
GPL: GPL is a Programming Language

Jacob Jensen - Language Guru
Kritika Kaul - System Tester

Mohan Kolli - Team Lead
Nitin Natarajan - System Integrator

Yufei Liu - System Architect

Why Graphs?
Many algorithms are based
on graphs – shortest path,
breadth first search,
topological sort
Real-world networks are
interesting objects of study
in themselves
Many languages can deal
with graphs reasonably
well, but often in an
inflexible or cumbersome
way.

What is GPL?

General-purpose graph programming
language
Make graphs simple to work with

Manipulate data naturally in an adjacency list
setting
Many common algorithms built in: no hassle
Interpreted for ease of use

To graphs what MATLAB is to matrices

Features of GPL

Interpreter based
Procedural
Weakly-typed
Visualizable
Easy to use
Enforces Good Programming Practices
Awesome

Syntax

Simple: Nothing too crazy
Spare: Skip the curly brackets
Intuitive: Not hard to figure out
Traditional: Stick to standards of other
interpreted languages

Graph-Centric

Three atomic data types
String: Symbols are important
Number: Quantitites are important
Graph: Collections of things and their binary relationships
are most important!

Graph has a set of Nodes and Edges
Encapsulated: No unsupervised access
Manipulate from Graph level, for simplicity and safety

Graph can be visualized
Beauty of Swing representation unparalleled
3D... representation of a perfectly flat surface

Built-in Libraries

Graph Algorithms (CLRS style)
MST, BFS, BFS with target node, DFS

Network Algorithms
PageRank
Matrices and Vectors that can manipulate
stored quantities

Development Environment

Eclipse: IDE for Java backend development
'Liu'Lex: custom-written lexical analyzer
Jacc: Java-native version of yacc
Perl: Interpreted Shell

Say Hello to Graph World?

Graph h = ["h", "e", "l", "l", "o"]
String s = h.printNodes()
print(s)

Output:
h e l l o

Sample Code
def printNumber(Number n)
 print("Number is passed to printNumber ")
 print(n)
end

Number i = 2
Number j = 2
while (i>0)
 printNumber(i)
 i = i-1
end

i = 4

if (i%2 == 0)
 print("i is even ")
elsif (i%3 == 0)
 print("i is divisible by 3 ")
else
 print("i is neither even nor divisible by 3 ")
end

Graph h = ["h", "e", "l", "l", "o"]
print(h.printNodes())

h.addEdge(1,2,1)
h.addEdge(1,3,1)
h.addEdge(1,4,1)
h.addEdge(1,5,1)
h.addEdge(3,4,1)
h.addEdge(4,2,1)

h.bfs(1)
h.dfs(1)
h.topologicalSort()

Translator Architecture

Unit tested every back end method.
Every time a method was checked in or any change
was made, we made it a point to run the tests so that
the application is always in a stable state.
Integration with the parser was made due to our script
which enabled us to test the back end with the front
end and run our test suite.
We also had a command line interpreter to quickly
check the state of the parser and how it behaves.

Integration and Testing

