ACCUMULATOR VARIABLES

* & Kk &

J

Extending the X 10 language

Nathaniel Clinger
Tanay Tandon
Jaya Allamsetty
Neha Srivastav

|

* K ok ok

Thursday, May 12, 2011

Whatis Parttioned Global
Address Space

oS O Process/Thread D Address Space
; l I | | |
' | =S hae
1 1 1
PGAS
Message passing Shared Memory
T OpenMP UPC, CAF, Chapel, X10
A datum in one place may reference a
Computation is performed in multiple datum in another place.
places.

Data-structures (e.g. arrays) may be
A place contains data that can be operated (jstributed across many places.

on remotely. Places may have different computational

Data lives in the place it was created, for its properties (e.g. PPE, SPE,GPU, ...).
lifetime.

A place expresses locality.
http://x10.codehaus.org/X10+2.1+Tutorial+%28SC+2010%29

Thursday, May 12, 2011

Hello Whole World

import x10.io.Console;

class HelloWholeWorld {
public static def main (Array[String]) {
finish for (p in Place.places()) {

async at (p)
Console.OUT.println ("Hello World from place" +p.id);

(%1) x10c++ —-o HelloWholeWorld -O HelloWholeWorld.x10

(52)
Hello
Hello
Hello
Hello

o\°

(53)

runx1l0 -n 4 HelloWholeWorld
World from place O
World from place 2
World from place 3
World from place 1

http://x10.codehaus.org/X10+2.1+Tutorial+%28SC+2010%29

Thursday, May 12, 2011

Place 4 [L.a Place 5 - 8" Place 6 F

Accumulator Variable

Place |

Thursday, May 12, 2011

Accumulator Variable

el D e
e R
g g, 3
I ‘s
w » 8
¥ 8 a4
:

Place 4 - Place 6 E

Thursday, May 12, 2011

Accumulator Syntax

“t acc myAcc:Int = Reducer() ;

“k Initiate a new acc n to type Int with areducer

¥ myAcc=5;

% Add value 5 to the reducer

*& var result = myAcc ;

*¢ Read the result from myAcc and store it in result

Thursday, May 12, 2011

Immtaalization

*k class ¢()

d
acc x:Int = IntReduce() ; // ERROR: Cannot initialize field

def m()

{
acc x2:Int = IntReducer() ; // This s fine
f
¥

Thursday, May 12, 2011

&

Read-Write and Write-Only

*k acc x:Int = IntReduce() ;
ek
varrl =x; //InRead-Write state so legal
finish

{ : :
x=2; //InWrite-Only

varr2=x; // ERROR: In Write-Only state
h

varr3 =x; // Back in Read-Write state

@

Thursday, May 12, 2011

No-Write State

% acc x:Int = IntReduce() ;
async
{
x=5: // ERROR: No-Write state
varrd =x: // ERROR: Cannot read either!

h

Thursday, May 12, 2011

Passing to amethod

** acc x:Int = IntReduce() ;

m(x); //ERROR: Cannotuse in method call outside of finish

finish

1
h

m(x);

// Can be passed to a method now

de_fm(b 5 R |

Thursday, May 12, 2011

10

&

Preventacc escaping to heap

“ Acc cannot be captured by a closure

* acc 1:Int = new IntReducer() |
val closure = ()=>1; // ERROR: Cannot capture an acc

s Acc cannot be capture by method

*¢ val anon = new Object() {
defm() =1;
Ji s

@

Thursday, May 12, 2011

11

Some other static checks

“& Acc cannot be a type

*t Array[acc] ; // ERROR

% Acc must be imitialized with a reducer

% acci:Int; // ERROR

Thursday, May 12, 2011

12

Runtime

*¢ Loads the environment and gets the information about Max
threads, static threads, etc. that are permitted for this instance.

** Runume has met

hods for explicit memory management like alloc
ects.

and dealloc of obj

¢ Runtime has methods defined for initiating work stealing in local
or remote places by polling.

¢ Runtime acquires a worker thread, locks it and then releases it.

Thursday, May 12, 2011

13

Runtime cont.

*t Every worker has a queue, activity and 1D bound to it. As well as
methods for push or steal activities from a queue.

¢ Runtime has methods for starting collecting finish, stopping
collecting finish, running activities at remote places, etc.

Thursday, May 12, 2011

Collecung Finish

*¢ Collection Finish is a special type of finish implementation

“¢ Collection Finish has an additional accept method, which
performs reduction over a SINGLE variable that is shared across
all the actvites.

*& All the activities (worker threads) can perform reduction to that

SINGLE variable.

“¢ The single variable 1s implicit and cannot be explicitly handled.

Thursday, May 12, 2011

15

Collection Fimish cont.

* At the end of the Collection Finish, a call to waitForFinishkExpr is
mad by the Runtime environment.

= The waitForFinishExpr ensures that all activities have been
completed and also computes the final value of the Collection
Finish construct.

Thursday, May 12, 2011 16

&

o

class FibAccumulators {
def fib(n:Int):Int{
acc x:Int = new IntReducer();
finish {
fib1(n, x);
}
return x;
i
def fib1(n:Int, acc z:Int) {
if (n<2){
Z=n;
return;
}
async fib1(n-1, z);
fib1(n-2, z);
}

Comparison

¢ class CollectingFinish_Fib {
def fib(n:Int):Int {
var x:Int;
x = finish (new IntReducer()) {
fibl(n);
2
return x;

}
def fib1(n:Int) offers Int {

if (n <2) { offer n; return; }
async fib1(n-1);
fib1(n-2);
}
}

Thursday, May 12, 2011

17

Control Flow

acc x:Int = new IntReducer();

X=n

'

Accumulator.supply()

Accumulator

Accumulator.result()

varz =x;

Runtime.
makeAccSupply()

Runtime

Runtime .
getAccValue()

FinishState.
CollectingFinish.
accAccept()

FinishState

FinishState.
CaollectingFinish.
waitForAccFinish()

Thursday, May 12, 2011

18

Thankyou:)

