
ACCUMULATOR VARIABLES
Extending the X10 language

Nathaniel Clinger
Tanay Tandon
Jaya Allamsetty
Neha Srivastav

1Thursday, May 12, 2011

What is Partitioned Global
Address Space

!"#$%&'(")*+,*$-./".#-0*+)*#%1($1-*
$1'2-,!"
3*$1'2-*2")&'+),*0'&'*&4'&*2')*5-*"$-.'&-0*
")*.-#"&-167*
8'&'*1+9-,*+)*&4-*$1'2-*+&*:',*2.-'&-0;*/".*+&,*
1+/-(#-7*

3*0'&%#*+)*")-*$1'2-*#'6*.-/-.-)2-*'*
0'&%#*+)*')"&4-.*$1'2-7*
8'&'<,&.%2&%.-,*=-7>7*'..'6,?*#'6*5-*
0+,&.+5%&-0*'2.",,*#')6*$1'2-,7**
@1'2-,*#'6*4'9-*0+A-.-)&*2"#$%&'(")'1*
$."$-.(-,*=-7>7*@@B;*C@B;D@E;*F?7*

!"#$%&'"'(#)'**'*"$+&%$,-./"

Address Space

01%)'2"3'4+)."

"5#'637"

78!0"

97:;":!<;":1%#'$;"=>?"
3'**%@'"#%**,6@""

37A"

Process/Thread

4G$HIIJKL72"0-4'%,7".>IMKLNO7KNP%&".+'1NQORC!NOLKLQOS*

2Thursday, May 12, 2011

Hello Whole World

!"#$%%&'()*+,-!./0)+12%3'(45)'46/7+18.94:5;<=45('(:5>?

3Thursday, May 12, 2011

Accumulator Variable

Place 1

Place 5Place 4 Place 6

Place 3Place 2

4Thursday, May 12, 2011

Accumulator Variable

Place 1

Place 2 Place 3

Place 5Place 4 Place 6

5Thursday, May 12, 2011

Accumulator Syntax

acc myAcc:Int = Reducer() ;

initiate a new acc n to type Int with a reducer

myAcc = 5 ;

Add value 5 to the reducer

var result = myAcc ;

Read the result from myAcc and store it in result

6Thursday, May 12, 2011

Initialization

class c()
{
 acc x:Int = IntReduce() ; // ERROR: Cannot initialize field

 def m()
 {
 acc x2:Int = IntReducer() ; // This is fine
 }
}

7Thursday, May 12, 2011

Read-Write and Write-Only

acc x:Int = IntReduce() ;
x = 5 ;
var r1 = x ; // In Read-Write state so legal
finish
{
 x = 2 ; // In Write-Only
 var r2 = x ; // ERROR: In Write-Only state
}
var r3 = x ; // Back in Read-Write state

8Thursday, May 12, 2011

No-Write State

acc x:Int = IntReduce() ;
async
{
 x = 5 ; // ERROR: No-Write state
 var r4 = x ; // ERROR: Cannot read either!
}

9Thursday, May 12, 2011

Passing to a method

acc x:Int = IntReduce() ;
m(x) ; // ERROR: Cannot use in method call outside of finish

finish
{
 m(x) ; // Can be passed to a method now
}

def m(x:Int) { ... }

10Thursday, May 12, 2011

Prevent acc escaping to heap

Acc cannot be captured by a closure

acc i:Int = new IntReducer()
val closure = ()=>i ; // ERROR: Cannot capture an acc

Acc cannot be capture by method

val anon = new Object() {
 def m() = i ;
} ;

11Thursday, May 12, 2011

Some other static checks

Acc cannot be a type

Array[acc] ; // ERROR

Acc must be initialized with a reducer

acc i:Int ; // ERROR

12Thursday, May 12, 2011

Runtime

Loads the environment and gets the information about Max
threads, static threads, etc. that are permitted for this instance.

Runtime has methods for explicit memory management like alloc
and dealloc of objects.

Runtime has methods defined for initiating work stealing in local
or remote places by polling.

Runtime acquires a worker thread, locks it and then releases it.

13Thursday, May 12, 2011

Runtime cont.

Every worker has a queue, activity and ID bound to it. As well as
methods for push or steal activities from a queue.

Runtime has methods for starting collecting finish, stopping
collecting finish, running activities at remote places, etc.

14Thursday, May 12, 2011

Collecting Finish

Collection Finish is a special type of finish implementation

Collection Finish has an additional accept method, which
performs reduction over a SINGLE variable that is shared across
all the activities.

All the activities (worker threads) can perform reduction to that
SINGLE variable.

The single variable is implicit and cannot be explicitly handled.

15Thursday, May 12, 2011

Collection Finish cont.

At the end of the Collection Finish, a call to waitForFinishExpr is
mad by the Runtime environment.

The waitForFinishExpr ensures that all activities have been
completed and also computes the final value of the Collection
Finish construct.

16Thursday, May 12, 2011

Comparison
class FibAccumulators {
 def fib(n:Int):Int {
 acc x:Int = new IntReducer();
 finish {
 fib1(n, x);
 }
 return x;
 }
 def fib1(n:Int, acc z:Int) {
 if (n < 2) {
 z=n;
 return;
 }
 async fib1(n-1, z);
 fib1(n-2, z);
 }
}

class CollectingFinish_Fib {
 def fib(n:Int):Int {
 var x:Int;
 x = finish (new IntReducer()) {
 fib1(n);
 };
 return x;
 }
 def fib1(n:Int) offers Int {
 if (n < 2) { offer n; return; }
 async fib1(n-1);
 fib1(n-2);
 }
}

17Thursday, May 12, 2011

Control Flow

18Thursday, May 12, 2011

Thank you :)

19Thursday, May 12, 2011

