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Evolution of the Internet

Primitive
- simple static file server
- HTTP 1.0
- non-persistent connection
- only supported simple requests
such as GET, POST, etc

Getting better...
- Client-side scripting: JavaScript!
- Persistent HTTP 1.1
- AJAX, polling, etc.



Current technologies

NodelS
- capability to build a server entirely in JavaScript
- event-driven
- asynchronous

WebSocket
- bidirectional communication protocol
- designed for real-time communication



So...what's wrong with the way things are now?

- learning API for servers/sockets is time consuming
- even experienced programmers must deal with

boilerplate configurations before getting to the
core of the application

- HTTP's stretched metaphor



Introducing...

PASS

- DSL for writing real-time web applications

- abstracts away the details of setting up a server

- no dealing with socket connections

- immediately work on the application logic

- simple mechanism for function exposure and
server-client communication

- a sleek, compact syntax without sacrificing
functionality

- easy to learn for anyone with JavaScript (or other
C-family language) background



PassC passes the
source into an
ANTLRFileSteam,
which is given to an
ANTLR Lexer to break
the source program
into a Token stream.

Translator

Pass Translator
PassC.java

Pass.g : ANTLR
Lexer

Parser

Tree Constructor / Semantic

Tree Walker / Translator
FirstPass.java

SecondPass.java



Translator

Leading whitespace is
used to determine the
grouping of
statements in Pass.
The lexer generates
INDENT and DEDENT

tokens

Pass Translator
PassC.java

Pass.g : ANTLR
Lexer

Parser

Tree Constructor / Semantic

Tree Walker / Translator
FirstPass.java

SecondPass.java



Translator

Parser ensures tokens

conform Pass Translator
to our grammar. PassC.java

Pass.g : ANTLR
ANTLR allows us to Lexer
insert code in-between Parser

rule productions used to

return semantic errors

earlier on. Tree Walker / Translator
FirstPass.java

Tree Constructor / Semantic

SecondPass.java



Example of ASTforA=1+ 2




With the AST,
we simply walk
the tree and
translate!

Translator

Pass Translator
PassC.java

Pass.g : ANTLR
Lexer

Parser

Tree Constructor / Semantic

Tree Walker / Translator
FirstPass.java

SecondPass.java



How it all fits together

command line: pass <source> <port> <static dir> [--optimize]

\ 4

check for
valid input ~Jp pass source file

v

Utility Compiler

set up client

interface \ optimize

static files initialize *

' server

optimized/formatted JS

Pass is running!



Installation

npm Install pass

depends on Node.js and Java






Native functions
(client grouping support)

MULTIPLE TAGS:
- pushTag(connection, tag)
- popTag(connection, tag)
- getTags(connection)

SINGLE TAG:
- setTag(connection, tag)
- getTag(connecton)

UNIVERSAL:
- conns(tag)
- clearTags(connection)
- taglsLive(tag)
- hasTag(connection, tag)
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Project Management




Security




Don't be too serious.
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