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Hello Whole World
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Accumulator Variable
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Accumulator Syntax

acc myAcc:Int = Reducer() ;

initiate a new acc n to type Int with a reducer

myAcc = 5 ;

Add value 5 to the reducer

var result = myAcc ;

Read the result from myAcc and store it in result
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Initialization

class c()
{
     acc x:Int = IntReduce() ;     //  ERROR:  Cannot initialize field
     
     def m()
     {
          acc x2:Int = IntReducer() ;   // This is fine
     }
}
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Read-Write and Write-Only

acc x:Int = IntReduce() ;
x = 5 ;
var r1 = x ;     // In Read-Write state so legal
finish
{
     x = 2 ;        // In Write-Only
     var r2 = x ;     // ERROR: In Write-Only state
}
var r3 = x ;   // Back in Read-Write state
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No-Write State

acc x:Int = IntReduce() ; 
async
{
     x = 5 ;     // ERROR: No-Write state
     var r4 = x ;     // ERROR: Cannot read either!
}
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Passing to a method

acc x:Int = IntReduce() ; 
m( x ) ;     // ERROR: Cannot use in method call outside of finish

finish
{
     m( x ) ;     // Can be passed to a method now
}

def m( x:Int ) {     ... }
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Prevent acc escaping to heap

Acc cannot be captured by a closure

acc i:Int = new IntReducer()
val closure = ()=>i ;  // ERROR: Cannot capture an acc

Acc cannot be capture by method

val anon = new Object() { 
     def m() = i ;
} ;
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Some other static checks

Acc cannot be a type

Array[acc] ;     // ERROR

Acc must be initialized with a reducer

acc i:Int ;     // ERROR
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Runtime

Loads the environment and gets the information about Max 
threads, static threads, etc. that are permitted for this instance.

Runtime has methods for explicit memory management like alloc 
and dealloc of objects.

Runtime has methods defined for initiating work stealing in local 
or remote places by polling.

Runtime acquires a worker thread, locks it and then releases it.
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Runtime cont.

Every worker has a queue, activity and ID bound to it.  As well as 
methods for push or steal activities from a queue.

Runtime has methods for starting collecting finish, stopping 
collecting finish, running activities at remote places, etc.
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Collecting Finish

Collection Finish is a special type of finish implementation

Collection Finish has an additional accept method, which 
performs reduction over a SINGLE variable that is shared across 
all the activities.

All the activities (worker threads) can perform reduction to that 
SINGLE variable.

The single variable is implicit and cannot be explicitly handled.
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Collection Finish cont.

At the end of the Collection Finish, a call to waitForFinishExpr is 
mad by the Runtime environment.

The waitForFinishExpr ensures that all activities have been 
completed and also computes the final value of the Collection 
Finish construct.
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Comparison
class FibAccumulators {
    def fib(n:Int):Int {
      acc x:Int = new IntReducer();
      finish  { 
          fib1(n, x);
      } 
      return x;
    }
    def fib1(n:Int, acc z:Int) {
       if (n < 2) { 
           z=n;  
          return; 
       }
       async fib1(n-1, z);
       fib1(n-2, z);
    }
}

class CollectingFinish_Fib {
    def fib(n:Int):Int {
      var x:Int;
      x = finish (new IntReducer()) {
          fib1(n); 
      };
      return x;
    }
    def fib1(n:Int) offers Int {
       if (n < 2) { offer n; return; }
       async fib1(n-1);
       fib1(n-2);
    }
}
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Control Flow
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Thank you :)
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