time-step. The string will be representative of a single func-
tion call during that time-step. The cell array will occur when multiple function calls are made dur-
ing that time-step. Each cell in the array contains the string of the function call.

Visualization
The map parsing and plotting algorithm is the same as used in MapMakerGUI. Note that the map
will not actually affect the robot movement at all; it is there merely for visualization purposes. If
the wrong map is loaded, there will be no warning or error, but the movement of the robot and the
data output will probably not match up.

The edit text box is used for data display rather than a static text box to allow multi-line viewing
with a scrollbar. Setting the property Enable to inactive will make it so the user cannot edit
the text in the box, even though it will show up in normal colors. The output data is printed to the
display by appending the next line onto the end of the String property when moving forward
through playback, and deleting the end line when stepping backwards.

There are some issues with the display, since it is difficult to fit everything on one line. The text
wraps around to the next line automatically, but sometimes will do it in odd places so that the func-
tion calls are difficult to read. However, if the newline character \n is inserted into the display, the
edit box will count that is placing in a new line. Thus, when the rewind functions are used, the func-
tion call strings will count as individual lines, so the display will not match up with the current in-
dex. Another problem is that the scrollbar will move to the top every time the string inside the edit
box is updated, but the new lines are down at the bottom. This could be solved by putting all the
new output data at the top of the box, but that is not intuitive to read. Another option is to get deep
into the Java code behind the MATLAB uicontrols, but that gets fairly complicated.

48

Contact Information

Suggestions and bugs can be reported in the appropriate forum on the project’s SourceForge page:
Forums: https://sourceforge.net/projects/createsim/forums/forum/1204154

Other inquiries can be directed to:
Email: CreateMatlabSim@gmail.com

For more information, visit:
Website: http://web.mae.cornell.edu/hadaskg/CreateMATLABsimulator/createsimulator.html
SourceForge: https://sourceforge.net/projects/createsim

Contributing Parties

Author:
Cameron Salzberger

Advising Professors:
Dr. Hadas Kress-Gazit
Dr. K-Y Daisy Fan

Coding and Testing Assistance:
Jason Hardy
Francis Havlak
Ankit Arora

Creators of the MATLAB Toolbox for the iRobot Create:
Joel M. Esposito
Owen Barton
http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/
2008

Code Resources:
Nassim Khaled (inside_triangle.m on MATLAB Central)
Zhenhai Wang (circle.m on MATLAB Central)

Sponsor:

The MathWorks
http://www.mathworks.com/

https://sourceforge.net/projects/createsim/forums/forum/1204154
mailto:CreateMatlabSim@gmail.com
http://web.mae.cornell.edu/hadaskg/CreateMATLABsimulator/createsimulator.html
https://sourceforge.net/projects/createsim/
http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/
http://www.mathworks.com/

49

Index
Autonomous Control Program ... 5, 13, 20
ConfigMakerGUI ... 10, 17
CreateRobot ... 10, 13, 20–45, 43–44

addFcnToOutput ... 22
CreateRobot 21
drive1Wall ... 6, 7, 36–39, 41, 42, 45
drive2Wall ... 6, 39–43, 45
driveCorner 6, 45
driveNormal ... 34, 41, 42, 45
findCollisions... 32–34, 45
findDist 29–32
genBump .. 23
genCamera .. 27
genCliff 24
genIR 25
genLidar ... 27
genOverhead 28
genSonar .. 26–27
genVWall .. 25–26
manualKeyboard .. 12, 21
updateOdom .. 27–28, 46
updateOutput ... 22, 46
updateSensorVisualization .. 22, 46

Friction .. 5, 7, 38–39, 43
Inertial Measurement Unit .. 7
License 4
MapMakerGUI .. 9, 15–17
MATLAB Toolbox for the iRobot Create ... 4, 13, 18, 48
ReplayGUI 14, 46–47
Sensors

Bump .. 8, 23
Buttons 19
Camera 27, 45
Cliff ... 24
LIDAR 22, 27, 45
Odometry ... 27–28
Overhead Localization System ... 8, 28
Sonar 26–27
Virtual Wall .. 8, 25–26
Wall .. 25

Sim Speed 34, 46
SimulatorGUI .. 10–14, 18–20
Timer ... 4, 10, 12, 13, 19
updateSim ... 11, 12, 13, 45

	Disclaimer
	Introduction
	Design Intent
	Simplifications and Known Issues
	Physics Engine
	Sensors

	Structure of the Program
	Map File Generation
	Configuration File Generation
	Simulator Initialization
	Environment Setup
	Manual Mode
	Autonomous Mode
	Replay and Debugging

	Function Descriptions
	Conventions
	MapMakerGUI
	Important UserData
	Map File Parsing Algorithm
	Clear Functionality
	Undo Functionality
	Save Functionality
	Map Size

	ConfigMakerGUI
	Configuration File Parsing Algorithm
	Save Functionality

	SimulatorGUI
	Important UserData
	Enabling the Simulator
	Updating the Simulator
	Visualization Efficiency
	Input File Parsing Algorithms
	Create Button Functionality
	Autonomous Code Execution

	CreateRobot
	Constant Properties
	Other Properties
	Constructor Function
	Simulator Control Functions
	Sensor Functions
	Computational Functions
	State Manipulator Functions (Physics Engine)
	Translator Functions

	updateSim
	ReplayGUI
	Important UserData
	Data Format
	Visualization

	Contact Information
	Contributing Parties

