
Building secure systems 
from buggy code with 

information flow control 

Nickolai Zeldovich



Why is it hard to build
secure systems?

● A single bug in almost any line of code
can lead to a compromise
– Simple errors in web applications

disclose private data of millions of users
– Even security software has bugs

(Symantec anti-virus exposed 200M hosts to attack)



Current strategy
● Lots of techniques for finding and fixing bugs:

– Buffer overflows
– Format string bugs
– SQL injection

– Integer overflow
– Temporary file races
– Missing access checks



Current strategy
● Lots of techniques for finding and fixing bugs:

– Buffer overflows
– Format string bugs
– SQL injection

● Arms race: who finds the next bug?
– Experience shows it's impossible to eliminate all bugs

● Not sustainable: too risky/costly in the long run!

– Integer overflow
– Temporary file races
– Missing access checks



Hardware

Operating system

Web server

Libraries

Web app: job search site

Example:
Security in a web application



Hardware

Operating system

Web server

Libraries

Web app: job search site User profiles

Application enforces security
of user profiles



Hardware

Operating system

Libraries

Web app: job search site

Web server

User profiles

.htaccess

Web server controls
who can make what HTTP request



Hardware

Web server

Libraries

Web app: job search site

Operating system Unix users

User profiles

.htaccess

Operating system protects
Unix users from each other



Hardware protects
kernel from applications

Operating system

Page tables

Unix users

Web server
.htaccess

Libraries

Web app: job search site User profiles

Hardware



Security depends on
code at every layer being correct

Operating system

Page tables

Unix users

Web server

Libraries

Web app: job search site User profiles

Hardware

Even if hardware and OS were perfect,
application could still be compromised!

.htaccess



Security depends on
code at every layer being correct

Operating system

Web server

Libraries

Web app: job search site

Hardware

Linux: 570,000+ lines of code

Apache: 300,000 lines of code

Millions of lines, third-party code

OpenSSL: 340,000 lines of code

No way we can get millions of bug-free lines of code



What can we do?
● As long as security is about code being correct,

fixing code is the only answer
– Unfortunately, this approach is doomed
– Experience shows perfect code is impossible

● This talk: how to build secure systems
                despite bugs in most code



Step back and rethink security
● Most security concerns relate to data movement

– My financial data cannot be sent over the network
– My password shouldn't be disclosed to anyone
– User's profile can only be sent to his/her browser
– You can sign with this private key, but not reveal it
– Other users can't read or write my files

● Suppose we could control data movement
– Doesn't matter what code does, if data is secure
– Achieves our goal: security despite buggy code



Currently, policies enforced
by code all over the place

Operating system

Web server

Libraries

Web app: job search site

Hardware

● User's profile can only
be sent to his/her browser

● My financial data cannot
be sent over the network

● My password shouldn't
be disclosed to anyone

● You can sign with this
private key, but not reveal it

● Other users can't read
or write my files

● Code enforcing security must be trusted = yellow



Goal:
Building block for security

Hardware

Operating system

Libraries

Web server

Web app: job search site

Se
cu

rit
y 

po
lic

ie
s

Common 
protection 

mechanism

● Code enforcing security must be trusted = yellow
● Provide common mechanism apps can use



This talk: common mechanism
should control data movement

● Data movement works across layers
– Same data in memory pages, files, user profiles
– High-level data movement policy translates to

low-level OS/HW mechanism that can enforce it

● Allow building secure systems despite buggy code!
– 100 lines of code will enforce security for complex apps



Information flow control (IFC)
[Bell-LaPadula '73, Biba '77, Denning '75]

Hardware

Military OS

Libraries

Web server

Web app: job search site

Information 
flow control

X
X
X

● Military systems [IX, Adept-50, KeySafe, VMM SecKern]

– Top-secret process can't write unclassified files



Information flow control (IFC)
[Bell-LaPadula '73, Biba '77, Denning '75]

Hardware

Military OS

Libraries

Web server

Web app: job search site

Information 
flow control

● Military systems [IX, Adept-50, KeySafe, VMM SecKern]

– Top-secret process can't write unclassified files

X
X
X

User profiles

.htaccess



Information flow control (IFC)
[Bell-LaPadula '73, Biba '77, Denning '75]

Hardware

Operating system

Libraries

Web server
Web app

Information 
flow control

● More recent systems Jif [Myers '01], Flume [Krohn '07]

– Still lots of yellow code to get right – millions LoC

Jif/Flume

P
ol

ic
y



This talk: IFC should be
fundamental mechanism

Hardware

Operating system

Libraries

Web server

Web app: job search site

Se
cu

rit
y 

po
lic

ie
s

Information
flow control

● All other protection can then be built on top of IFC
● IFC enforced in 20,000 line kernel or in hardware



One mechanism will be used
for security by everyone

● Information flow control mechanism
– Associate a label with data

● Applies to data at all levels of abstraction
– Labels follow data when it moves around
– Labels specify what can happen to the data, 

regardless of how many times it moves

● If we get this simple mechanism right, then most 
other code won't have to worry about security



Not obvious how to build all 
protection on top of IFC

● How to implement user accounts with IFC?
– Military systems had separate user protection mech.

● How to give users access to same mechanism?
– Same mechanism should enforce app. policies
– What if users create processes they can't kill?

● How do we manage such a system?
– Without any separate “superuser” mechanism



Libraries

Outline: Three systems based
on information flow control

Hardware

Web server

Web application

Operating system

HiStar

HiStar: collaboration with Silas Boyd-Wickizer, David Mazières



Outline: Three systems based
on information flow control

Operating system

Web application

Loki

Hardware

HiStar

Libraries

Web server

Loki: collaboration with Michael Dalton, Hari Kannan, Christos Kozyrakis



Web server

Libraries

Outline: Three systems based
on information flow control

Hardware

Operating system

Web application

Loki

Hardware

Operating system

Web application

DStar

HiStar

Hardware

Operating system

Web server

Libraries

Web application

Hardware

Operating system

Web application

Hardware

Operating system

Web application

Network

Libraries

Web server

Web server

Libraries

DStar: collaboration with Silas Boyd-Wickizer, David Mazières



Libraries

Web server

Information flow control in an OS

Hardware

Web application

Operating system

HiStar



Example: Virus scanner

Private
user files

Virus
scanner

/tmp

Update
process

Virus
database Network



Example: Virus scanner

Private
user files

Virus
scanner

/tmp

Update
process

Virus
database Network

Goal: private files not corrupted or sent over network

     Can we confine a compromised scanner on Unix?



Seems like a job for IFC!

Private
user files

Virus
scanner

/tmp

Update
process

Virus
database Network

Private data    Public data

Goal: private files not corrupted or sent over network



Cannot prevent app from leaking data

Update
process

Virus
database Network

● Must restrict sockets to protect private data

Private
user files

/tmp

Virus
scanner



Cannot prevent app from leaking data

Update
process

Virus
database Network

● Must restrict application's ability to use IPC

Private
user files

/tmp

Virus
scanner



Cannot prevent app from leaking data

Update
process

Virus
database Network

● Must run application in chroot jail

Private
user files

/tmp

Virus
scanner



Cannot prevent app from leaking data

setproctitle:
0x6e371bc2

Update
process

Virus
database Network

ps

● Must restrict access to /proc, ...

Private
user files

/tmp



Cannot prevent app from leaking data

Update
process

Virus
database Network

disk
space
usage

● Must restrict FS'es that application can write

Private
user files

/tmp

Virus
scanner



Cannot prevent app from leaking data

Update
process

Virus
database Network

fcntl
locking

● Cannot allow file locking or synchronization

Private
user files

/tmp

Virus
scanner



Impossible to prevent simple app 
from leaking data?

Update
process

Virus
database Network

Other
user

process

ptrace

● List goes on – is there any hope?

Private
user files

/tmp

Virus
scanner



Sc
an

ne
r

O
th

er
s

U
pd

at
e

Unix interface is too high-level
to control information flow

Unix
Kernel

Unix

Hardware

(1) Too many ways for data
   to move around

(2) Protection for processes 
   and files – not data!
– Process can read one file, 

write data to another file 
with different protection

= Unix API



Sc
an

ne
r

O
th

er
s

U
pd

at
e

Unix interface is too high-level
to control information flow

Unix
Kernel

Unix

Hardware

= Unix API = Security checks

(1) Too many ways for data
   to move around

(2) Protection for processes 
   and files – not data!
– Process can read one file, 

write data to another file 
with different protection

➔ Unix API poor choice for 
information flow control



O
th

er
s

U
pd

at
e

Sc
an

ne
r

U
ni

x
Li

b

HiStar solution:
Lower-level interface, Protect data

HiStar Kernel

Unix HiStar
U

ni
x

Li
b

Hardware
Sc

an
ne

r

U
pd

at
e

X

   
   

   
 O

th
er

s
U

ni
x

Unix
Kernel

Hardware

= Unix API = Security checks



   
   

   
 O

th
er

s

U
ni

x
Li

b

U
ni

x

Challenge:
How to design kernel mechanism?

HiStar Kernel

HiStar
U

ni
x

Li
b

Hardware

Goal: minimal trusted code needed for functionality

Sc
an

ne
r

U
pd

at
e

Unix

X

O
th

er
s

U
pd

at
e

Sc
an

ne
r

Unix
Kernel

Hardware



HiStar approach
● Simple interface – 6 types of kernel objects

– Expressive enough to build a Unix-like environment

● Security mechanism: information flow control
– Egalitarian – any process can use it

● Build everything else from these primitives
– Same mechanisms seem to solve a lot of problems
– Suggests this might be a good mechanism design



HiStar outline

1.  Kernel mechanisms: objects and labels
2.  Example uses of these mechanisms
3.  How these mechanisms improve security
4.  Applications



HiStar kernel objects

Segment
(Data)

Address
SpaceThread

Gate
(IPC)

Container
(Directory)

Device
(Network)



HiStar kernel objects

Segment
(Data)

Address
SpaceThread

Gate
(IPC)

Container
(Directory)

Device
(Network)

Familiar low-level primitives, can do the usual things



HiStar kernel objects

Segment
(Data)

Address
SpaceThread

Gate
(IPC)

Container
(Directory)

Device
(Network)

Unique primitives
key to security



Container                              

HiStar kernel objects

Segment
(Data)

Address
SpaceThread

Gate
(IPC)

Container
(Directory)

Device
(Network)

Unique primitives
key to security



Protection mechanism: labels

Segment
(Data)

Address
SpaceThread

Gate
(IPC)

Container
(Directory)

Device
(Network)

Label Label Label

LabelLabel Label



Labels control information flow

Segment
(Data) Thread

Label        Label        

Segment
(Data)

Label        

 Color is category of data (e.g. my files)



Labels control information flow

Segment
(Data) Thread

Label        Label        

Segment
(Data)

Label        

 Yellow data can flow only to other yellow objects

 Color is category of data (e.g. my files)



Labels control information flow

Segment
(Data) Thread

Label        Label        

Segment
(Data)

Label        

X  

X  
 Yellow data can flow only to other yellow objects

 Color is category of data (e.g. my files)



Labels control information flow

Segment
(Data) Thread

Label        Label        

Segment
(Data)

Label        

X  

 Color is category of data (e.g. my files)
X  

 Yellow data can flow only to other yellow objects



Labels control information flow

Segment
(Data) Thread

Label        Label        

Segment
(Data)

Label        

 Owns yellow data, can remove color (e.g. encrypt)

 Color is category of data (e.g. my files)

 Yellow data can flow only to other yellow objects



Labels are egalitarian

Segment
(Data) Thread

Label        Label        

Segment
(Data)

Label        

● Any thread can request a new category (color)
– Gets ownership of that category (    )
– Uses category in labels to control information flow



HiStar mechanisms

HiStar

   
   

   
 O

th
er

s

U
ni

x
Li

b

U
ni

x

HiStar Kernel

U
ni

x
Li

b

Hardware
Sc

an
ne

r

U
pd

at
e

X

Mechanisms:

6 kernel object types,
Labels for protection



HiStar outline

1.  Kernel mechanisms: objects and labels
2.  Example uses of these mechanisms
3.  How these mechanisms improve security
4.  Applications



Process Container

HiStar: Unix process

Code
Segment

Address
SpaceThread

Data
Segment

...



HiStar looks like a Unix system
● Laptop running HiStar

● Quick demo
– ls /, id, ps, ...



Recall:
Virus scanner example

Update
process

Virus
database Network

Nickolai's
user files

/tmp

Scanner
process



Malicious virus scanner
cannot leak private data on HiStar

Update
process

Virus
database Network

X

X

Nickolai's
user files

/tmp

Scanner
process

X

No need to audit code for security!



Nickolai's
user files

/tmp

Scanner
process

Nickolai's
terminal

X

How do I get the output?



Nickolai's
user files

/tmp

Scanner
process

Nickolai's
terminal

X

“wrap” sends data only to terminal
● 140-line trusted “wrap” can isolate a large, 

frequently-changing application

140-line
wrap



Nickolai's
user files

/tmp

Scanner
process

Nickolai's
terminal

X

IFC also prevents file corruption
● 140-line trusted “wrap” can isolate a large, 

frequently-changing application

140-line
wrap

X



Another quick demo
● “wrap” program runs standard Unix apps, but:

– App cannot corrupt my files
– App cannot divulge my data over the network

● Sets label (        ) and runs app: 140 lines of code
● Kernel enforces policy at low-level interface



HiStar outline

1.  Kernel mechanisms: objects and labels
2.  Example uses of these mechanisms
3.  How these mechanisms improve security
4.  Applications



Example: Unix file descriptors

Scanner
process

Update
process

File descriptor
(O_RDONLY)

X

Kernel
State



Unix file descriptor
seek pointer leaks data

Scanner
process

Update
process

File descriptor
(O_RDONLY)

X

Kernel
State

Seek pointer: 0xa32f



Unix implements FDs in kernel

Unix

O
th

er
s

U
pd

at
e

Sc
an

ne
r

Unix
Kernel

Hardware

● Unix has lots of 
shared state, easy 
to miss some

● Hard to enforce 
data security at
Unix API levelFD



HiStar implements FDs in library

Unix

O
th

er
s

U
pd

at
e

Sc
an

ne
r

Unix
Kernel

Hardware

   
   

   
 O

th
er

s

U
ni

x
Li

b

U
ni

x

HiStar Kernel

U
ni

x
Li

b

Hardware

Sc
an

ne
r

U
pd

at
e

X

● HiStar FDs above security boundary (red line)

HiStar

FD

FD



Update processScanner process

Address space

Scanner proc
thread

File descriptor segment
(O_RDONLY)

Seek pointer: 0xa32f

Address space

Update proc
thread

X

Only one mechanism: object R/W checks!

No analogous problem
on HiStar by design



Labels are the
security building block

● Low-level mechanism
– Controls information flow between objects

● Expressive
– Used to implement Unix user IDs, groups, etc
– Can be also used for other policies (wrap)

● Egalitarian
– Anyone can allocate a new color, gets star
– No inherent superuser rights for administrator



HiStar has no inherent
superuser privileges

Alice's
shell

Bob's
shell

root's
shell

Alice's
files

Bob's
files

● By convention, root gets stars for backup, etc



HiStar has no inherent
superuser privileges

Alice's
shell

Bob's
shell

root's
shell

Alice's
files

Bob's
files

● By convention, root gets stars for backup, etc

   
   

   
 O

th
er

s

U
ni

x
Li

b
U

ni
x

Li
b

HiStar Kernel

U
ni

x
Li

b

Hardware

S
ca

nn
er

U
pd

at
e

root by convention
not part of mechanism



ssh-agent:
private key

HiStar has no inherent
superuser privileges

Alice's
shell

Bob's
shell

root's
shell

Alice's
files

Bob's
files

     X                

● Users can keep data inaccessible to root



Runaway process wasting CPU?

Alice's
shell

Bob's
shell

root's
shell

Alice's
files

Bob's
files

● Nobody has privilege to access ssh-agent now!

ssh-agent:
private key

     X                

    X



Bob's container

HiStar resource allocation

Bob's    
files    

Bob's    
shell    



Bob's container

HiStar resource allocation

Bob's    
files    

Bob's    
shell    

ssh-agent



Bob's container

HiStar resource allocation

Bob's    
files    

Bob's    
shell    

    X
ssh-agent



Bob's container

HiStar resource allocation
● Bob can delete key even if he cannot otherwise 

access it!

Bob's    
files    

Bob's    
shell    Delete

ssh-agent
    X



Bob's container

HiStar resource allocation
● Bob can delete key even if he cannot otherwise 

access it!

Bob's    
files    

Bob's    
shell    



                                                 Root containerBob's container

HiStar resource allocation

      root's
      shell

● Root controls resources without data access
– Compromised sysadmin can't access all user data
– Can revoke resources of compromised or bad users

Bob's    
files    

Bob's    
shell    

Other user
containers



File system mechanisms
● File system requires persistent store mechanism

● Unix: separate mechanism for disk access
– Kernel provides two levels of storage: memory, disk
– Different way of specifying security for memory, disk

● HiStar: existing mechanisms are sufficient
– Kernel provides a single level of storage [Multics, EROS]

– All kernel objects stored on disk; memory is a cache



Container (directory)                            

HiStar file system
reuses kernel mechanisms

● Implemented at user-level, using same objects

Filename segment
Segment

(file)

Container
(subdir)

“mailbox”
“public_html/”



Container (directory)                            

HiStar file system
reuses kernel mechanisms

● Implemented at user-level, using same objects
● Uniform protection for memory and file system

Filename segment
Segment

(file)

Container
(subdir)

“mailbox”
“public_html/”

    X



Single-level store
avoid superuser

● Unix: root must start everything at bootup
– Must have superuser privileges

● HiStar: processes don't notice hardware reboot
– Another quick demo
– Bob's ssh-agent continues running,

does not trust root to restart it after reboot



How to really reboot (software)?
● Separate command called “ureboot”

– Deletes all process containers, keeps FS containers
– Start a new init process

● In a few slides:
HiStar's gates allow init to not require superuser



How do we know if HiStar 
enforces IFC correctly?

● Information flow precisely defines goal (labels)
– Security check: can information flow from A to B?

● Long-term goal: verify implementation security
– At least we know what to verify (unlike in Unix)

● Challenge: how to ensure design is sound?
– Information flow – how to avoid “covert channels”?



Two kinds of covert channels
● Implementation covert channels: not in spec

– Apps don't depend on these behaviors
– E.g. timing channels: almost impossible to eliminate
– Can mitigate bit-rate by introducing noise [Hu '91]

● Design covert channels: inherent in spec
– Cannot fix or mitigate without breaking apps!
– HiStar: explicitly label everything in spec
– Challenge: what about the labels themselves?

(Similar to the Unix FD seek pointer problem shown earlier)



Malicious
secret

process

Example of covert channel
through labels

X

Colluding
process 0

Colluding
process 1

Network

Secret = 1



Malicious
secret

process

Example of covert channel
through labels

Secret = 1

X

Colluding
process 0

Colluding
process 1

Network

X

● Malicious process sends message to process 1
● Strawman design:

change proc. 1's label



Malicious
secret

process

Process 1's label change
leaks data in strawman

Secret = 1

X

Colluding
process 0

Colluding
process 1

Network

X

● The fact that process 1 can no longer talk to 
network is observable



Previous approaches
to this problem

● Programming languages: compile-time check [Jif]

– Cannot do “wrap” – requires dynamic runtime labels

● Some OSes gave up, didn't find an answer [IX, Asbestos]

– Claims in literature this covert channel is inevitable

● Military systems: fixed labels [Adept-50, VMM SecKern, KeySafe]

– Few labels (secret, top-secret) – cannot do “wrap”



Key idea to avoid covert channels

● Non-thread objects have immutable labels
– Attacker cannot communicate via labels
– But this is not dynamic enough, so...

● Threads can only change their own label
– Does not leak any data thread didn't already have

● (Of course, can only add, not remove categories)



Inter-process communication
with immutable labels

Job search process DB server process

     Job listings DB

● Job search site: query DB for matching listings
– Goal: privacy of queries and DB, even if search code is bad
– Can two differently-labeled processes communicate?

Thread Thread



HiStar gates
change label of client thread

Job search process DB server process

     Job listings DB

Thread Thread

Gate



HiStar gates
change label of client thread

Job search process DB server process

     Job listings DB

Thread Thread

GateQuery



HiStar gates
change label of client thread

Job search process DB server process

     Job listings DB

Thread Thread

GateQuery

● Gate uses client thread to execute server code
– With server privileges but without server resources
– Just like before, threads change their own label



HiStar gates
change label of client thread

Job search process DB server process

     Job listings DB

Thread Thread

GateQuery

● Gate uses client thread to execute server code
– With server privileges but without server resources
– Just like before, threads change their own label



HiStar gates
change label of client thread

Job search process DB server process

     Job listings DB

Thread Thread

Gate

Results

● Gates enable inter-process communication with
immutable labels (+ threads change own label)



Gates help avoid superuser

● Gates store privileges across restarts
– Database gate persists across reboot & ureboot
– No need for superuser to restart database,

even though ureboot kills all threads



HiStar kernel design summary
● Few mechanisms solve many problems

– Containers: resource control, FS, label discovery
– Gates: IPC with immutable labels, avoid superuser
– Labels: Unix users, wrap, DB security, web server, ...

● 20,000-line kernel provides these mechanisms
– Everything else built on top



HiStar outline

1.  Kernel mechanisms: objects and labels
2.  Example uses of these mechanisms
3.  How these mechanisms improve security
4.  Applications

➔  Shown earlier: wrap
➔  Web server built out of largely untrusted code
➔  Unix login with user-supplied password checking code



User's
browser

User
data

User
data

Traditional web server (like Apache):
1M+ lines of trusted code

Application
(PDF: 600k LoC)

User
data

inetd OpenSSL
(340k LoC)

httpd

RSA
keyUser's

browserUser's
browser



Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

HiStar: Application code
cannot disclose user data

Application
(PDF: 600k LoC)

User
data

inetd OpenSSL
(340k LoC)

httpd

RSA
key

User's
browserUser's

browserUser's
browser



httpdhttpd

User's
auth agent

User's
auth agent

Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

HiStar: Per-user authentication 
agents, no fully-privileged code

Application
(PDF: 600k LoC)

User
data

inetd OpenSSL
(340k LoC)

httpd

RSA
key

User's
auth agent

Password

User's
browserUser's

browserUser's
browser



inetd OpenSSL
(340k LoC)

OpenSSL
(340k LoC)

httpdhttpd

User's
auth agent

User's
auth agent

Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

HiStar: SSL library
cannot send data to attacker

Application
(PDF: 600k LoC)

User
data

inetd OpenSSL
(340k LoC)

httpd

RSA
key

User's
auth agent

Password

User's
browserUser's

browserUser's
browser

inetd



inetd SSLSSL

httpdhttpd

User's
auth agent

User's
auth agent

Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

HiStar: SSL library
cannot disclose private key

Application
(PDF: 600k LoC)

User
data

inetd SSL

httpd

RSA
key

User's
auth agent

Password

RSAdUser's
browserUser's

browserUser's
browser

inetd
4600 lines

340k lines



inetd SSLSSL

httpdhttpd

User's
auth agent

User's
auth agent

Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

Security enforced by
~6,000 lines of code (yellow)

Application
(PDF: 600k LoC)

User
data

inetd SSL

httpd

RSA
key

User's
auth agent

Password

RSAd

310 lines

300 lines

360
lines

User's
browserUser's

browserUser's
browser

inetd

340k lines
4600 lines



Egalitarian labels enable 
authentication code reuse

● Same exact code in web server and Unix login
– Auth. agents don't care what stars they manage

● Egalitarian labels key for new functionality:
– Each user controls their own authentication agent

● Can add one-time passwords, challenge-response, ...
– Login client uses IFC to ensure password secrecy

● Even if password sent to evil agent (mistyped username)



Summary: IFC mechanism
enforces application security

● Small part of application specifies security policy
– 6,000 lines for web server, 140 lines for wrap

● 20,000-line kernel enforces security
– Isolates virus scanner, mail search, ...
– Password secrecy during login
– User data privacy in web server

● Rest of application can be buggy!



Information flow control in hardware

Web application

Operating system

Hardware

Loki
Libraries

Web server



Loki pushes labels into hardware

HiStar
Kernel

HiStar

HiStar
Kernel

Hardware

Application

Unix library

Security monitor

Hardware

Loki

Kernel

U
ni

x
Li

b
U

ni
x

Li
b

U
ni

x
Li

b
S

ca
nn

er

O
th

er
s

U
pd

at
e

U
ni

x
Li

b
U

ni
x

Li
b

U
ni

x
Li

b
S

ca
nn

er

O
th

er
s

U
pd

at
e

Ke
rn

Ke
rn

Ke
rn

Tagged memory, monitor translates labels to tags



Loki results
(modified SPARC processor)

● Runs HiStar, Unix library, web server, ...
● Security enforced in hardware + security monitor

Unmodified SPARC Loki

Clock speed 65 MHz 65 MHz
FPGA LUTs 13,858 15,929 (+15%)

46FPGA BRAMs 51 (+11%)
Slowdown ~1%

Trusted code lines 11,600 (kernel) 5,200 (monitor)



Distributed information flow control

Hardware

Operating system

Web application

Hardware

Operating system

Web application

DStar

Hardware

Operating system

Libraries

Web server

Web application

Hardware

Operating system

Libraries

Web server

Web application

Hardware

Operating system

Libraries

Web server

Web application

Network

Libraries

Web server



Information flow control
scales to distributed systems

● DStar encodes labels in messages
– Each machine enforces labels using HiStar/Loki

● Requires only 5,000 more lines of trusted code
– Plus crypto and other support libraries

● HiStar web server scales to many machines!



Summary: IFC allows building
secure systems from buggy code

Hardware

Operating system

Web application

Hardware

Operating system

Web application

Hardware

Operating system

Libraries

Web server

Web application

Hardware

Operating system

Libraries

Web server

Web application

Hardware

Operating system

Libraries

Web server

Web application

Network

Libraries

Web server



Future directions:
mechanisms for security

● Hardware mechanisms for Linux, Windows
● Network mechanisms to improve app security
● Map data protection to cryptographic mechanisms
● More principled web browser security mechanisms

● Long-term goal: provable system security
– So far: model checking, program analysis

http://www.scs.stanford.edu/histar/



gcc wget Clam 
AV

pipe disk 
read

disk 
write

create 
10k 
files

fork 
exec

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Linux
HiStar
OpenBSD

Benchmarks, relative to Linux

Comparable performance
to Linux and OpenBSD

Application-level benchmarks
and disk benchmarks



gcc wget Clam 
AV

pipe disk 
read

disk 
write

create 
10k 
files

fork 
exec

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Linux
HiStar
OpenBSD

Benchmarks, relative to Linux
217x faster!

Synchronous creation of 10,000 files

HiStar allows use of group sync.
Application either runs to completion, or

appears to never start (single-level store)



gcc wget Clam 
AV

pipe disk 
read

disk 
write

create 
10k 
files

fork 
exec

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Linux
HiStar
OpenBSD

Benchmarks, relative to Linux
7.5x slower

Linux: 9 syscalls per iteration
HiStar: 317 syscalls per iteration



Web server: “PDF maker” app

1 2 3 4 5
0

5

10

15

20

25

30

Scalability of application servers
(Fixed number of other servers)

0

1

2

3

4

5

6

7

8

Baseline throughput, req / second
(1 server, or 1 app server for distributed)

Linux 
Apache
HiStar
Distributed 
using DStar

● Distributed across 3 types of servers:
front-end, application, and data servers



Login on Unix: highly centralized
● Difficult and error-prone to extend login process

– Any bugs can lead to complete system compromise!

/etc/shadow:

Alice: H(alic3)
Bob: H(1bob)

User: Bob
Pass: 1bob

Login
process

(runs as root)



Login on HiStar: less trusted code

User: Bob
Pass: 1bob PW:

H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

● No application runs with every user's privilege
● Users can supply their own login gate code



Login on HiStar: less trusted code

PW:
H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

Pass: 1bob

● No application runs with every user's privilege
● Users can supply their own login gate code



Login on HiStar: less trusted code

PW:
H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

Pass: 1bob

● No application runs with every user's privilege
● Users can supply their own login gate code



Login on HiStar: less trusted code

PW:
H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

Pass: 1bob

● No application runs with every user's privilege
● Users can supply their own login gate code



Login on HiStar: less trusted code

PW:
H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

OK       

● No application runs with every user's privilege
● Users can supply their own login gate code



Login on HiStar: less trusted code

PW:
H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

Bad 
password

● No application runs with every user's privilege
● Users can supply their own login gate code



Problem: mistyped username
Malicious auth code steals password

PW:
H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

Pass: 1bob

Network



Problem: mistyped username
Malicious auth code steals password

PW:
H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

Network

Pass: 1bob



Problem: mistyped username
Malicious auth code steals password

PW:
H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

Stolen pw: 
1bob

Network

Pass: 1bob



Information flow mechanism
prevents password disclosure

PW:
H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

Network

Pass:    
1bob    



Information flow mechanism
prevents password disclosure

PW:
H(alic3)

PW:
H(1bob)

Alice's
login
gate

Bob's
login
gate

Login
process

Network

Pass:    
1bob    

     X


