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Introduction

● About me
– CBoard member for nearly 10 years 

http://cboard.cprogramming.com/

– C++ game engine developer

● Most large-scale C++ projects have their own 
idioms, and invent their own “dialect” of C++

● Thinking about this explicitly is useful

http://cboard.cprogramming.com/


  

C++ Language Specifications

● Pre-standard: iostream.h, ad-hoc libraries
● C++98: first standard
● TR1 (C++03): regular exp, smart pointers, hash 

tables, etc (just library changes)
– Boost: major C++ library which influenced TR1

● C++11 (C++0x): second major standard, syntax 
changes (template >>), auto type inference, etc

● C++14 (upcoming): auto return types, better 
lambdas, etc.



  

C++ ecosystems

● Major C++ compilers
– Borland C++ Builder

– Microsoft Visual Studio C++ (MSVC)

– GNU Compiler Collection (g++)

– LLVM (clang)

– IBM's xlc++, Intel's icc, EDG front-end (Coverity...)

● Boost: high-quality C++ libraries
– Atomics, message-passing, serialization, regexes, 

preprocessors (Wave), co-routines, random number 
generators, shared pointers, embedded Python, ...
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Partially-Specified Behaviour

● Polymorphism through template types

● Polymorphism through inheritance, interface 
specification, composition, etc

● Polymorphism through virtual functions!

// from GCC 4.9's bits/stl_set.h
namespace std
{
  template<typename _Key, typename _Compare = std::less<_Key>,
       typename _Alloc = std::allocator<_Key> >
    class set
    {  // ...



  

Virtual Functions

● Overriding a method with a new version
– crops up in C code, in the runtime linker, etc.

– Some languages do this everywhere (Smalltalk, 
Java, etc.)

– C++ lets you opt in with “virtual”

● Normal function calls are bound statically; 
virtual function calls are bound dynamically



  

Multimethods

● Call a function polymorphically based on the 
types of multiple different classes
– e.g. collisions in a game

– a.k.a. multiple dispatch (double dispatch)

● “Report on language support for Multi-Methods 
and Open-Methods for C++” -- Stroustrup

● Can emulate with visitor design pattern
– polymorphic source method creates a visitor class 

which has accept(Foo), accept(Bar), etc

– Target class hierarchy has polymorphic visit(Visitor)



  

Visitor Design Pattern
struct Visitor {
    virtual ~Visitor() {}
    virtual void visit(const Foo1 &f) = 0;
    virtual void visit(const Foo2 &f) = 0;
};

struct Foo {
    virtual void accept(Visitor &v) { v.visit(*this); }
    virtual void collide(const Foo &other);
};
class Foo1 : public Foo {};
class Foo2 : public Foo {};

void Foo1::collide(const Foo &other) {
    struct NewFooFunction : public Visitor { /* ... */ } f;
    other.accept(f);
    // one level of polymorphism because collide is virtual;
    // another level because of the visitor's overloading
}
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Operator overloading

● Simple operator overloading

● External operator overloading

● Type-conversion overloading

Point operator + (const Point &other) const
    { return Point(x + other.x, y + other.y); }

std::ostream &operator << (std::ostream &o, const Foo &f) {
    o << f.getName(); return o;
}

operator std::string () const
    { return StreamAsString() << x << ',' << y; }



  

StreamAsString

● Use << operator anywhere a string is expected

● How?
– std::ostringstream

– template operator <<

– operator std::string()

void print(const std::string &s);
print(StreamAsString() << “Answer: “ << 42);



  

StreamAsString
#include <sstream>
#include <string>

class StreamAsString {
private:
    std::ostringstream stream;
public:
    template <typename T>
    StreamAsString &operator << (const T &data) {
        stream << data;
        return *this;
    }
    
    operator std::string() const {
        return stream.str();
    }
};



  

Memory Management

● C-style arrays, unchecked accesses, unsafe
● New Standard Template Library containers like 

std::vector, std::map, std::unordered_map, etc.
– they can do bounds-checking and auto-resizing

● Automatic memory management with smart 
pointers and reference counting (C++03/Boost)

● Program-wide memory management with 
allocator pools



  

Smart Pointers

● How to write a smart pointer implementation:
– catch dereferences (operator *, operator ->)

– catch copying (operator =, copy constructor)

– provide comparisons, conversions (operator bool)

● std::shared_ptr, std::weak_ptr
– shared_ptr does ref counting

– weak_ptr can be converted to shared but doesn't 
count towards the reference count



  

1/4 Introduction
2/4 Polymorphism & Multimethods
3/4 Changing the Behaviour of C++
4/4 Metaprogramming & Frontends

Agenda



  

Metaprogramming

● C++ is Turing-complete (obviously)
– So is the preprocessor: 

http://stackoverflow.com/questions/3136686/is-the-c99-preprocessor-turing-complete

– So are templates (see Modern C++ Design by 
Andrei Alexandrescu -- the library is called Loki)

● Basic ideas like singleton, factories, pools
● But also typelists, traits, multimethods, functors

http://stackoverflow.com/questions/3136686/is-the-c99-preprocessor-turing-complete


  

Object Messages/Event Systems

● A class wants to announce a state change 
without knowing who is interested
– common in GUI toolkits and game engines

● Ways of implementing this:
– observer design pattern (quite klunky)

– event class with functors (Boost.Signals, templates)

– global event managing system (my favourite)

– separate pre-processing pass (e.g. Qt moc)



  

Serialization/Marshalling

● Turn an object into a string and back again (for 
sending over a network, storing on disk, etc)

● Boost.Serialization example:
class C {
private:
    friend class boost::serialization::access;

    template <typename Archive>
    void serialize(Archive &ar, const unsigned ver) {
        ar & x;  // like << and >> combined together
        ar & y;
    }
private:
    int x, y;
};



  

Reflection

● Want the ability to query the functions of an 
unknown class, call a function by name, 
instantiate a class by name at runtime
– powerful when combined with serialization

● One example: Qt's Meta-Object Compiler (moc)
– extra pre-processing pass that constructs a meta-

object for relevant classes

– also generates plumbing for object messages



  

Synthesis

● add events to objects (Boost.Signals, etc)
● store events in templated thread-safe queues
● automatically serialize and deserialize events 

(Boost.Serialization)
● send events over the network asynchronously 

(Boost.Asio)
● manage memory with shared pointers
● define events in XML or Lua ....



  

The End.

ācta



  

References (1/3)

● More about C++ in general
– CBoard http://cboard.cprogramming.com/

– C++11 http://www.learncpp.com/cpp-tutorial/b-1-introduction-to-c11/

– Boost! Learn it!! http://boost.org/

– Misc: function pointers http://www.newty.de/fpt/

● Slide references
– Images from Learn You a Haskell for Great Good 

http://learnyouahaskell.com/

http://cboard.cprogramming.com/
http://www.learncpp.com/cpp-tutorial/b-1-introduction-to-c11/
http://boost.org/
http://www.newty.de/fpt/
http://learnyouahaskell.com/


  

References (2/3)

● Metaprogramming and language extensions
– Book: Modern C++ Design by Andrei Alexandrescu 

(will turn you into a template wizard!)
● Or get the code online

http://loki-lib.sourceforge.net/index.php?n=Main.ModernCDesign

– Qt Meta-Object system
http://qt-project.org/doc/qt-4.8/metaobjects.html

– Boost http://boost.org/
● Especially Boost.Signals, for event systems: 

http://www.boost.org/doc/libs/1_56_0/doc/html/signals/tutorial.html#idp426643280

– My rant about Qt signals/slots (Boost is much 
better!) http://elfery.net/blog/signals.html

http://loki-lib.sourceforge.net/index.php?n=Main.ModernCDesign
http://qt-project.org/doc/qt-4.8/metaobjects.html
http://boost.org/
http://www.boost.org/doc/libs/1_56_0/doc/html/signals/tutorial.html#idp426643280
http://elfery.net/blog/signals.html


  

References (3/3)

● Serialization
– Google's protocol buffers 

https://github.com/google/protobuf/

● Multimethods
– “Report on language support for Multi-Methods and Open-Methods for C++” 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2216.pdf

– For stuff that actually exists, see “Multiple Dispatch” 
on Wikipedia http://en.wikipedia.org/wiki/Multiple_dispatch

● Design patterns
– Visitor, Observer, Composition; Event Notifier:

● http://www.marco.panizza.name/dispenseTM/slides/exerc/eventNotifier/eventNotifier.html

https://github.com/google/protobuf/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2216.pdf
http://en.wikipedia.org/wiki/Multiple_dispatch
http://www.marco.panizza.name/dispenseTM/slides/exerc/eventNotifier/eventNotifier.html
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Undefined Functions

● Convention: prototype a method but don't 
define the function body (to create an abstract 
class)

● C++ canonized this with pure virtual functions

● Effective way to define abstract classes

class C {
public:
    virtual void foo() = 0;
}



  

C++11 Virtual Function Features

● New virtual function controls
– override: this function must override a base-class 

function (like Java 5's @Override annotation)

– final: can't be overridden (like Java's final)

– default: use default code for default constructor, 
copy-constructor, assignment operator, or 
destructor

– delete: prevent function from being called

virtual void foo() override;
virtual void foo() final;
virtual void foo() = default;
virtual void foo() = delete;



  

Function Pointers

● http://www.newty.de/fpt/
● Original C function pointers are straightforward:

void print(const char *s) {
    puts(s);
}

void (*func)(const char *) = &print;
func(“Hello”);
(*func)(“Hello”);

http://www.newty.de/fpt/


  

Function Pointers

● Pointers to member functions must specify 
scope

class C {
public:
    int add(int i) const { return i+i; }
    int mul(int i) const { return i*i; }
};

int (C::*func)(int) = &C::add;
C c, *p = &c;
int result1 = (c.*func)(5);
int result2 = (p->*func)(5);
int result3 = (*this.*func)(5);
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