I GPL: GPL is a Programming Language

Jacob Jensen - Language Guru
Kritika Kaul - System Tester
Mohan Kolli - Team Lead
Nitin Natarajan - System Integrator
Yufel Liu - System Architect



Why Graphs?

e Many algorithms are based
I on graphs — shortest path, 4
breadth first search, \
topological sort \\‘ ///
e Real-world networks are N EEEEE
interesting objects of study " / \7/
in themselves /
e Many languages can deal
with graphs reasonably
well, but often in an
inflexible or cumbersome
way.

.

'.*-‘./‘
/



What is GPL?

e General-purpose graph programming
language
e Make graphs simple to work with
o Manipulate data naturally in an adjacency list
setting

o Many common algorithms built in: no hassle
o Interpreted for ease of use

e To graphs what MATLAB is to matrices



I Features of GPL

I e Interpreter based
e Procedural
I e Weakly-typed
e Visualizable
e Easy to use
e Enforces Good Programming Practices
e Awesome



Syntax

e Simple: Nothing too crazy

e Spare. Skip the curly brackets

e Intuitive: Not hard to figure out

e Traditional: Stick to standards of other
interpreted languages



Graph-Centric

e Three atomic data types

o String: Symbols are important

o Number: Quantitites are important

o Graph: Collections of things and their binary relationships
are most important!

e Graph has a set of Nodes and Edges

o Encapsulated: No unsupervised access
o Manipulate from Graph level, for simplicity and safety

e Graph can be visualized
o Beauty of Swing representation unparalleled
o 3D... representation of a perfectly flat surface



Built-in Libraries

e Graph Algorithms (CLRS style)
o MST, BFS, BFS with target node, DFS
e Network Algorithms
o PageRank
o Matrices and Vectors that can manipulate
stored quantities



I Development Environment

I e Eclipse: IDE for Java backend development
e 'Liu'Lex: custom-written lexical analyzer

I e Jacc: Java-native version of yacc
e Perl: Interpreted Shell



Say Hello to Graph World?

Graph h =["h", "I", "I, "0"]
String s = h. prthodes()
print(s)

Output:
hello



Sample Code
def printNumber(Number n)

print("Number is passed to printNumber ")
print(n)
end

Numberi= 2

Number j = 2

while (i>0)
printNumber(i)
i=i-1

end

i=4

if (i%2 ==0)
print("i is even ")
elsif (%3 == 0)
print("i is divisible by 3 ")
else
print("i is neither even nor divisible by 3 ")
end

Graph h = [llhll, llell, lllll’ "Ill, IIO"]
print(h.printNodes())

h.addEdge(1,2,1)
h.addEdge(1,3,1)
h.addEdge(1,4,1)
h.addEdge(1,5,1)
h.addEdge(3,4,1)
h.addEdge(4,2,1)

h.bfs(1)
h.dfs(1)
h.topologicalSort()



InputStream stack

Source code
—P

Modified
source code
T

A 4

GPLParser:
parser

Shared resources:

table stack)

v

Runtime statistics

Current line number
Error information

Result of
evaluation

Evaluates the main
program source code

Code for evaluating
conditional jumps

GPLParser:
liner

Evaluates short snippets
of code for flow decision




Integration and Testing

e Unit tested every back end method.

e Every time a method was checked in or any change
was made, we made it a point to run the tests so that
the application is always in a stable state.

e Integration with the parser was made due to our script
which enabled us to test the back end with the front
end and run our test suite.

e \We also had a command line interpreter to quickly
check the state of the parser and how it behaves.



