Detecting Pitch Accent Using Pitch-corrected Energy-based Predictors

Andrew Rosenberg & Julia Hirschberg {amaxwell, julia}@cs.columbia.edu

Pitch Accent

- Pitch Accent is the way a word is made to "stand out" from its surrounding utterance.
- Accenting words is done for many reasons
 - Contrast, Focus, Salience, Information Status
 - Syntactic/Semantic Disambiguation
- Pitch (f0), Duration, and Energy are known correlates of Pitch Accent.
- Human detection agreement between 85-90% [Wightman&Ostendorf94], [Silverman, et al.92]

Previous Work

- Spectral Tilt correlates with pitch accent in Dutch and Swedish.
 [Sluijter & vanHeuven96,97], [Heldner, et al.99,01] [Fant, et al.00]
- We examined the discriminative strength of the energy components of 210 frequency bands by constructing pitch accent detectors using only energy information on read speech. [Rosenberg & Hirschberg06]
 - There is a relatively small overlap in correct predictions even among similar frequency bands.
 - Best band: 2-20bark (75.5% accuracy)
 - >99% of pitch accents correctly detected by at least one energy-based classifier.
 - These classifiers can be combined (voting) to predict pitch accent with high accuracy (81.8%)

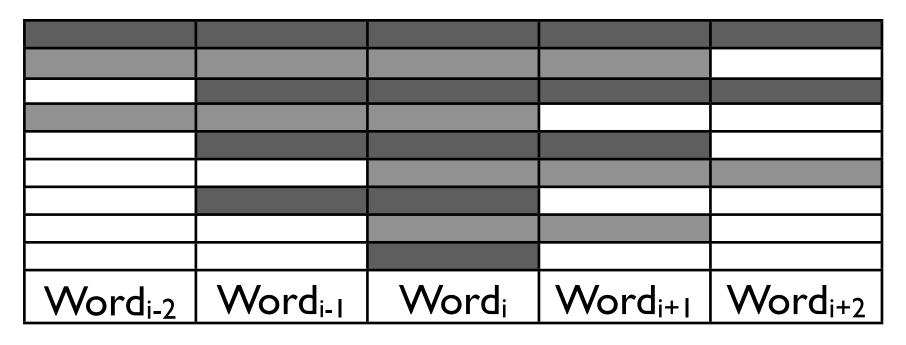
• Can we combine these energy-based classifiers with pitch and duration information to improve pitch accent detection further?

Extracted Features

- Pitch (f0): min, max, mean, stdev
 - Raw & speaker normalized
 - First order difference (Δ f0)
- Energy: Min, max, mean, stdev
 - Extracted from 210 frequency regions from 0-20 Bark varying base frequency and bandwidth
 - Recall: Band between 2-20 Bark shows the best and most robust predictive power. [Rosenberg & Hirschberg '06]
- Duration
 - Length of the word and preceding and following pauses

Context Normalization

- Z-score normalized pitch and energy features based on acoustic information in surrounding words.
- 9 Context Windows



BDC Corpus

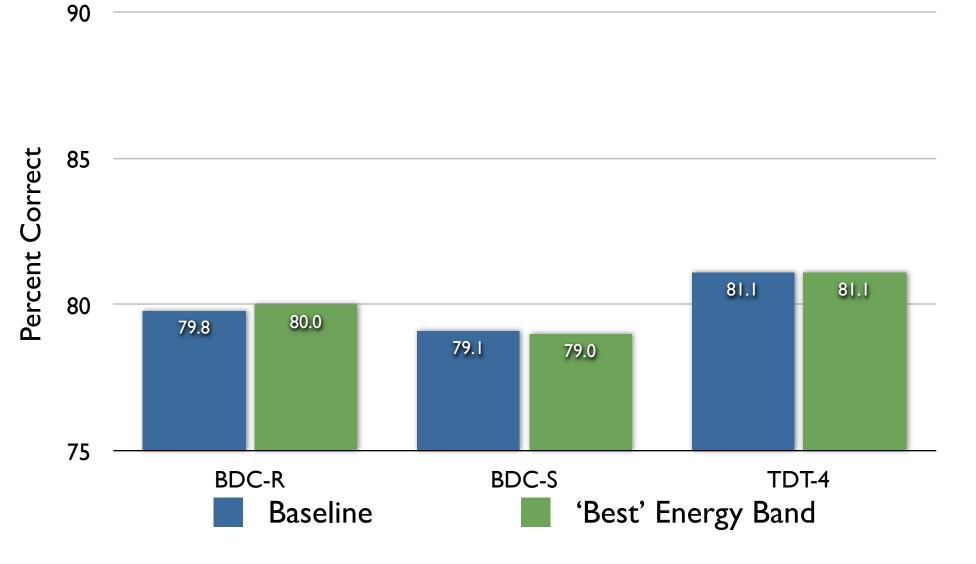
- Boston Directions Corpus (BDC) [Hirschberg & Nakatani '96]
 - Speech elicited from direction-giving tasks
 - Subjects delivered spontaneous-elicited monologues.
 2 weeks later, subjects read transcribed versions of their monologues
 - 4 Speakers: 3 male, 1 female
 - 50 mins Read Speech (10818 wds)
 - 57% unaccented
 - ▶ 60 mins Spontaneous Speech (11627 wds)
 - 51% unaccented
 - Manually ToBI labeled including word boundaries
 A. Rosenberg Interspeech '07

TDT-4 Corpus

- One 30-minute broadcast news (**BN**) show
- ASR word boundaries
- Automatic Speaker diarization
 - 25 speakers
- Manually labeled pitch accents and intonational phrase boundaries
- 20 mins of **speech** (3326 words)
 - 50.6% unaccented

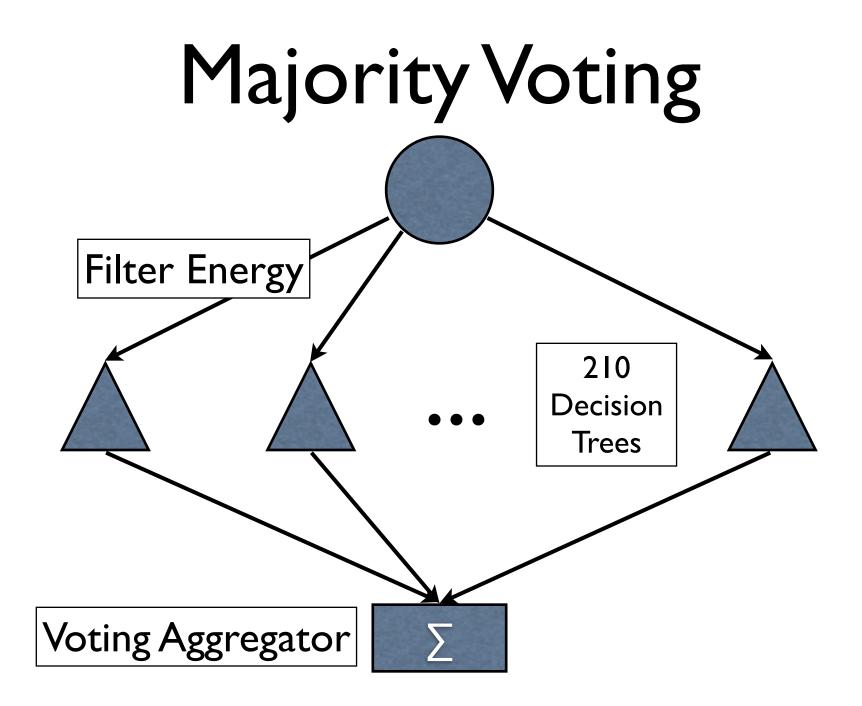
Baseline Experiments

- Train a decision tree using all pitch and duration features and full-spectrum energy features.
- Instead of full-spectrum energy features, use only those from the "best" frequency region, 2-20bark.

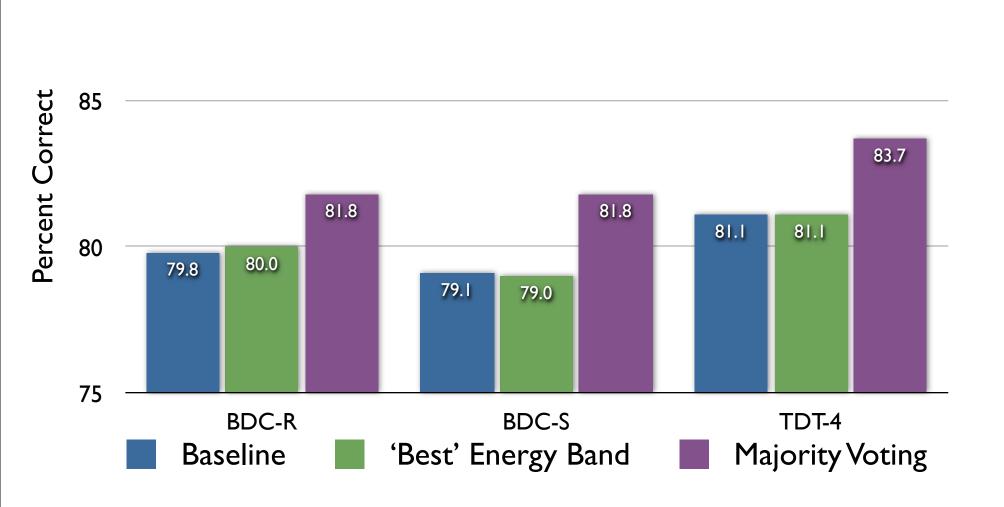


Energy-Based Predictors

- For each of 210 frequency regions, train a decision tree using **only energy** features.
 - 0-20bark, varying base frequency and bandwidth at I bark intervals.
- Combine these predictions using unweighted Majority Voting.



90

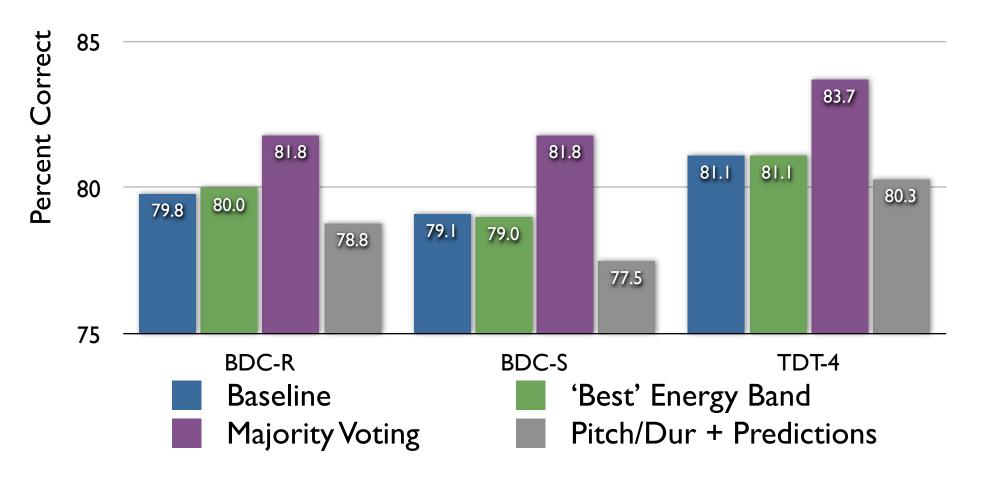


Energy Predictions + Pitch and Duration Features

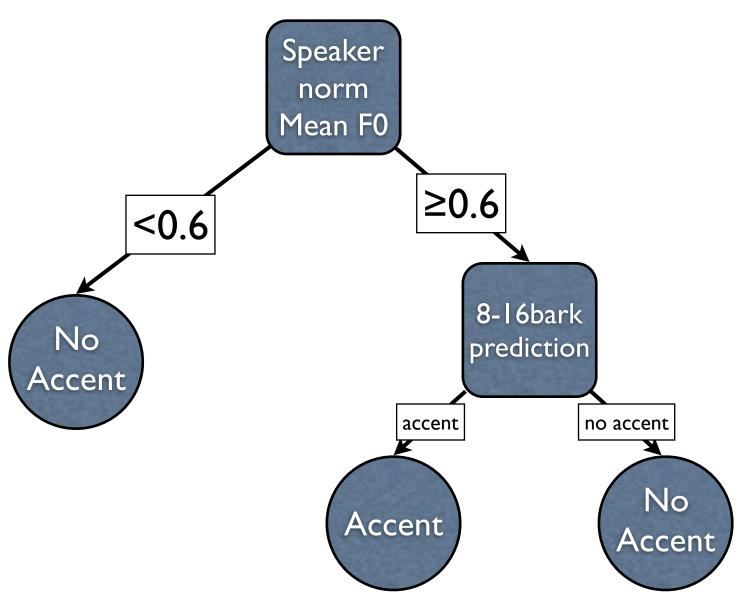
 Construct a feature vector using Pitch and Duration features as well as 210 Energy predictions.

90

Decision Trees can't model voting decisions.



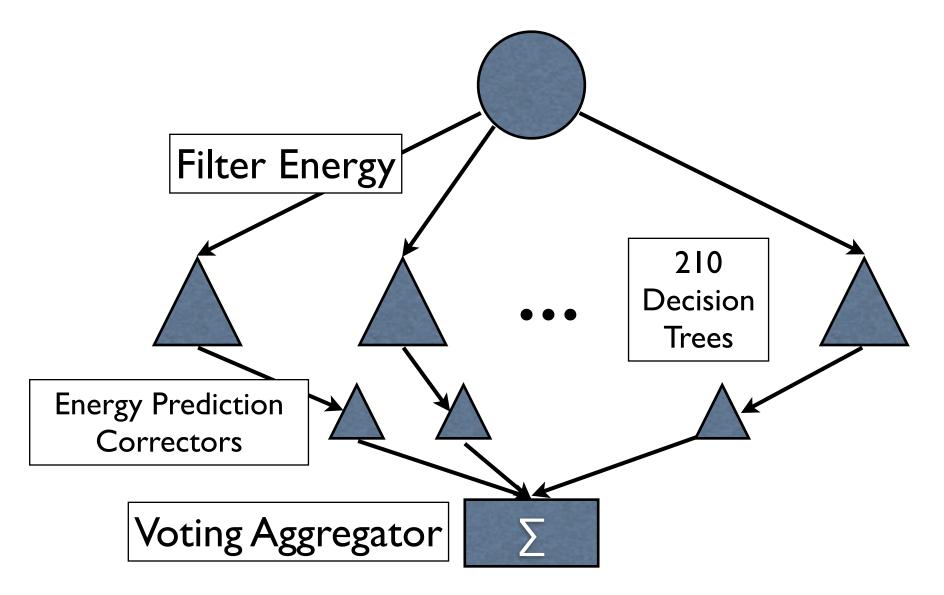
Decision Tree Fragment

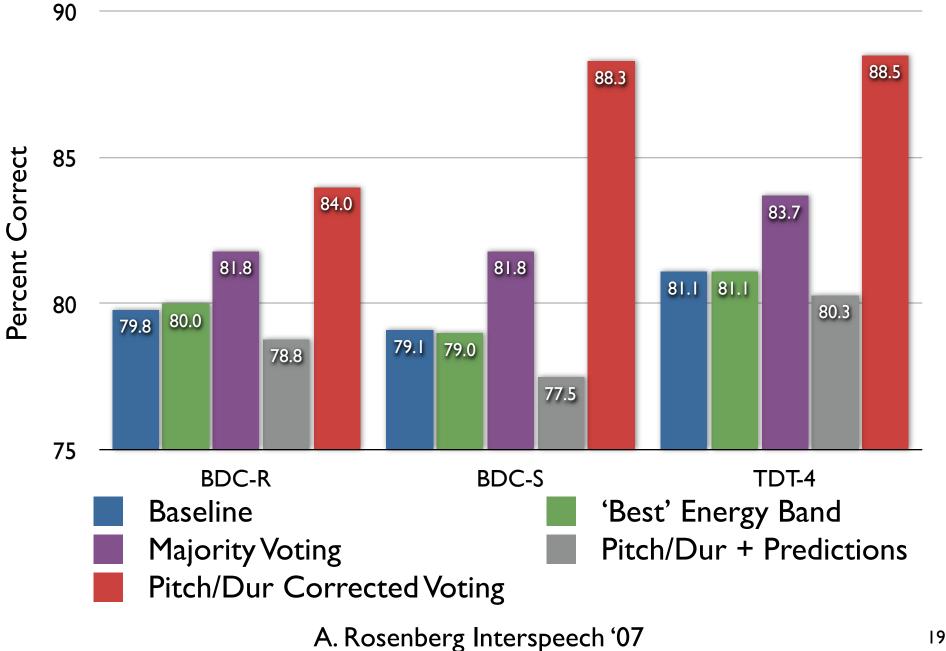


Pitch and Duration Correctors

- Can we predict, using pitch and duration information, whether an energy-based prediction will be correct or not?
- Train decision trees to predict "Correct" or "Incorrect"
 - Construct one corrector for each energy based predictor
 - Note: Corrector training data comes from cross-validation over **training data only**

Pitch and Duration Based Correctors





Conclusions & Future Work

- We presented a structured ensemble-based model that detects pitch accent with accuracy near human agreement
 - Speaker independent
 - Fairly robust to genre: Read, Spontaneous, BN
- Parallelizable, but computationally intensive
 - Identify redundant sets of frequency regions
- Include lexical and syntactic features
- Compare with other ensemble methods
- Evaluate on more corpora, particularly more BN
- Use hypothesized phrase boundaries to normalize acoustic features by phrase

Thank You. Questions? {amaxwell, julia}@cs.columbia.edu