
Department of Computer Science Columbia University
Solutions to Final – COMS W4115
Programming Languages and Translators

Monday, May 4, 2009 4:10-5:25pm, 309 Havemeyer

Closed book, no aids. Do questions 1─5. Each question is worth 20 points. Question 6 is optional,
extra credit, 10 points.

1. Here is a fragment of C code:

struct student {
 int id;
 char student[30];
} student;

a) Explain the roles of the three uses of the identifier student.

struct student { // here student is a structure tag
 int id;
 char student[30]; // here student is a structure member
} student; // here student is a variable

b) Are these three uses in the same scope? Explain.

The three uses are in the same scope but in different name spaces.

2. Consider the context-free grammar G: S → aSbS | bSaS | ε

a) Describe L(G). Show two parse trees for the sentence abab in L(G).

L(G) is the set of all strings of a’s and b’s with the same number of a’s as b’s.

S

a S b S

ε ε

S b Sa ε

S

a S b S

a S b S

ε ε

ε

1

b) Construct the SLR(1) parsing action and goto tables for L(G). Show the
behavior of an LR(1) parser using these tables on the input abab.

The sets of items for the augmented grammar are:

I0: S’→ ·S
 S → ·aSbS
 S → ·bSaS
 S → ·

I1: S’→ S·

I2: S → a·SbS
 S → ·aSbS
 S → ·bSaS
 S → ·

I3: S → b·SaS
 S → ·aSbS
 S → ·bSaS
 S → ·

I4: S → aS·bS I5: S → bS·aS

I6: S → aSb·S
 S → ·aSbS
 S → ·bSaS
 S → ·

I7: S → bSa·S
 S → ·aSbS
 S → ·bSaS
 S → ·

I8: S → aSbS·

I9: S → aSbS·

 The parsing action and goto tables constructed from these sets of items are:

Action Goto State a b $ S
0 s2/r (3) s3/r (3) r(3) 1
1 accept
2 s2/r (3) s3/r (3) r(3) 4
3 s2/r (3) s3/r (3) r(3) 5
4 s6
5 s7
6 s2/r (3) s3/r (3) r(3) 8
7 s2/r (3) s3/r (3) r(3) 9
8 r(1) r(1) r(1)
9 r(2) r(2) r(2)

Note the multiple shift-reduce conflicts that arise from the ambiguity in the grammar.

On the input abab, here is one sequence of moves an LR(1) parser using these
tables can make:

2

Stack Symbols Input Action
0 abab$ shift 2
02 a bab$ shift 3
023 ab ab$ reduce by S → ε
0235 abS ab$ shift 7
02357 abSa b$ reduce by S → ε
023579 abSaS b$ reduce by S → bSaS
024 aS b$ shift 6
0246 aSb $ reduce by S → ε
02468 aSbS $ reduce by S → aSbS
01 S $ accept

This sequence of moves corresponds to the first parse tree above. There is another
sequence of moves corresponding to the second parse tree.

3. Consider the following partial syntax-directed definition for translating if-

statements into three address code:

Production Semantic Rules
P → S S.next = newlabel()

P.code = S.code || label(S.next)
S → assign S.code = assign.code
S → if (B) S1 B.true = newlabel()

B.false = S.next
S1.next = S.next
S.code = B.code || label(B.true) ||
S1.code

B → B1 && B2 ?
B → not B1 ?
B → true ?
B → false ?

Here the function newlabel() creates a new label each time it is called and
label(L) attaches label L to the next three-address instruction to be generated.

a) Fill in the semantic rules for the B-productions (they represent boolean

expressions) using jumps to true and false labels.

See ALSU, p. 404.

b) Show how your SDD translates the if-statement

if (true && not false) assign

3

into three-address instructions by constructing an annotated parse tree for
the if-statement.

P
 P.code = "goto L3
 L3: goto L2
 L2: assign.code
 L1:"

S
S.next = "L1"
P.code = "goto L3
 L3: goto L2
 L2: assign.code"

if (B S
 B.true = "L2" S.next = "L1"

S.code = "assign.code" B.false = "L1"
 B.code = "goto L3
 L3: goto L2"

&& assignB B
B.true = "L3" B.true = "L2"
B.false = "L1" B.false = "L1"
B.code = "goto L3" B.code = "goto L2"

true not B
B.true = "L1"
B.false = "L2"
B.code = "goto L2"

false

)

4

4. Consider the arithmetic expression a * b + c / (d – e)
 and a register machine with instructions of the form

LD reg, src
ST dst, reg
OP reg1, reg2, reg3 // the registers need not be distinct

a) Draw a syntax tree for the expression and label the nodes with Ershov

numbers.

The syntax tree of this expression is isomorphic to the one on p. 568, ALSU.

b) Generate machine code for the expression on a machine with two registers
minimizing the number of spills.

This expression needs one spill on a two-register machine. See ALSU, p. 572,
for an isomorphic code sequence.

5. Consider the following sequence of three-address code:

 x = 0
 i = 0
L: t1 = i * 4
 t2 = a[t1]
 t3 = i * 4
 t4 = b[t3]
 t5 = t2 * t4
 x = x + t5
 i = i + 1
 if i < n goto L

a) Draw a flow graph for this three-address code.

5

ENTRY

 (1) x = 0

b) Optimize this code by eliminating common subexpressions, performing

reduction in strength on induction variables, and eliminating all the
induction variables that you can. State what transformations you are using
at each optimization step.

First, we can eliminate the common subexpression i*4 in lines (3) and (4) by
using t1 in place of t3 in line (6) and eliminating line (5).

Next, t1 and i are both induction variables in block B2. We can eliminate
either one of these induction variables in the loop. We choose to eliminate t1 by
replacing line (9) by i = i + 4, adding the statement t6 = 4 * n, to the end
of block B1, replacing the test i<n in line (10) by i<t6, and using i to index the
arrays. The resulting optimized flow graph is:

 (2) i = 0

EXIT

 (3)L:t1 = i * 4
 (4) t2 = a[t1]
 (5) t3 = i * 4
 (6) t4 = b[t3]
 (7) t5 = t2 * t4
 (8) x = x + t5
 (9) i = i + 1
(10) if i<n goto L

B1

B2

6

ENTRY

 x = 0

6. Optional [extra credit, 10 points]. Consider again the context-free grammar G

from question 2: S → aSbS | bSaS | ε

a) How many parse trees are there for the sentence ababab?

There are 5 parse trees.

b) Write a recurrence relation for the number of parse trees for the sentence
(ab)n.

Let T(n) be the number of parse trees for (ab)n. By symmetry T(n) is also the
number of parse trees for (ba)n. For the base cases, we have

T(0) = T(1) = 1

Since we can write (ab)n as a(ba)i b(ab)n-1-i, we have the recurrence

 i = 0
 t6 = 4 * n

EXIT

 t2 = a[i]
 t4 = b[i]
 t5 = t2 * t4
 x = x + t5
 i = i + 4
 if i<t6 goto L

B1

B2

7

)1()()(
1

0
inTiTnT

n

i
−−Σ=

−

=

c) What is the solution to your recurrence?

The solution is the Catalan numbers, ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

n
nn

nT
2

1
1)(.

8

	Describe L(G). Show two parse trees for the sentence abab in
	Construct the SLR(1) parsing action and goto tables for L(G)
	Here the function newlabel() creates a new label each time i
	Fill in the semantic rules for the B-productions (they repre
	LD reg, src
	ST dst, reg
	OP reg1, reg2, reg3 // the registers need not be distin
	Draw a syntax tree for the expression and label the nodes wi
	Generate machine code for the expression on a machine with t

