
A Fast Fourier Transform Compiler

Matteo Frigo

MIT Laboratory for Computer Science

February 16, 1999

Presented by Tam Le

October 25, 2011

Matteo Frigo A Fast Fourier Transform Compiler



The Fast Fourier Transform

“The FFT has been called the most important
numerical algorithm of our lifetime...” [Ken02]

Matteo Frigo A Fast Fourier Transform Compiler



The Discrete Fourier Transform Defined

I The forward DFT:

Y [i ] =
n−1∑
j=0

X [j ]ω−ijn

where ωn = e2π
√
−1/n and 0 ≤ i < n

I In case where X is real, the transform Y has
hermitian symmetry :

Y [n − i ] = Y ∗[i ]

where Y ∗[i ] is the complex conjugate

Matteo Frigo A Fast Fourier Transform Compiler



The Discrete Fourier Transform Defined

I The backward DFT flips the sign in the
exponent of ωn and is defined as:

Y [i ] =
n−1∑
j=0

X [j ]ωij
n

I Backward DFT is the “scaled inverse” of the
forward DFT, i.e. backward transform of
forward transform computes the original array
multiplied by n

Matteo Frigo A Fast Fourier Transform Compiler



Fast Fourier Transform Algorithms

Cooley-Tukey [CT65]

I If n can be factored to n = n1n2, rewrite DFT:

Y [i1 + i2n1] =

n2−1∑
j2=0

n1−1∑
j1=0

X [j1n2 + j2]ω−i1j2n1

ω−i1j2n

ω−i2j2n2

where j = j1n2 + j2 and i = i1 + i2n1

I Divide and conquer scheme recursively breaks
down DFT of size n into smaller DFTs of sizes
n1 and n2

I ω−i1j2n1
called twiddle factors

Matteo Frigo A Fast Fourier Transform Compiler



Fast Fourier Transform Algorithms

Prime Factor [OS89]

I Works for n = n1n2 when gcd(n1, n2) = 1

I Avoids recursive multiplication of twiddle factors
in place of more involved computations of
indices

Matteo Frigo A Fast Fourier Transform Compiler



Fast Fourier Transform Algorithms

Split-Radix [DV90]

I Works for n = 4k

I Can lead to some saving of operations when
compared with Cooley-Tukey

Matteo Frigo A Fast Fourier Transform Compiler



Fast Fourier Transform Algorithms

Rader’s [Rad68]

I Works when n is prime

I Re-expresses DFT as “cyclic convolution” of size
n − 1

I A special case of Winograd algorithm [Win78]

Matteo Frigo A Fast Fourier Transform Compiler



Computational Bounds

I Calculating DFT using straight-forward
application of definition requires O(n2)
arithmetical operations

I Calculating DFT using FFT algorithms have
upper bound time complexities of O(n log n)

Matteo Frigo A Fast Fourier Transform Compiler



The Fastest Fourier Transform in the West (FFTW)

I Original 1999 paper covers FFTW revision 2.0

I Latest version (3.0) will be discussed later

I Website: http://www.fftw.org/

Matteo Frigo A Fast Fourier Transform Compiler



What is FFTW?

I Software library of fast C routines to compute
one and multi-dimensional real and complex
DFTs of arbitrary size

I Currently fastest FFT algorithm available upheld
by regular benchmarks

I Speed advantage due to two distinguishing
features:

I FFTW’s computational routines adapts automatically
to the hardware providing for portability and speed

I Inner loop of FFTW generated by a special-purpose
compiler written in Objective Caml

Matteo Frigo A Fast Fourier Transform Compiler



genfft: a domain-specific FFT compiler

I genfft compiler is magic behind FFTW

I Written in Objective Caml 2.0

I From a complex number FFT algorithm,
automatically derives a real number algorithm
[Soren87]

I Automatic generation of inner loop of FFTW
which comprises 95% of total code base

Matteo Frigo A Fast Fourier Transform Compiler



Benchmark: Just how fast compared to other FFTs?

Test System: 3.0 GHz Intel Core Duo, Intel compilers, 32-bit mode

Matteo Frigo A Fast Fourier Transform Compiler



Reasons for Speed Advantage?

I FFTW does not implement any single fixed DFT
algorithm

I Instead, DFT is computed using a structured
library of highly optimized blocks of C code
called codelets which can be composed in
many ways

I Composition of codelets is called a plan that
determines which codelet should be executed in
what order

Matteo Frigo A Fast Fourier Transform Compiler



Reasons for Speed Advantage?

I At runtime FFTW finds optimal composition of
codelets by measuring speed of different plans,
choosing the fastest

I FFTW contains 120 codelets with total of
approximately 55,000 lines of optimized code to
compute forward, backward, real to complex,
and complex to real transforms

Matteo Frigo A Fast Fourier Transform Compiler



Outline of the Compilation Strategy

1. Creation: genfft produces a directed acyclic
graph (dag) of the codelet according to an
algorithm for the DFT; FFTW contains a
number of such algorithms and applies the most
appropriate

2. Simplification: genfft applies rewriting rules
to each dag node in order to simplify the node

Matteo Frigo A Fast Fourier Transform Compiler



Outline of the Compilation Strategy

3. Scheduling: genfft applies a topological sort
of the dag which minimizes the number of
register spills “no matter how many registers the
target machine has...”

4. Unparsing: genfft finally unparses to C (or to
any other language by swapping out the
unparser)

Matteo Frigo A Fast Fourier Transform Compiler



dag Representation

Definition of the node data type which represents an
arithmetic expression dag. Cited [Aho86] for syntax tree
representation.

Matteo Frigo A Fast Fourier Transform Compiler



dag Creation

I Function fftgen produces the expression dag

I fftgen performs symbolic evaluation of FFT algorithm to
produce the dag for DFT of size n

I No single FFT algorithm is optimal for all size n so
genfft contains many algorithms and fftgen chooses
most appropriate

I For example, for complex transform of size n = 13,
generator employs Rader’s algorithm in a variant
formulated by Tolimieri et al. [Tol97]. However, that
algorithm performs 214 real floating point additions
and 76 real multiplications while generated FFTW
code executes only 176 additions and 68
multiplications—genfft found simplifications
overlooked by the authors!

Matteo Frigo A Fast Fourier Transform Compiler



dag Creation

I For FFTW version 2.0, fftgen implemented:
1. Cooley-Tukey for n = n1n2 where n 6= 1
2. Split-Radix for n muliple of 4
3. Prime Factor if n factors into n1n2, n 6= 1, and

gcd(n1, n2) = 1
4. Rader’s for prime length if n = 5 or n ≥ 13
5. Direct application of DFT definition

Matteo Frigo A Fast Fourier Transform Compiler



dag Creation

OCaml code for Cooley-Tukey FFT algorithm. The infix
operator @* computes the complex product while the function
exp n k computes the constant exp(2πk

√
−1/n).

Matteo Frigo A Fast Fourier Transform Compiler



Simplification

I Simplifier traverses dag bottom-up and applies
series of “improvements” at every node

I Common, well-known optimizations [Aho86]:
1. Algebraic Transformations: constant folding and

simplify multiplication by 0, 1,−1 and addition by 0
2. Common-Subexpression Elimination (CSE): simplifier

implemented in monadic style [Wad97] in which the
monad performs CSE

Matteo Frigo A Fast Fourier Transform Compiler



Simplification

I DFT-specific:
1. Eliminate negative constants. Constants generally

appear as pairs in a DFT dag ; C compiler would store
values in program text and then load both constants
into a register at runtime. Thus, making all constants
positive reduces load by factor of two, speeding up
generated codelets by 10-15%

2. Network transposition. Based on fact that network is
a dag that computes a linear function [Cro75]

Matteo Frigo A Fast Fourier Transform Compiler



Simplification

genfft’s simplifier performs three passes over the
dag :

Optimize(G ) =

E := Simplify(G )

FT := Simplify(ET )

RETURN Simplify(F )

Matteo Frigo A Fast Fourier Transform Compiler



Summary of dag transposition benefits

Matteo Frigo A Fast Fourier Transform Compiler



Scheduling

I The genfft scheduler produces a topological
sort of the dag so register allocator of C
compiler can minimize number of register spills

I Proven [HK81] that for DFTs of size power of 2
(n = 2k), there exists a schedule that is
asymptotically optimal

Matteo Frigo A Fast Fourier Transform Compiler



Scheduling

I genfft’s schedule is cache-oblivious, i.e. not
dependent on the number R of registers on a
machine and yet optimal for every R

I In fact, execution of FFT dag of size n = 2k on
a machine of R registers where R ≤ n has:

1. lower bound of Ω(n log n/ log R) register
spills

2. upper bound in which gennfft’s output
program incurs at most O(n log n/ log R)
register spills

Matteo Frigo A Fast Fourier Transform Compiler



Runtime & Memory Footprint

I Takes approximately 75 seconds for DFT of size
n = 64 to run FFTW generated C code on a
200MHz Pentium Pro machine running Linux
2.2

I genfft needs less than 3 MB of memory to
complete generation which resulted in a codelet
containing 912 additions and 248 multiplications

I Regeneration of whole FFTW system can be
done in approximately 15 minutes

Matteo Frigo A Fast Fourier Transform Compiler



Some Conclusions to Draw

I Optimal Performance: Main goal of project
achieved since up-to-date benchmarks show
FFTW’s performance still ahead of other
competing FFTs

Matteo Frigo A Fast Fourier Transform Compiler



Some Conclusions to Draw

I Correctness: In words of author: “surprisingly
easy.” Since DFT algorithms in genfft were
encoded using a straight-forward, high-level
language (OCaml), simplification phase of the
compiler transforms algorithms into optimized
code via application of simple algebraic rules
which are easy to verify

Matteo Frigo A Fast Fourier Transform Compiler



Some Conclusions to Draw

I Rapid Turnaround: Just around 15 minutes
(back in 1999) to regenerate FFTW form
scratch

Matteo Frigo A Fast Fourier Transform Compiler



Some Conclusions to Draw

I Domain-specific code enhancements:
Topological sort in scheduling phase is effective
only for DFT dags and perform poorly for other
computations while simplification performs
certain improvements which rely on DFT being
a linear transformation

I genfft “derived” or “discovered” new
algorithms, as in case of n = 13 discussed earlier

Matteo Frigo A Fast Fourier Transform Compiler



FFTW v3.0

I Released April 2003

I Latest stable release: v3.3, Jul 26, 2011
I Major enhancements:

1. Complete rewrite adding new algorithms and FFTs
(Bluestein’s, etc.)

2. Improved speed: programs often 20% faster than
comparable FFTW 2.x code

3. New set of APIs to support more general semantics
4. Single Instruction, Multiple Data (SIMD) support for

parallel processing CPUs (SSE, SSE2, 3DNow!,
Altivec)

5. Read release notes for full list of improvements and
bug fixes: http://www.fftw.org/release-notes.html

Matteo Frigo A Fast Fourier Transform Compiler



Awards & Recognition

I 1999 J. H. Wilkinson Prize for Numerical
Software (awarded every 4 years)

I 2009 Most Influential PLDI Paper Award
(http://sigplan.org/award-pldi.htm)

Matteo Frigo A Fast Fourier Transform Compiler



Questions & Answers?

Matteo Frigo A Fast Fourier Transform Compiler



References

I [Ken02] Kent, Ray D. and Read, Charles (2002). Acoustic
Analysis of Speech. ISBN 0-7693-0112-6. Cites Strang,
G. (1994)/MayJune). Wavelets. American Scientist, 82,
250-255.

I [CD65] J. W. Cooley and J.W. Tukey. An algorithm for
the machine computation of the complex Fourier series.
Mathematics of Computation, 19:297301, April 1965.

I [OS89] A. V. Oppenheim and R. W. Schafer.
Discrete-time Signal Processing. Prentice-Hall,
Englewood Cliffs, NJ 07632, 1989.

I [DV90] P. Duhamel and M. Vetterli. Fast Fourier
transforms: a tutorial review and a state of the art. Signal
Processing, 19:259299, April 1990.

Matteo Frigo A Fast Fourier Transform Compiler



References

I [Rad68] C. M. Rader. Discrete Fourier transforms when
the number of data samples is prime. Proc. of the IEEE,
56:11071108, June 1968.

I [Win78] S. Winograd. On computing the discrete Fourier
transform. Mathematics of Computation, 32(1):175199,
January 1978.

I [Aho86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers, principles, techniques, and tools.
Addison-Wesley, March 1986.

I [Tol97] Richard Tolimieri, Myoung An, and Chao Lu.
Algorithms for Discrete Fourier Transform and
Convolution. Springer Verlag, 1997.

Matteo Frigo A Fast Fourier Transform Compiler



References

I [Wad97] Philip Wadler. How to declare an imperative.
ACM Computing Surveys, 29(3):240263, September 1997.

I [Cro75] R. E. Crochiere and A. V. Oppenheim. Analysis of
linear digital networks. Proceedings of the IEEE,
63:581595, April 1975.

I [Soren87] H. V. Sorensen, D. L. Jones, M. T. Heideman,
and C. S. Burrus. Real-valued fast Fourier transform
algorithms. IEEE Transactions on Acoustics, Speech, and
Signal Processing, ASSP-35(6):849863, June 1987.

Matteo Frigo A Fast Fourier Transform Compiler


