
  

Making New Pseudo-Languages 
with C++

Build You a C++ For Great Good

A 10,000 Metre Talk by David Williams-King

++



  

1/4 Introduction
2/4 Polymorphism & Multimethods
3/4 Changing the Behaviour of C++
4/4 Metaprogramming & Frontends

Agenda



  

Introduction

● About me
– CBoard member for nearly 10 years 

http://cboard.cprogramming.com/

– C++ game engine developer

● Most large-scale C++ projects have their own 
idioms, and invent their own “dialect” of C++

● Thinking about this explicitly is useful

http://cboard.cprogramming.com/


  

C++ Language Specifications

● Pre-standard: iostream.h, ad-hoc libraries
● C++98: first standard
● TR1 (C++03): regular exp, smart pointers, hash 

tables, etc (just library changes)
– Boost: major C++ library which influenced TR1

● C++11 (C++0x): second major standard, syntax 
changes (template >>), auto type inference, etc

● C++14 (upcoming): auto return types, better 
lambdas, etc.



  

C++ ecosystems

● Major C++ compilers
– Borland C++ Builder

– Microsoft Visual Studio C++ (MSVC)

– GNU Compiler Collection (g++)

– LLVM (clang)

– IBM's xlc++, Intel's icc, EDG front-end (Coverity...)

● Boost: high-quality C++ libraries
– Atomics, message-passing, serialization, regexes, 

preprocessors (Wave), co-routines, random number 
generators, shared pointers, embedded Python, ...



  

1/4 Introduction
2/4 Polymorphism & Multimethods
3/4 Changing the Behaviour of C++
4/4 Metaprogramming & Frontends

Agenda



  

Partially-Specified Behaviour

● Polymorphism through template types

● Polymorphism through inheritance, interface 
specification, composition, etc

● Polymorphism through virtual functions!

// from GCC 4.9's bits/stl_set.h
namespace std
{
  template<typename _Key, typename _Compare = std::less<_Key>,
       typename _Alloc = std::allocator<_Key> >
    class set
    {  // ...



  

Virtual Functions

● Overriding a method with a new version
– crops up in C code, in the runtime linker, etc.

– Some languages do this everywhere (Smalltalk, 
Java, etc.)

– C++ lets you opt in with “virtual”

● Normal function calls are bound statically; 
virtual function calls are bound dynamically



  

Multimethods

● Call a function polymorphically based on the 
types of multiple different classes
– e.g. collisions in a game

– a.k.a. multiple dispatch (double dispatch)

● “Report on language support for Multi-Methods 
and Open-Methods for C++” -- Stroustrup

● Can emulate with visitor design pattern
– polymorphic source method creates a visitor class 

which has accept(Foo), accept(Bar), etc

– Target class hierarchy has polymorphic visit(Visitor)



  

Visitor Design Pattern
struct Visitor {
    virtual ~Visitor() {}
    virtual void visit(const Foo1 &f) = 0;
    virtual void visit(const Foo2 &f) = 0;
};

struct Foo {
    virtual void accept(Visitor &v) { v.visit(*this); }
    virtual void collide(const Foo &other);
};
class Foo1 : public Foo {};
class Foo2 : public Foo {};

void Foo1::collide(const Foo &other) {
    struct NewFooFunction : public Visitor { /* ... */ } f;
    other.accept(f);
    // one level of polymorphism because collide is virtual;
    // another level because of the visitor's overloading
}



  

1/4 Introduction
2/4 Polymorphism & Multimethods
3/4 Changing the Behaviour of C++
4/4 Metaprogramming & Frontends

Agenda



  

Operator overloading

● Simple operator overloading

● External operator overloading

● Type-conversion overloading

Point operator + (const Point &other) const
    { return Point(x + other.x, y + other.y); }

std::ostream &operator << (std::ostream &o, const Foo &f) {
    o << f.getName(); return o;
}

operator std::string () const
    { return StreamAsString() << x << ',' << y; }



  

StreamAsString

● Use << operator anywhere a string is expected

● How?
– std::ostringstream

– template operator <<

– operator std::string()

void print(const std::string &s);
print(StreamAsString() << “Answer: “ << 42);



  

StreamAsString
#include <sstream>
#include <string>

class StreamAsString {
private:
    std::ostringstream stream;
public:
    template <typename T>
    StreamAsString &operator << (const T &data) {
        stream << data;
        return *this;
    }
    
    operator std::string() const {
        return stream.str();
    }
};



  

Memory Management

● C-style arrays, unchecked accesses, unsafe
● New Standard Template Library containers like 

std::vector, std::map, std::unordered_map, etc.
– they can do bounds-checking and auto-resizing

● Automatic memory management with smart 
pointers and reference counting (C++03/Boost)

● Program-wide memory management with 
allocator pools



  

Smart Pointers

● How to write a smart pointer implementation:
– catch dereferences (operator *, operator ->)

– catch copying (operator =, copy constructor)

– provide comparisons, conversions (operator bool)

● std::shared_ptr, std::weak_ptr
– shared_ptr does ref counting

– weak_ptr can be converted to shared but doesn't 
count towards the reference count



  

1/4 Introduction
2/4 Polymorphism & Multimethods
3/4 Changing the Behaviour of C++
4/4 Metaprogramming & Frontends

Agenda



  

Metaprogramming

● C++ is Turing-complete (obviously)
– So is the preprocessor: 

http://stackoverflow.com/questions/3136686/is-the-c99-preprocessor-turing-complete

– So are templates (see Modern C++ Design by 
Andrei Alexandrescu -- the library is called Loki)

● Basic ideas like singleton, factories, pools
● But also typelists, traits, multimethods, functors

http://stackoverflow.com/questions/3136686/is-the-c99-preprocessor-turing-complete


  

Object Messages/Event Systems

● A class wants to announce a state change 
without knowing who is interested
– common in GUI toolkits and game engines

● Ways of implementing this:
– observer design pattern (quite klunky)

– event class with functors (Boost.Signals, templates)

– global event managing system (my favourite)

– separate pre-processing pass (e.g. Qt moc)



  

Serialization/Marshalling

● Turn an object into a string and back again (for 
sending over a network, storing on disk, etc)

● Boost.Serialization example:
class C {
private:
    friend class boost::serialization::access;

    template <typename Archive>
    void serialize(Archive &ar, const unsigned ver) {
        ar & x;  // like << and >> combined together
        ar & y;
    }
private:
    int x, y;
};



  

Reflection

● Want the ability to query the functions of an 
unknown class, call a function by name, 
instantiate a class by name at runtime
– powerful when combined with serialization

● One example: Qt's Meta-Object Compiler (moc)
– extra pre-processing pass that constructs a meta-

object for relevant classes

– also generates plumbing for object messages



  

Synthesis

● add events to objects (Boost.Signals, etc)
● store events in templated thread-safe queues
● automatically serialize and deserialize events 

(Boost.Serialization)
● send events over the network asynchronously 

(Boost.Asio)
● manage memory with shared pointers
● define events in XML or Lua ....



  

The End.

ācta



  

References (1/3)

● More about C++ in general
– CBoard http://cboard.cprogramming.com/

– C++11 http://www.learncpp.com/cpp-tutorial/b-1-introduction-to-c11/

– Boost! Learn it!! http://boost.org/

– Misc: function pointers http://www.newty.de/fpt/

● Slide references
– Images from Learn You a Haskell for Great Good 

http://learnyouahaskell.com/

http://cboard.cprogramming.com/
http://www.learncpp.com/cpp-tutorial/b-1-introduction-to-c11/
http://boost.org/
http://www.newty.de/fpt/
http://learnyouahaskell.com/


  

References (2/3)

● Metaprogramming and language extensions
– Book: Modern C++ Design by Andrei Alexandrescu 

(will turn you into a template wizard!)
● Or get the code online

http://loki-lib.sourceforge.net/index.php?n=Main.ModernCDesign

– Qt Meta-Object system
http://qt-project.org/doc/qt-4.8/metaobjects.html

– Boost http://boost.org/
● Especially Boost.Signals, for event systems: 

http://www.boost.org/doc/libs/1_56_0/doc/html/signals/tutorial.html#idp426643280

– My rant about Qt signals/slots (Boost is much 
better!) http://elfery.net/blog/signals.html

http://loki-lib.sourceforge.net/index.php?n=Main.ModernCDesign
http://qt-project.org/doc/qt-4.8/metaobjects.html
http://boost.org/
http://www.boost.org/doc/libs/1_56_0/doc/html/signals/tutorial.html#idp426643280
http://elfery.net/blog/signals.html


  

References (3/3)

● Serialization
– Google's protocol buffers 

https://github.com/google/protobuf/

● Multimethods
– “Report on language support for Multi-Methods and Open-Methods for C++” 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2216.pdf

– For stuff that actually exists, see “Multiple Dispatch” 
on Wikipedia http://en.wikipedia.org/wiki/Multiple_dispatch

● Design patterns
– Visitor, Observer, Composition; Event Notifier:

● http://www.marco.panizza.name/dispenseTM/slides/exerc/eventNotifier/eventNotifier.html

https://github.com/google/protobuf/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2216.pdf
http://en.wikipedia.org/wiki/Multiple_dispatch
http://www.marco.panizza.name/dispenseTM/slides/exerc/eventNotifier/eventNotifier.html


  

(backup slides)



  

Undefined Functions

● Convention: prototype a method but don't 
define the function body (to create an abstract 
class)

● C++ canonized this with pure virtual functions

● Effective way to define abstract classes

class C {
public:
    virtual void foo() = 0;
}



  

C++11 Virtual Function Features

● New virtual function controls
– override: this function must override a base-class 

function (like Java 5's @Override annotation)

– final: can't be overridden (like Java's final)

– default: use default code for default constructor, 
copy-constructor, assignment operator, or 
destructor

– delete: prevent function from being called

virtual void foo() override;
virtual void foo() final;
virtual void foo() = default;
virtual void foo() = delete;



  

Function Pointers

● http://www.newty.de/fpt/
● Original C function pointers are straightforward:

void print(const char *s) {
    puts(s);
}

void (*func)(const char *) = &print;
func(“Hello”);
(*func)(“Hello”);

http://www.newty.de/fpt/


  

Function Pointers

● Pointers to member functions must specify 
scope

class C {
public:
    int add(int i) const { return i+i; }
    int mul(int i) const { return i*i; }
};

int (C::*func)(int) = &C::add;
C c, *p = &c;
int result1 = (c.*func)(5);
int result2 = (p->*func)(5);
int result3 = (*this.*func)(5);


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

