
muS

Irene Alvarado – Project Manajer
Jonathan Dunn – Language Guru

Richard Boyle – System Integrator
Farbound Tai – Verification & Validation

Taylor Owens - System Architect

http://code.google.com/p/mus/source/browse/#svn%2Ftrunk%2Fsrc

What Is muS?

♪ muS is a tool to help anyone build and analyze a
piece of music in a simple, intuitive way.

Why muS?

♪ Reading sheet music is
confusing, even for the
experienced musician

♪ muS provides immediate
visual feedback to the creator
of the piece

♪ Other digital music software allows creation of
music, but almost none provide a means to create
useful visual analysis

Why muS?

Why muS?

♪ MuS attempts to address this void by allowing the
programmer to specify color and shape to notes in
order to see music in a different way
♪ More control than other visual editors, but better
visual analysis than robust .midi programming

Music Composition
 ♪ Manually write out each note/GUI with software

♪ Insert notes?
♪ Change the pitch for every other note?
♪ Increase octave of last 2 notes in every measure?
♪ Generate new song w/ similar sub-sequences?

Our language: muS

♪ Easily change attributes of a set of notes
♪ A brand new way to explore music composition
♪ Use appropriate data structures to represent music

1.  Efficient storage for notes, chords, measures, and
attributes

2.  Ease of access

♪ Provide suitable operators and built-in functions
seq1	 <<	 seq2[3:10]	 +	 seq2[0,4,5]	 +	 [seq3,seq4]	

Graphical Representation

♪ Manually change the shape/color of any note
♪ Change representation for entire sequences
♪ Immediate visual clues to help analyze the music
that has just been created

muS Hierarchy

Notes

♪ Attributes
♪ Pitch
♪ Duration
♪ Octave
♪ Shape
♪ Color
♪ Instrument

♪ Example syntax
 Note	 n1	 =	 new	 Note	 (A,4,4);	

	 	 n1<Instrument('guitar');	
	 n1<Color('green');	

	 	 	 n1<Shape('triangle');	

Chords

♪ Comprised of any number of Notes
♪ Played simultaneously
♪ Example syntax:

 Note	 a	 =	 new	 Note(A,4,4);	
	 Note	 b	 =	 new	 Note(B,4,4);	
	 Note	 c	 =	 new	 Note(C,4,4);	
	 Chord	 c1	 =	 new	 Chord	 (a,b,c);	

Sequences

♪ Creation
♪ Sequences are built up from Notes, Chords and Sequences
♪ Allow for Repeating Melodies
♪ Built in functions allow for easy manipulation
♪ Subsequences
♪ Subsets
♪ Single Chords, or Notes
♪ Changing attributes

♪ Analysis
♪ midi Output
♪ Visual Patterns

Built in functions

♪ foreach
♪Allows for changing of an attribute of an entire sequence
♪ foreach(seq1)<Instrument('bird	 tweet');	

♪ Subsequence and Subset
♪ Allows the programmer to get a certain portion of a sequence
♪ seq[0:4];//Subsequence	
♪ seq[0,4,7];//Subset	

Lexical Analyzer
♪ Built using JLex (.lex file)

♪ The Java equivalent of Lex for C
♪ Breaks muS code into token

♪ ID
♪ Numbers
♪ Keywords
♪ Grammatical symbols and operators
♪ Quoted Text
♪ Comments (ignored)

•  next_token() returns a java_cup.runtime.Symbol object
(compatible with CUP)

•  Generates file called Yylex.java	

Semantic Analyzer
♪ Built using CUP (.cup file)
♪ Constructor of Useful Parsers
♪ Defines terminals for each token in Lexical Analyzer
♪ Defines non-terminals used in grammar
♪ Constructs a new ParseTree object

♪ Defines grammar of muS and invokes Java code (in
ParseTree.java)
♪ Generates two classes:
♪ ParserSym.java à constant declarations for each token
type
♪ Parser.java à actually executes the parsing

ParseTree.java
♪ Declares, initializes, and stores variables
♪ Code for built-in functions and operators
♪ Checks for errors, declarations, and initialization
♪ Works with all the other Java classes

♪ Note.java à represents a Note
♪ Chord.java à represents a Chord
♪ Sequence.java à represents a Sequence
♪ Reference.java à stores available colors, shapes, and
instruments

Lilypond
♪ Program used to produce displayed music score
♪ LilypondConvert.java
♪ Converts sequence into acceptable format for lilypond
♪ Lilypond:

 ♪ Input: .ly file
 ♪ Output: .midi file

♪ Lilypond-book:
 ♪ Input: .html file without graphics
 ♪ Output: .html file with graphics

Example – Pachelbel.Canon.mus

http://mus.googlecode.com/svn/trunk/src/testfiles/Pachelbel.Canon/Pachelbel.Canon.html

Example – Aho.mus

http://mus.googlecode.com/svn/trunk/src/testfiles/Aho/Aho.html

Lessons Learned

♪ Communication and Version control

♪ Insufficient Planning è(Implementation Effort)N

♪ Planning and Implementation is an Iterative Process

♪ Start Early!

