Co
nclusion




Writing Real Time Web Applications Without The Hassle

Rafael Castellanos, Project Manager

Peter Sugihara, Language Guru

Nicolo Pizzoferrato, System Integrator

Andrew Lamping, System Test

Group 17 Cody De La Vara, System Architect



Evolution of the Internet

Primitive
- simple static file server
- HTTP 1.0
- non-persistent connection
- only supported simple requests
such as GET, POST, etc

Getting better...
- Client-side scripting: JavaScript!
- Persistent HTTP 1.1
- AJAX, polling, etc.



Current technologies

NodelS
- capability to build a server entirely in JavaScript
- event-driven
- asynchronous

WebSocket
- bidirectional communication protocol
- designed for real-time communication



So...what's wrong with the way things are now?

- learning API for servers/sockets is time consuming
- even experienced programmers must deal with

boilerplate configurations before getting to the
core of the application

- HTTP's stretched metaphor



Introducing...

PASS

- DSL for writing real-time web applications

- abstracts away the details of setting up a server

- no dealing with socket connections

- immediately work on the application logic

- simple mechanism for function exposure and
server-client communication

- a sleek, compact syntax without sacrificing
functionality

- easy to learn for anyone with JavaScript (or other
C-family language) background



PassC passes the
source into an
ANTLRFileSteam,
which is given to an
ANTLR Lexer to break
the source program
into a Token stream.

Translator

Pass Translator
PassC.java

Pass.g : ANTLR
Lexer

Parser

Tree Constructor / Semantic

Tree Walker / Translator
FirstPass.java

SecondPass.java



Translator

Leading whitespace is
used to determine the
grouping of
statements in Pass.
The lexer generates
INDENT and DEDENT

tokens

Pass Translator
PassC.java

Pass.g : ANTLR
Lexer

Parser

Tree Constructor / Semantic

Tree Walker / Translator
FirstPass.java

SecondPass.java



Translator

Parser ensures tokens

conform Pass Translator
to our grammar. PassC.java

Pass.g : ANTLR
ANTLR allows us to Lexer
insert code in-between Parser

rule productions used to

return semantic errors

earlier on. Tree Walker / Translator
FirstPass.java

Tree Constructor / Semantic

SecondPass.java



Example of ASTforA=1+ 2




With the AST,
we simply walk
the tree and
translate!

Translator

Pass Translator
PassC.java

Pass.g : ANTLR
Lexer

Parser

Tree Constructor / Semantic

Tree Walker / Translator
FirstPass.java

SecondPass.java



How it all fits together

command line: pass <source> <port> <static dir> [--optimize]

\ 4

check for
valid input ~Jp pass source file

v

Utility Compiler

set up client

interface \ optimize

static files initialize *

' server

optimized/formatted JS

Pass is running!



Installation

npm Install pass

depends on Node.js and Java






Native functions
(client grouping support)

MULTIPLE TAGS:
- pushTag(connection, tag)
- popTag(connection, tag)
- getTags(connection)

SINGLE TAG:
- setTag(connection, tag)
- getTag(connecton)

UNIVERSAL:
- conns(tag)
- clearTags(connection)
- taglsLive(tag)
- hasTag(connection, tag)



Testing

Unit

v

Regression

Ty

Verification




Efficiency
and
Benchmarking

/

Regression

\ Error

Reporting



Testing

Unit

v

Regression

Ty

Verification




Project Management




Security




Don't be too serious.



onclusion




