
Stroustrup - Columbia 9/30/9 1

Evolving a language in and for
the real world

Bjarne Stroustrup
Texas A&M University
http://www.research.att.com/~bs

Stroustrup - Columbia 9/30/9 3

Overview
• 1951-1978: Prehistory – Aims and Ideals
• 1979-1990: The early years – C with Classes and C++
• 1991-1997: Explosive growth – STL and C++98
• 1998-2008: Living in the real world – C++0x

Stroustrup - Columbia 9/30/9 4

8000+ Programming Languages
• C++’s family tree (part of)

Fortran

C++
Simula

C#

Algol C

Smalltalk
Lisp

Java

C++0x

Pascal

Ada Ada95

Object Pascal

ML

BCPL

C89/99

• And this is a gross oversimplification!

Assembler

Stroustrup - Columbia 9/30/9 5

Programming languages
• A programming language exists to help people express ideas

– Programming language features exist to serve design and programming
techniques

– The real measure of value is the number, novelty, and quality of
applications

Stroustrup - Columbia 9/30/9 6

Assembler –1951

– Abstraction
– Efficiency
– Testing
– documentation

• Machine code to assembler and libraries

Stroustrup - Columbia 9/30/9 7

Fortran –1956
• A notation fit for humans

– For a specific application domain
• A(I) = B(I)+C*D(I)

– Efficiency a premium
– Portability

Stroustrup - Columbia 9/30/9 8

Simula –1967
• Organize code to model “the real world”

– Object-oriented design
• Let the users define their own types (classes)

– In general: concepts map to classes
– “Data abstraction”

• Organize classes into hierarchies
– Object-oriented programming

Stroustrup - Columbia 9/30/9 9

C –1974

• An simple and general notation for systems programming
– Somewhat portable
– Direct mapping of objects and basic operations to machine

• Performance becomes somewhat portable

Stroustrup - Columbia 9/30/9 10

C with Classes –1980
• General abstraction mechanisms to cope with complexity

– From Simula
• General close-to-hardware machine model for efficiency

– From C

– Became C++ in 1984
– Commercial release 1985

Stroustrup - Columbia 9/30/9 11

ISO Standard C++

• C++ is a general-purpose programming language with a
bias towards systems programming that
– is a better C
– supports data abstraction
– supports object-oriented programming
– supports generic programming

• A multi-paradigm programming language
– The most effective styles use a combination of techniques

From about 1994

From mid-1983

From day 1 (1980)

Stroustrup - Columbia 9/30/9 12

C++ applications
(www.research.att.com/~bs/applications.html)

• Telecommunications
• Google, Amazon, …
• Microsoft applications and GUIs
• Linux tools and GUIs
• Financial
• Games
• PhotoShop
• Most browsers
• …

• Mars Rovers
• Marine diesel engines
• Cell phones
• Human genome project
• High-energy physics
• Micro electronics design and manufacturing
• …

Stroustrup - Columbia 9/30/9 13

What’s distinctive about C++?
• Stability

– Essential for real-world software
– 1985-2008
– 1978-2008 (C and C with Classes)

• Non-proprietary
– Yet almost universally supported
– ISO standard from 1998

• Direct interface to other languages
– Notably C, assembler, Fortran

• Abstraction + machine model
– Zero overhead principle

• For basic operations (e.g. memory access) and abstraction mechanisms
– User-defined types receive the same support as built-in types
– Standard library written in the language itself

• And most non-standard libraries

Stroustrup - Columbia 9/30/9 14

Aims for C++
• Support real-world software developers

– “better software now”
– by “better” I mean correct, maintainable, efficient, portable, …

• Change the way people think about software
– Object-oriented programming
– Generic programming
– Resource management
– Error handling

• Functional, not academic, beauty
– “even I could have designed a

much prettier language” – B.S. 1984 or so

Stroustrup - Columbia 9/30/9 15

Ideals

• The fundamental ideals for good design
– Represent ideas directly in code
– Represent independent ideas independently in code
– Represent relationships among ideas directly in code

• Hierarchical
• Parametric

– Combine ideas expressed in code freely
• where and only where combinations make sense

• C++
– Make these ideals viable for the largest possible range of application areas

• “viable” includes “affordable” and “on available hardware”
• “viable” includes “performs as well as the gold standard in a given area”

– e.g. Fortran for scientific computation and C for systems programming
• “viable” includes “in the hands of ordinary programmers”

Stroustrup - Columbia 9/30/9 16

Language features – 1979-1990
• C with Classes (1979-84)

– Function argument declarations and checking
– const (also in constant expressions)
– Classes
– Derived classes
– Constructors, destructors
– new and delete
– Inline functions

• C++ (in 1983-86)
– Overloading (incl. =, [], and ())
– virtual functions
– Type-safe linkage

• C++ (1988-90)
– Templates
– Exceptions

Huge impact

Not in C until
much later

Rather late

Basic resource management
• A resource can be memory, file handle, lock, socket, etc.

class vector {
vector(int s); // constructor: validate arguments, acquire resources
~vector(); // destructor: release resources
// …

};

void f(int s)
{

vector v(s);
// …

}

Stroustrup - Columbia 9/30/9 17

Object-oriented programming
• Class hierarchies, dynamic lookup, and static interfaces

class Shape {
Point c; // common implementation detail: often a dumb idea
Color col;

public: // common user interface
virtual void draw();
virtual void move(Point p) { c=p; }
virtual void rotate(int deg);
// …

};

class Circle : public Shape {
Circle(Point cc, Color co);
void rotate(int) {} // nice optimal algorithm
// …

};
Stroustrup - Columbia 9/30/9 18

Stroustrup - Columbia 9/30/9 19

C++ ISO Standardization – Membership
• About 22 nations

(8 to 12 at a meeting)
– ANSI (US national committee)

hosts the technical meetings
– Other nations have further

technical meetings
• Membership have varied

– 100 to 200+
• 200+ members currently

– 40 to 100 at a meeting
• ~60 currently

• Most members work in industry
• Most are volunteers

– Even many of the company representatives
• Most major platform, compiler, and library vendors are represented

– E.g., IBM, Intel, Microsoft, Sun
• End users are underrepresented

Stroustrup - Columbia 9/30/9 20

C++ ISO Standardization – Process
Formal, slow, bureaucratic, and democratic

– “the worst way, except for all the rest”
(apologies to W. Churchill)

Most technical work happens
– in “working groups”
– electronically between meetings

Stroustrup - Columbia 9/30/9 21

For C++, the ISO standards process is central
• Standard support needed for mainstream use

– Huge potential for improvement of application code
– For (far too) many “if it isn’t in the standard it doesn’t exist”

• Significant defense against vendor lock-in
• C++ has no rich owner

– who can dictate changes, pay for design, implementation, marketing, etc.
• The C++ standards committee is the central forum of the C++ community

– Endless discussions among people who would never meet otherwise
• The committee receives feedback from a broad section of the community

– Much of it industrial
• The committee is somewhat proactive

– Adds features not previously available in the C++ world

Stroustrup - Columbia 9/30/9 22

C++ ISO Standardization – Results
1998 ISO standard

– 22-0 vote
2003 Technical Corrigenda

– “bug fix release”; no new features
2008 Registration draft for C++0x

– 2011?

• Technical reports
– Library (2004)
– Performance (2004)
– Decimal floating point (2008)
– Library2
– Modularity

Stroustrup - Columbia 9/30/9 23

Language features: 1991-1998
1992 Covariant return types
1993 Run-time type identification (RTTI: dynamic_cast, typeid, and type_info)

Declarations in conditions
Overloading based on enumerations
namespaces
mutable
New casts (static_cast, reinterpret_cast, and const_cast)
A Boolean type (bool)
Explicit template instantiation
Explicit template argument specification in function template calls

1994 Member templates (“nested templates”)
Class templates as template arguments

1996 In-class member initializers
Separate compilation of templates (export)
Template partial specialization
Partial ordering of overloaded function templates

The sum is far
more significant
than the parts

Stroustrup - Columbia 9/30/9 24

C++98 example: Resource management
• Standard library containers

– with exception-safety guarantees
(e.g., vector)

– the techniques can be used by
every user

• No resources are leaked
– E.g. vector elements and file

handles (handled by ifstream)
– Destructors do cleanup

• guaranteed, implicitly
– Based on a simple and systematic

view of resource management
• Resources: e.g. locks, sockets,

memory, thread handles, file
handles

• Exception safety guarantees
• RAII

void f(string s)
{

vector<int> v;
ifstream is(s);
// …
int x;
while (is>>x) {

if (x<=0) throw Bad_value(x);
v.push_back(x);

}
// …

}

Stroustrup - Columbia 9/30/9 25

The STL
• Ideal: The most general and most efficient

expression of an algorithm
– Focus on algorithms
– Separate algorithms from data

• Using iterators
– Go from the concrete to the abstract

• Not the other way
– Use compile-time resolution to eliminate overheads

• Inlining and overloading
– Where needed, parameterize with policies

• E.g. sorting criteria

Stroustrup - Columbia 9/30/9 26

STL example: find_if

• Definition
template<class Iter, class Pred>
Iter find_if(Iter first, Iter last, Pred p)
{

while (first!=last && !p(*first)) // while not at end and predicate not met
++first; // advance to next element

return first; // return the element reached
}

pi = find_if(v.begin(), v.end(), Less_than<int>(42));
if (pi!=v.end()) {

// found it!
}

Stroustrup - Columbia 9/30/9 27

C++0x: 2002-2008
• Overall goals

– Make C++ a better language
• for systems programming
• for library building

– Make C++ easier to teach and learn
• generalization
• better libraries

• Massive pressure for
– More language features
– Stability / compatibility

• Incl. C compatibility
• Insufficient pressure for

– More standard libraries
• The committee doesn’t have the resources required for massive library

development

Stroustrup - Columbia 9/30/9 28

C++0x: Areas of change
• Machine model and concurrency

– Memory model
– Threads library, asynchronous return
– Atomic API
– Thread-local storage

• Support for generic programming
– auto, decltype, template aliases, Rvalue references, …
– General and uniform initialization
– Lambdas

• Etc.
– improved enums
– long long, C99 character types, etc.
– …

• Libraries
– Regular expressions
– Hashed containers
– …

Stroustrup - Columbia 9/30/9 29

C++0x: language features
• decltype and auto — type deduction from expressions
• Template aliases
• Move semantics (rvalue references)
• Static assertions (static_assert)
• long long and many other C99 features
• >> (without a space) to terminate two template specializations
• Unicode data types
• Variadic templates
• Generalized constant expressions (constexpr)
• Generalized initializer lists
• Scoped and strongly typed enumerations (class enum)
• Control of alignment
• nullptr — Null pointer constant
• A for-statement for ranges
• Delegating and forwarding constructors
• Thread-local storage (thread_local)
• Defaulting and inhibiting common operations
• Lambda expressions
• …

The whole is much
more than its parts

Stroustrup - Columbia 9/30/9 30

Performance and convenience
template<class C, class V> vector<typename C::iterator> find_v(C& s, V v)

// find all occurrences of v in s
{

vector<C::iterator> res;
for (auto p = s.begin(); p!=s.end(); ++p)

if (*p==v) res.push_back(p);
return res;

}

vector<string> m = { "Dennis", "Joe", "Brian", "Al", "Joe", "Bill" };
for (auto x : find_v(m,"Bill"))

if (x!= "Bill") cerr << "bug!\n";

Stroustrup - Columbia 9/30/9 31

Why did C++ succeed?
• Reasons

– Low-level access plus abstraction mechanisms
• Performance
• Direct access to real hardware
• Very general zero-overhead abstraction

– C compatibility
– A useful tool (from day #1)
– Timing
– Non-proprietary – ISO standard
– Stable
– Evolving

“Being best at one or two things is not enough, you must be good enough
at everything someone consider important”

Stroustrup - Columbia 9/30/9 32

Why did C++ succeed?
• Popular non-reasons

– Just luck
• For 25 years!

– AT&T’s marketing might
• Must be a joke 

– It was first
• Except for Ada, CommonLoops, Smalltalk, Eiffel,

Objective C, Modula-2, C, Fortran, ML, …
– Just C compatibility

• Never 100%
– It was cheapest

• Not for most of its lifetime (incl. all the early years)

What is C++? A multi-paradigm
programming
language

It’s C!

A hybrid
language

An object-oriented
programming
language

Template
meta-programming!

A random
collection of
features

Embedded systems
programming language

Low level!

Buffer
overflows

Too big! Supports
generic programming

33Stroustrup - Columbia 9/30/9

C++
A language for
building
software
infrastructures
and resource-
constrained
applications

A light-weight-abstraction
programming language

34Stroustrup - Columbia 9/30/9

Stroustrup - Columbia 9/30/9 35

Thanks!
• C and Simula

– Brian Kernighan
– Doug McIlroy
– Kristen Nygaard
– Dennis Ritchie
– …

• ISO C++ standards committee
– Steve Clamage
– Francis Glassborow
– Andrew Koenig
– Tom Plum
– Herb Sutter
– …

• C++ compiler, tools, and library builders
– Beman Dawes
– David Vandevoorde
– …

• Application builders

Stroustrup - Columbia 9/30/9 36

More information
• My HOPL-II and HOPL-III papers
• The Design and Evolution of C++ (Addison Wesley 1994)
• My home pages

– Papers, FAQs, libraries, applications, compilers, …
• Search for “Bjarne” or “Stroustrup”

• The ISO C++ standard committee’s site:
– All documents from 1994 onwards

• Search for “WG21”
• The Computer History Museum

– Software preservation project’s C++ pages
• Early compilers and documentation, etc.

– http://www.softwarepreservation.org/projects/c_plus_plus/
– Search for “C++ Historical Sources Archive”

Stroustrup - Columbia 9/30/9 37

C/C++ compatibility
• A constant sore point

– Separate standards committees
• A tragedy

– Constant borrowing
• Both ways
• Often incompatibly

– Widely demanded by users
• Rightfully so

– Widely despised by users
• “Against OO”
• “Against the spirit of C”

	Evolving a language in and for the real world
	Overview
	8000+ Programming Languages
	Programming languages
	Assembler –1951
	Fortran –1956
	Simula –1967
	C –1974
	C with Classes –1980
	ISO Standard C++
	C++ applications (www.research.att.com/~bs/applications.html)
	What’s distinctive about C++?
	Aims for C++
	Ideals
	Language features – 1979-1990
	Basic resource management
	Object-oriented programming
	C++ ISO Standardization – Membership
	C++ ISO Standardization – Process
	For C++, the ISO standards process is central
	C++ ISO Standardization – Results
	Language features: 1991-1998
	C++98 example: Resource management
	The STL
	STL example: find_if
	C++0x: 2002-2008
	C++0x: Areas of change
	C++0x: language features
	Performance and convenience
	Why did C++ succeed?
	Why did C++ succeed?
	What is C++?
	C++
	Thanks!
	More information
	C/C++ compatibility

