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ABSTRACT

Identifying and Modeling Code-Switched Language

Vı́ctor Soto Mart́ınez

Code-switching is the phenomenon by which bilingual speakers switch between multiple

languages during written or spoken communication. The importance of developing lan-

guage technologies that are able to process code-switched language is immense, given the

large populations that routinely code-switch. Current NLP and Speech models break down

when used on code-switched data, interrupting the language processing pipeline in back-end

systems and forcing users to communicate in ways which for them are unnatural.

There are four main challenges that arise in building code-switched models: lack of code-

switched data on which to train generative language models; lack of multilingual language

annotations on code-switched examples which are needed to train supervised models; little

understanding of how to leverage monolingual and parallel resources to build better code-

switched models; and finally, how to use these models to learn why and when code-switching

happens across language pairs. In this thesis, I look into different aspects of these four

challenges.

The first part of this thesis focuses on how to obtain reliable corpora of code-switched

language. We collected a large corpus of code-switched language from social media using a

combination of sets of anchor words that exist in one language and sentence-level language

taggers. The newly obtained corpus is superior to other corpora collected via different

strategies when it comes to the amount and type of bilingualism in it. It also helps train

better language tagging models. We also have proposed a new annotation scheme to obtain

part-of-speech tags for code-switched English-Spanish language. The annotation scheme is

composed of three different subtasks including automatic labeling, word-specific questions

labeling and question-tree word labeling. The part-of-speech labels obtained for the Miami

Bangor corpus of English-Spanish conversational speech show very high agreement and



accuracy.

The second section of this thesis focuses on the tasks of part-of-speech tagging and

language modeling. For the first task, we proposed a state-of-the-art approach to part-of-

speech tagging of code-switched English-Spanish data based on recurrent neural networks.

Our models were tested on the Miami Bangor corpus on the task of POS tagging alone,

for which we achieved 96.34% accuracy, and joint part-of-speech and language ID tagging,

which achieved similar POS tagging accuracy (96.39%) and very high language ID accuracy

(98.78%).

For the task of language modeling, we first conducted an exhaustive analysis of the

relationship between cognate words and code-switching. We then proposed a set of cognate-

based features that helped improve language modeling performance by 12% relative points.

Furthermore, we showed that these features can also be used across language pairs and still

obtain performance improvements.

Finally, we tackled the question of how to use monolingual resources for code-switching

models by pre-training state-of-the-art cross-lingual language models on large monolingual

corpora and fine-tuning them on the tasks of language modeling and word-level language

tagging on code-switched data. We obtained state-of-the-art results on both tasks.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Linguistic code-switching is the alternation between multiple languages during written or

spoken communication. Code-switching is widely regarded as a functioning form of com-

munication in multilingual communities and should not to be confused with other forms

of bilingualism like the use of loanwords or calques, interlanguages or pidgin languages.

It is characterized by the following features: speakers are fully fluent in both languages;

speakers have a sense of judgment over what is grammatically admissible and what is not;

and code-switched utterances are produced without hesitation.

Code-switching can occur at different linguistic levels. At the phrase level, code-switching

can be inter-sentential, when it occurs across the limits of a sentence or utterance (e.g.

“Where is she? No te ha llamado aún?”); or intra-sentential when the switch occurs within

the boundaries of the utterance (e.g. “Aparcar el coche took me forever”).

At the morphology level, code-switching can happen when the language switch happens

from one morpheme onto another. For example, the word “oetverkocht” (sold out) is

formed by the Dutch lexeme “verkocht” (sold) and the Limburgish morpheme “oet” (out).

Similarly, switching can happen at the syntactical level when a syntactic structure from one

language is used in another. For example, “Llámame de vuelta” (Call me back) in American

Spanish, which follows a syntactic structure that is not native to Spanish. Code-switching

also has effects on several aspects of speech production; for example some studies on voice

onset time have shown a wide range of effects between monolingual and bilingual adult

speakers. In this thesis, we will focus on lexical code-switching, when the switch occurs
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at the word level (“His favorite course is matemáticas”). More specifically we focus on

intra-sentential lexical code-switching.

Code-switching is a pervasive phenomenon in multilingual communities. It is used for

pragmatic purposes, such as style-shifting between topics [Milroy and Gordon, 2003], or

used in specific situations [Beebe, 1981]. It can also be used to signal social identity or to

mark social belonging to two different groups [Woolard, 1998]. Other theories suggest that

code-switching is not only used to reflect social situations, but to create them too [Auer,

1984]. Given how prevalent code-switching is as a communicative resource, the importance

of developing NLP technologies for code-switched data is immense. In the US alone there

is an estimated population of 56.6 million Hispanic people [US Census Bureau, 2014], of

which 40 million are native speakers [US Census Bureau, 2015]. In India, it is estimated

that 26% of the population (more than 314.9 million people) is bilingual, according to the

2011 census [Ministry of Home Affairs, Government of India, 2011]. Most of these speakers

routinely code-switch.

One of Artificial Intelligence’s ultimate goals is to enable seamless natural language

interaction between artificial agents and human users. In order to achieve that goal, it is

imperative that users be able to communicate with artificial agents as they do with other

humans. In addition to such real time interactions, code-switched language is also pervasive

in social media [David, 2001; Danet and Herring, 2007; Cárdenas-Claros and Isharyanti,

2009]. So any system which attempts to communicate with these users or to mine their

social media content needs to deal with code-switched language.

However, despite the continually growing importance of code-switching, very little re-

search has been done to develop NLP approaches to code-switched language. Code-switching

presents serious challenges to all language technologies, including part-of-speech tagging,

parsing, language modeling, machine translation, and automatic speech recognition, since

techniques developed on one language quickly break down when that language is mixed

with another.

In our opinion there are main four challenges to developing code-switched models:

1. Code-Switched Corpora: the lack of sufficiently large code-switched corpora is

a big challenge towards building NLP models. Large language corpora are critical
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to building generative language models that can later be fine-tuned for downstream

tasks.

2. Linguistic Annotations for Language Tasks: supervised learning algorithms

need linguistic annotations to train machine learning models on. These annotations

are very expensive to obtain and often required highly-skilled or trained annotators

to produce them. For code-switched language, the annotators are further required to

be bilingual, making the collection even more expensive and difficult.

3. Leveraging Monolingual and Parallel Corpora: there is a wealth of monolingual,

and to a lesser extent, parallel corpora waiting to be exploited for code-switching tasks.

These resources can be incorporated in the form of pre-trained word embeddings or

language models, and how to fine-tune such models to best exploit their potential on

code-switched data is a key challenge.

4. Incorporating Existing Knowledge about Code-Switching: although code-

switching has been mostly ignored by the computational linguistics community, there

has been a large amount of work from linguists, including work on syntactical con-

straints to code-switching and how switches are triggered. Incorporating such knowl-

edge in machine learning models could help boost performance.

Most of the research efforts on code-switching from the linguistics community have been

focused on two goals: a) finding constraints in the way monolingual grammars interact with

each other to produce well-formed code-switched speech and b) designing methods to build

code-switching grammars from monolingual grammars. The following are the three most

important theories that aim to describe the structure of code-switching.

1. Asymmetry: [Joshi, 1982] introduced the notion of asymmetry in code-switching,

referring to one language dominating another and supplying the morpho-syntactic

framework for the bilingual clause. The dominant language is identified as the Matrix

Language (ML) and the other is the Embedded Language (EL). Joshi [1982] proposed

a framework where there are just two separate monolingual grammars, the ML gram-

mar GML and the EL grammar GEL, and a control structure that allows shifting
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control from the ML to the EL (XML → XEL, for a non-terminal X), but not vice

versa.

2. Matrix Language Frame model: Myers-Scotton [1997] further developed Joshi’s ideas

into the Matrix Language Frame (MLF) model, which defines three different con-

stituents in a code-switched clause: ML islands that are made of ML morphemes and

under the control of ML grammar; EL islands that are well-formed according to the

EL grammar but are inserted into a ML frame; and Mixed Constituents ML+EL

which include morphemes from ML and EL. In the MLF model, the ML and EL are

identified empirically following these two principles: ‘The Morpheme Order principle’,

which states that the morphemes contained in a mixed constituent must follow the

order of the ML; and ‘The System morpheme principle’, which states that all system

morphemes contained in a mixed constituent must come from the ML.

3. Linear Order Constraints: Sankoff and Poplack [1981] rejects the idea of asymmetry

and instead postulates two linear order constraints. The “Equivalence Constraint”

postulates that a switch must occur where both languages share the same word order,

before and after the switch. The “Free Morpheme Constraint” states that in order

for a switch to occur between a free and a bound morpheme, the bound morpheme

must be phonologically integrated into the language. In [Sankoff and Poplack, 1981],

the authors propose an approach to building a new code-switched grammar Gcs that

subsumes two monolingual grammars G1 and G2. This approach adds rule R from

grammar Gi to GCS if its equivalent rule R′ in Gj fulfills the equivalence constraint:

that every pair of output symbols in Gi maintain order in Gj . If that is not the

case, a modified version of the rule is added to GCS such that the out-of-order output

symbols be expanded into lexical items from Gi.

4. The Generative Grammar model proposed by [Woolford, 1983] follows a similar scheme

to Poplack’s grammar building process [Sankoff and Poplack, 1981], with the difference

that no rules are altered in any way. Phrase structure rules are drawn freely from

both grammars during the construction of constituent structure trees, but the lexicon

of each grammar is limited to filling only those terminal nodes created by rules drawn
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from the same language. In the case that there are rules common to both languages,

such rules belong simultaneously to both languages and lexical items can be freely

drawn.

Meanwhile, the computational linguistics community has mainly focused on the prob-

lems of word-level language identification, part-of-speech tagging, and applying existing

machine learning methodology to leverage existing monolingual resources. Those contribu-

tions will be reviewed in the pertinent Chapters throughout this thesis.

In this thesis, we address different aspects of the four main challenges described above.

The first part of the thesis focuses on how to obtain and annotate code-switched data.

In Chapter 2 we propose a method to detect code-switching in sentences that we term

“anchoring”. We use this method to collect a corpus of more than 8,000 tweets which we

annotate with word-level language identifiers, and we show that the corpus has a high degree

of bilingualism, shows diverse types of switching, and helps yield state-of-the-art word-level

identification performance. Chapter 3 proposes a crowdsourcing scheme to obtain part-of-

speech tags for English-Spanish code-switched text. The scheme is divided into tasks that

include automatic labeling, word-specific questions, and a disambiguation question-tree

task. We adapt a previous approach designed for English and adapt it to the code-switched

setting and expand it for the Spanish language.

The second part of the thesis focuses on the tasks of part-of-speech tagging, word-level

language identification and language modeling. In Chapter 4, we propose a bidirectional

LSTM model to perform part-of-speech and simultaneous part-of-speech tagging and lan-

guage identification. We test the models on the Miami Bangor corpus of conversational

speech and show that our models are superior to previous state-of-the-art models on code-

switched language, and are also competitive on monolingual corpora. Chapter 5 presents

an exhaustive statistical analysis on the relationship between code-switching and cognate

words, part-of-speech roles and entrainment, on the largest corpus used to date for such

analysis. We prove and disprove certain aspects of the Clyne’s triggering hypothesis. Fol-

lowing from that research, in Chapter 6 we propose a set of cognate-based features that

capture orthographic, phonetic and semantic similarities between cognate pairs and use

them on the task of language modeling. The cognate-based features show perplexity im-



CHAPTER 1. INTRODUCTION 6

provements similar to those obtained by manually labeled gold features like part-of-speech

tags and language identifiers. Furthermore, we show that these features can be used across

(similar) language pairs. In Chapter 7 we present ongoing work on how to pre-train cross-

lingual language models on large collections of monolingual corpora and fine-tune them

for the tasks of word-level language identification and language modeling for code-switched

data. Finally, we present our conclusions in Chapter 8.
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Automatic Collection and

Annotation of Code-Switched Data
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Chapter 2

Collecting Code-Switched Data

from Social Media

2.1 Introduction

In this Chapter, we address the problem of mining code-switched data from the web. The

task of finding code-switched data is of key importance. Real examples of code-switching are

needed to train statistical machine learning models for both unsupervised and supervised

learning. However, very little code-switching corpora exist from which researchers can train

them and the question of how to acquire code-switched data from web and social media

resources automatically and accurately remains largely unaddressed.

Finding real examples of code-switching in large streams of data, like social media

platforms or the world wide web is extremely challenging for a variety of reasons. Classifying

a sentence as code-switched requires accurate word-level language identification, or a code-

switching point detection algorithm that would need to be trained on specific language pairs.

Existing language identification algorithms work well at the document, paragraph and even

sentence level, but underperform at the word level. At the same time, performing word-level

language identification on large collections of corpora to find examples of code-switching is

extremely expensive.

In this Chapter, we introduce three simple and computationally cheap methods to find-

ing code-switching in large collections of data. Our methods make use of “anchor words”,
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which are defined as words that can only exist in one language from a large pool of languages,

and also sentence-level language identifiers.

We apply our method to Twitter data. Twitter data has been mined extensively for

many Natural Language Processing and speech tasks [Mendels et al., 2015; Kouloumpis

et al., 2011] as one of the only major platforms that provides an API for data collection.

From Twitter, we collected a set of more than 43,000 tweets. We obtained language identi-

fiers for a subset of 8,000 tweets using crowdsourcing with high inter-annotator agreement

and accuracy. We validated our Twitter corpus by comparing it to the Spanish-English

corpus of code-switched tweets collected for the EMNLP 2016 Shared Task for Language

Identification, in terms of code-switching rates, language composition and amount of code-

switch types found in both datasets. We then trained language taggers on both corpora

and showed that a tagger trained on the EMNLP corpus exhibits a considerable drop in

accuracy when tested on the new corpus and a tagger trained on our new corpus achieves

very high accuracy when tested on both corpora.

The remainder of the Chapter is organized as follows. In Section 2.2 we give an overview

of previous work on the topic of finding and collecting code-switched data. In Section 2.3 we

present our anchoring method for retrieving code-switched tweets. Section 2.4 provides the

details of our Twitter collection pipeline. Section 2.5 describes the language identification

(LID) task we used to crowdsource the word language tags for the data collected. In Section

2.6.1, we compare the corpus we acquired using this method with a corpus of tweets that was

collected for the EMNLP 2016 Shared Task for Language Identification in code-switched

(CS) Data. We compare them in terms of the amount of bilingualism they contain and

their code-switching rate – i.e., how frequently writers switch their language in the corpus.

In Section 2.6.2 we train and test language ID taggers on our corpus and the Workshop

corpus and compare their performance. Finally, we present our conclusions in Section 2.7

2.2 Related Work

In the past few years there have been increasing efforts on a variety of tasks using code-

switched data, including part-of-speech tagging [Solorio and Liu, 2008b; Vyas et al., 2014;
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Jamatia et al., 2015; AlGhamdi et al., 2016], parsing [Goyal et al., 2003], language modeling

[Franco and Solorio, 2007; Li and Fung, 2012; Adel et al., 2013b,a; Li and Fung, 2014],

code-switching prediction [Solorio and Liu, 2008a; Elfardy et al., 2014], sentiment analysis

[Vilares et al., 2015; Lee and Wang, 2015] and even speech recognition [Ahmed and Tan,

2012; Lyudovyk and Pylypenko, 2014].

The task that has received most of the attention has been Language Identification on

code-switched data, thanks in part to the First and Second Shared Tasks on EMNLP

2014 and 2016 [Solorio et al., 2014; Molina et al., 2016]. Many of the current state-of-

the-art models for Language Identification perform sequence labeling using Conditional

Random Fields [Al-Badrashiny and Diab, 2016] or Recurrent Neural Networks [Jaech et al.,

2016b]. In the 2016 Shared Task the best performing system on the MSA-DA dataset used

a combination of both [Samih et al., 2016] on top of word and character-level embeddings,

and the best performing system on the ES-EN dataset used logistic regression [Piergallini

et al., 2016] and character n-gram features.

On the task of finding and collecting code-switched data from the web, which is the

focus of this Chapter, Çetinoglu [2016] obtained a corpus of German-Turkish tweets by

automatically computing dictionaries of pure German and Turkish from a million Turkish,

German and English tweets. They subsequently used those dictionaries to automatically

tag ten million Turkish tweets from which they obtained 8,000 potentially code-switched

tweets which they manually filtered down to 680.

Samih [2016] obtained a corpus of forum posts written in MSA and the Darija Dialect

following this iterative process: they first started with a list of 439 words exclusive to Darija

which they used to retrieve forum posts that contained one of the exclusive words; they then

added all the words from the retrieved posts to the list of Darija words. They repeated the

process until the corpus reached a certain size. The authors do not target MSA language

explicitly during this iterative process under the assumption that MSA is ubiquitous in

written Arabic. They obtained a corpus of 223K tokens with 73.9% of code-switched forum

posts.

Barman et al. [2014] used a group of university students as data source to find code-

switched media. They found a Facebook group and 11 Facebook users from which they
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collected 2,335 posts and 9,813 comments. Vyas et al. [2014] collected almost seven thousand

comments from 40 manually selected code-switched Facebook posts from three celebrity

pages and the BBC Hindi news page. Finally, Jamatia et al. [2015] collected tweets and

Facebook posts from a University billboard page, although it is unclear if they specifically

targeted code-switched content or not.

The organizers of the EMNLP Shared Tasks on Language Identification in code-switched

Data followed a semi-automatic approach. For the first Shared task, code-switched data

was collected for the pairs Spanish-English (ES-EN), Mandarin-English (MAN-EN), Nepali-

English (NEP-EN) and Modern Standard Arabic-Dialectal Arabic (MSA-DA). The social

media sources they targeted were Twitter for all language pairs and Facebook for NEP-EN

and blog comments for MSA-DA. For Twitter, their approach consisted in first locating

code-switchers and then collecting their posts and posts from their followers and/or fol-

lowees. For ES-EN, they located a subset of code-switchers by querying the Twitter API

with frequent English words, and restricted results to tweets identified as Spanish by Twit-

ter from users based in Texas and California. For NEP-EN, they started from a group of

acquaintances that were known to code-switch and then identified their followers and follow-

ers of their followers that they found were code-switchers too. For Mandarin-English, they

started by looking at the most followed Twitter users in Taiwan. They then added those

users that they manually checked were code-switchers to their pool, and repeated a similar

process on their followees. For MSA-DA, they seeded the search with text from Egyptian

public figures. For the Second Shared task the language pairs were ES-EN and MSA-DA.

For ES-EN they restricted the search of code-switchers to those based in New York and Mi-

ami and seeded the search from local radio station accounts. Again, they continued looking

for followers and followees of the radio stations that tweeted code-switched messages. For

MSA-DA, the same collection method from the 2014 Shared Task was reused.

All of these approaches to code-switched data collection, except [Samih, 2016], rely on

manual inspection to some degree in order to either add a user to the code-switcher pool or

select a post for collection. In the next section we introduce a fully automatic approach to

finding and collecting code-switched data that is not dependent on manually curating lists

of users.
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2.3 Anchoring Methods

We define an anchor as a word which belongs to only one language from a large pool of

languages. The motivation behind using anchor words stems from a simple rule that we

impose to detecting code-switched sentences: “A sentence is code-switched in L1 + L2 if

and only if it contains at least one anchor from language L1 and at least one anchor from

language L2, and contains no anchors from any other language from the pool of languages

L.”

The set of anchor words for a language Li is computed as the set difference between its

word lexicon V (Li) and the union of all other lexicons in the language pool:

AnchorSet(Li) = V (Li) \ ∪j!=iV (Lj) (2.1)

Note that the identification of the anchor sets for a given language pair depends upon the

monolingual corpora used.

We can relax the definition of anchors in two different ways. First, in the context of

detecting L1 + L2 language, we say a word is a “weak anchor” if it is seen in monolingual

L1 corpora, and never seen in monolingual L2 corpora. Second, querying the Twitter API

with every possible pair of one Spanish and one English anchor is unproductive because

there are billions of possible queries and most of them would have no results. To avoid

this problem we relaxed the definition of code-switching to: “a sentence is code-switched

if and only if it is predicted to be L1 by a monolingual automatic Language Identification

program and contains at least one weak anchor from the L2 anchor set.” With this new rule

we require only one anchor from one of our language pair plus language id results favoring

the other member of the pair. We note that the definition of weak anchors closely resembles

the definition of blacklisted words used by Tiedemann and Ljubešić [2012], although their

application was to discriminate between a set of very similar languages (Serbian, Croatian

and Bosnian).

Using these definitions, we performed a preliminary study on the task of classifying an

utterance as monolingual or code-switched on the EMNLP 2016 Shared Task Corpus of

Spanish+English tweets. Details of the collection and contents of that corpus were given

in Section 2.2. We computed the anchors for Spanish and English from the Leipzig corpora
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Collection (LCC), released 2007 to 2014 [Goldhahn et al., 2012]. The LCC is a collection of

corpora for a large set of languages from comparable sources (e.g. Wikipedia, news articles,

websites). We computed the word lexicon of every language in the corpus from the news

dataset for that language, and then we computed the anchor list first following equation

2.1. Words that contained numbers or tokens from a list of 31 punctuation tokens were

discarded. In total the language pool contained 134 languages. The Spanish anchor set

contained 50.68% of the words from the Spanish word lexicon and the English anchor set

contained 54.37% of the words from the English lexicon. In both cases, this is one of the

smaller percentages from the pool of 134 languages. In comparison, German, French and

Italian kept 79.01, 59.67 and 62.94% of their lexicons, while other languages like Chinese

and Japanese kept 93.40 and 72.18%.

Table 2.1 shows Precision, Recall and F1-Score results on the task of classifying a tweet

as code-switched (CS) or monolingual (mono) for the strong definition of anchors, weak

anchors and the weak anchor + LID approach. We report results on the test partition

of the EMNLP 2016 Shared Task Corpus. The language ID used is langid.py [Lui and

Baldwin, 2012].

Method Class Precision Recall F1-score

Anchors
Mono 0.58 1.00 0.73

CS 0.94 0.03 0.07

Weak Mono 0.68 0.98 0.80

Anchors CS 0.93 0.38 0.54

Weak Mono 0.66 0.98 0.79

+LID CS 0.93 0.33 0.49

Table 2.1: Code-switched sentence detection performance using Anchoring: Strong Anchors,

Weak Anchors and Weak Anchors with Language ID.

The top subtable from Table 2.1 shows the results we obtained for this task using our

strong definition of anchor. Not surprisingly, we achieved very high precision, but very low

recall. High precision and low recall is a secondary effect from the restrictiveness of the

definition of anchor set and code-switched sentence, since anchors are not defined exclusively
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in terms of L1 and L2, but from a large pool of languages. This means that the words in

the anchor set are most likely to be very low-frequency words. Furthermore the fact that

a sentence must have at least one anchor from both languages and none from all the other

languages, guarantees that much of the data will be rejected as not code-switched even

when bilingual speakers of the languages in question would agree that it is.

The middle subtable from Table 2.1 shows the results on the task using weak anchors

as defined above. At the expense of 0.01 absolute precision points, recall is improved by

almost 0.35 points.

The bottom subtable of Table 2.1 shows results using weak anchors and Language Id.

Although with this method the recall drops 0.03 points with respect to the weak anchors,

we achieve the advantage of being able to reduce the number of queries we need for the

collection, and make the search less restrictive. In the next section of the Chapter we use

weak anchors with the Language ID restriction to collect code-switched tweets.

2.4 Data Collection

We used Babler1 [Mendels et al., 2016] to collect code-switched data from Twitter. Babler

is a tool designed for harvesting web-data for NLP and machine learning tasks. Babler’s

pipeline is launched by querying a seed word s ∈ S using Twitter’s API. The tweets retrieved

by the query are later processed and passed through a set of filtering rules R which are

predefined for the task. Tweets were not selected or filtered based on time period, topic,

genre, dialect, and so on.

Following the definition of “weak anchor plus Language Id” given in section 2.3 we used

the “weak” anchors to seed the Twitter API and the filtering rules R to enforce the LID

restriction. To further reduce the number of required queries we also sorted our “weak”

anchors by frequency. The weak anchors were computed from the GigaCorpus dataset of

Broadcast News data. R uses Twitter’s LID to only allow tweets that were seeded from a

Spanish anchor and classified as English or vice versa. Although we required the Twitter

API to return only exact matches to our seed terms, we found that in fact Twitter performs

1Babler is publicly available from https://github.com/gidim/Babler

https://github.com/gidim/Babler
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stemming.

Our method differs from the prior art in two aspects. First, we derive our word lists

from non-noisy pure monolingual corpora which reduces the risk of including out-of-language

tokens. Second, instead of performing local filtration our method is implemented based only

on API calls thus increasing our potential dataset to every public tweet available. Overall

we collected 14,247 tweets that were seeded from Spanish weak anchors and classified as

English by the Twitter API and 28,988 tweets that were seeded from English weak anchors

and classified as Spanish.

2.5 Crowdsourcing Language Tags

While we designed our data collection pipeline to save only code-switched tweets, we next

needed to test this, as well as to obtain manual annotations for our language modeling

research.

From the more than forty-three thousand tweets that were collected, we randomly chose

a subset of 8,285 tweets for our “Anchored” tweets corpus 2. We crowdsourced language

tags for every word in our Anchored tweet dataset. Each word was tagged as English

(EN), Spanish (ES), Ambiguous between English and Spanish (AMBIG), Mixed English-

Spanish (MIXED), Named Entity (NE), Foreign Word (FW), Other (OTHER) and Gib-

berish (UNK). “Named Entities” were defined as single proper names or part of a name or

title that referred to persons, places, organizations, locations, brands, goods, initials, movie

titles and song titles. A word is to be tagged as “Ambiguous” when it can be used in both

English and Spanish, but there is not enough context to decide its use in the current tweet.

A word is to be tagged “Mixed” when the word does not exist in Spanish or English, but

consists of a combination of elements from both, e.g. the word “ripeado” which contains

the English root “rip” and the Spanish morpheme “-ado”. The category “Other” is to be

used to tag punctuation, numbers, emoticons, retweet symbols, and other non-lexical items.

Finally the “Gibberish” category is for tokens whose meaning cannot be identified.

2All the anchor wordlists, tweet IDs and their crowdsourced language tags are publicly available in

http://www.cs.columbia.edu/~vsoto/files/lrec_2018_package.zip

http://www.cs.columbia.edu/~vsoto/files/lrec_2018_package.zip


CHAPTER 2. COLLECTING CODE-SWITCHED DATA FROM SOCIAL MEDIA 16

Figure 2.1: Word-level language annotation crowdsourcing task. Figure shows the interface

on Crowdflower.

We used the guidelines designed for the annotation of the EMNLP 2016 Shared Task

dataset, with some minor changes, including a large number of examples per language tag,

and reminders to the annotators throughout the instructions and question statements that

a) hashtags were to be tagged with the language tag of the words in the hashtag, and

b) Named Entities had precedence over any other language tag; since these were the test

questions they had the most difficulty with in our initial test.

We used Crowdflower to crowdsource language tags for our tweets. An example of the

task our workers were asked to complete can be seen in Figure 2.1. Our workers were pre-

screened using a quiz of twenty test questions. If three or more test questions were missed

during the initial quiz, the worker was denied access to the task. Furthermore, workers

were required to be certified for the Spanish language requirement in Crowdflower. Only

workers from Argentina, Canada, Mexico, Spain, U.K. and U.S.A. were allowed access to

the task. The task was designed to present 20 questions per page plus one test question

used to assess workers’ performance. When a worker reached an accuracy lower than 85%

on these test questions, all their submitted judgments were discarded and the task made
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Lang Tag #Tokens Avg. Conf

ES 40,208 0.97

EN 30,372 0.93

AMBIG 919 0.55

MIXED 129 0.54

NE 15,260 0.88

FW 1,815 0.77

OTHER 1,994 0.80

UNK 546 0.59

Table 2.2: Number of tokens and average confidence per Language ID tag from the crowd-

sourced annotations for the Anchored Twitter corpus.

subsequently unavailable. Every set of 19+1 judgments was paid 1 cent (USD).

In total, we collected three judgments per token. The average inter-annotator agreement

was 92.33% and the average test question accuracy was 91.1%. These metrics demonstrate

that the crowdsourced language labels are of high-quality. For every token for which we

crowdsourced a language tag, Crowdflower computes the confidence on the language tag

as the level of agreement between all the contributors that predicted that language tag

weighted by the contributors’ trust scores. The language tag with highest confidence is

then chosen as aggregated prediction. Table 2.2 shows the average confidence per language

tag across all tokens. It can be seen that workers struggled the most when tagging words

as Mixed, Ambiguous or Gibberish.

2.6 Evaluation

2.6.1 Data Assessment

Given the crowdsourced LID labels, we can assess the quality of the retrieved anchored

tweets by computing their degree of bilingualism and how frequently code-switching occurs

within them. We compare these measures to the EMNLP 2016 CS Shared Task corpus

[Molina et al., 2016].
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Metric
Workshop Anchored

Train-Dev Test Full

# Tweets (K) 14.4 10.7 8.5

# Tokens (K) 172.8 121.4 130.7

# Switches (K) 7.4 7.8 10.2

Avg. # Switches 0.52 0.73 1.19

Switched words (%) 4.30 6.42 7.77

Switched tweets(#) 4,116 4,617 5,958

Switched tweets(%) 28.56 43.09 69.89

0 switches (%) 71.44 56.91 30.11

1 switch (%) 12.86 21.38 39.57

2 switches (%) 11.34 16.65 19.53

3 switches (%) 2.50 2.88 5.81

4 switches (%) 1.27 1.66 3.32

5 switches (%) 0.29 0.33 0.84

6 switches (%) 0.20 0.17 0.43

7 switches (%) 0.05 0.02 0.23

8 switches (%) 0.03 0.00 0.12

Table 2.3: Code-switching statistics for the EMNLP 2016 Workshop and Anchored Twitter

datasets. The bottom subtable shows the percentage of tweets that contain N code-switches.

The train and dev tweets from the 2016 Shared Task were the train and test sets from

the 2014 Shared Task [Solorio et al., 2014], whereas the test split was collected specifically

for the 2016 task. The collection schemes used in 2014 and 2016 were explained in detail in

Section 2.2. Table 2.3 provides the overall statistics describing this corpus in comparison

to ours. We report the train-dev and test splits of the EMNLP 2016 Workshop Shared

Task corpus separately since they were collected using different methods. As can be seen in

Table 2.3, our subset of 8,525 tweets had an average of 1.19 code-switches per tweet, with

7.77% of words in a tweet being followed by a switch. 69.89% of our tweets contained at

least one or more switches. In comparison, the Workshop corpus had an average of 0.61

code-switches per tweet, with 5.17% of tokens followed by a switch. Only 34.75% tweets

contained at least one switch. The test set of the Workshop corpus shows greater degrees
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Workshop Anchored

Lang Tag Train-Dev Test Full

ES 24.51 63.44 34.44

EN 55.33 13.95 24.73

AMBIG 0.23 0.00 0.70

MIXED 0.04 0.00 0.10

NE 2.09 1.72 11.68

FW 0.01 0.02 1.39

OTHER 17.62 20.84 26.53

UNK 0.17 0.02 0.42

Table 2.4: Language composition for the EMNLP 2016 Workshop and Anchored Tweets

datasets. Amounts are shown in percentages, at the token level.

of bilingualism and a better switching rate: Test corpus tweets averaged 0.73 code-switches

per tweet, with 6.42% of tokens followed by a switch and contained 43.09% code-switched

tweets overall. Based on these metrics alone, it would appear that our anchoring method

improves over the earlier approach considerably.

Table 2.4 shows the language composition of the three datasets: Workshop training-dev,

Workshop test, and the full Anchored dataset. From this table we can see that the train-

dev portion of the workshop corpus has a majority (>55%) of English words, while the test

split contains a large majority of Spanish words (>63.44%), perhaps due to seeding the

collection of tweets on Spanish-language Radio accounts and followers/ees. In comparison,

the Anchored corpus is more balanced, with 34.44 and 24.73% of Spanish and English tokens.

It also has a higher rate of Named Entities and Other tokens. We believe this is due to the

updated annotation guidelines that emphasized the subtleties involved in annotating Named

Entities and Other tokens. While Table 2.4 compares the corpora by language composition,

Table 2.5 examines the corpora by type of switch. The most frequent switch across datasets

is Spanish to English (ES-EN), followed by English to Spanish (EN-ES). These account

for 63.53%, 74.04% and 52.67% of switches for the Workshop Train-Dev, Workshop Test

and Anchored datasets respectively. The next most common type of switch is an English

word followed by a sequence of Other tokens and a Spanish word (EN-Other-ES), or Spanish
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Workshop Anchored

Switch Type Train-Dev Test Full

ES EN 32.06 45.68 29.81

EN ES 31.47 28.36 22.86

EN Other+ ES 15.99 12.28 14.83

ES Other+ EN 15.16 11.05 10.86

ES NE+ EN 1.44 0.99 4.06

EN NE+ ES 0.91 0.36 2.45

Table 2.5: Types of code-switching in the EMNLP 2016 Workshop and Anchored Tweets

datasets. TAG+ indicates a sequence of one or more occurrences of that language tag.

Training Word Accuracy (%) Avg. F1-Score Sentence Accuracy (%)

Corpus Workshop Anchored Workshop Anchored Workshop Anchored

Workshop 95.93 82.09 0.4218 0.3978 67.91 14.20

Anchored 95.13 91.86 0.4655 0.5937 62.60 40.13

Combination 96.91 91.61 0.4328 0.5617 73.53 39.87

Table 2.6: Language tagging accuracy (left) and average f1-score (center) at the word level

and language tagging accuracy at the sentence-level (right) for each training and testing

combination.

followed by Other and then English (ES-Other-EN). These make up for 31.15%, 23.33% and

25.69% of the switches. Note that this type of switch can be indicative of inter-sentential

code-switching if the Other token is a punctuation mark (like ‘!’ in “Holaaaa mis niños

bellos!!! I love you guys”) or it can be indicative of intra-sentential code-switching if the

other token is a Twitter mention, a quote, and so on (e.g “En cuestiones de Rock ‘n’ Roll

I am pretty crossover”). Overall, the typing distribution is more balanced in the Anchored

dataset, whereas the Workshop test set has a significant majority of ES – EN switches, due

perhaps, again, to the way the collection of tweets was seeded.
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Training Word Accuracy (%) Avg. F1-Score Fragment Accuracy (%)

Corpus Workshop Anchored Workshop Anchored Workshop Anchored

Workshop 85.46 78.96 0.3678 0.3802 84.29 61.67

Anchored 83.85 86.64 0.3617 0.4937 82.61 71.73

Combination 87.44 86.98 0.3722 0.5020 86.51 73.67

Table 2.7: Language tagging accuracy (left) and average f1-score (center) at the word level

and language tagging accuracy at the fragment-level (right) for each training and testing

combination on the subset of code-switched fragments.

2.6.2 Language Identification

Our second evaluation of the accuracy of our corpus consists of training and testing Lan-

guage ID taggers on the new dataset and comparing its performance to a tagger trained on

the Workshop data. We made use of a high-performing classification model from Jaech et

al. [2016b]. The model did well on the English-Spanish code-switching 2016 Shared Task,

especially considering that it was one of only two models that did not use external resources

for training [Molina et al., 2016]. The same model did well on a sentence level language

identification task [Jaech et al., 2016a].

We summarize the model architecture and its motivation here. For a full description see

[Jaech et al., 2016b]. The model is a hierarchical neural model with one level that operates

on character sequences to build a representation for each word and a second level that

operates on the sequence of word representations to predict the language tag for each word.

In the first level, the model uses convolutional neural network layers to do a soft-version of

n-gram matching. The output of this layer is a feature vector that provides a useful signal

for the language of each word because languages tend to differ in their character n-gram

distributions. The second level of the model is a bidirectional LSTM that takes as input

the feature vectors from the previous layer and outputs the predicted tag for each word.

The use of the LSTM allows the model to incorporate evidence from tokens far away in the

word sequence.

We made one tweak that was not described in [Jaech et al., 2016b]: the standard LSTM
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was replaced with an LSTM that has coupled input and forget gates for a 25% reduction in

the parameters in the bi-LSTM and a corresponding improvement in speed of computation

[Greff et al., 2017]. Operating on the word-level representations allows the LSTM to predict

the correct tag for words whose language is ambiguous from just the character-level feature

vectors based on the fact that adjacent words are more likely to belong to the same language.

We tuned the model hyper-parameters by training and testing on the train and dev splits

of the Workshop dataset, effectively making the task more difficult for the model trained

on the Anchored corpus. Table 2.6 shows the word-level and sentence-level accuracy and

the average F1-score of the language ID tagset for each training/testing combination.

First, we trained our tagger on the Workshop data (Workshop Model, in Table 2.6)

and observed that its performance on the Workshop test set is similar to that reported for

this model in the Shared Task (95.93%). The performance of this tagger however sees a

big drop of performance on word-level accuracy and sentence-level accuracy when tested

on the Anchored test set. This demonstrates that a tagger trained on a corpus comprised

of majority of monolingual sentences, with a lower degree of bilingualism and switching

rates, has some difficulty generalizing to a more balanced corpus like the Anchored Tweets

Corpus.

Second, we partitioned the Anchored corpus into train and test by randomly choosing

1,500 tweets for the test set and leaving the rest for training. We trained a new tagger

on the Anchored dataset with the same hyper-parameter settings as the Workshop tagger

and report its test performance on Table 2.6 as Anchored tagger. We observed that the

performance of this model on the Workshop data is very good, despite the difference between

the two datasets: the word-level accuracy only decreases by 0.8% accuracy points with

respect to the Workshop model, whereas the sentence-level accuracy decreases by 5.31%

points. However the F1-score value sees a relative improvement of 10.36%, which indicates

that the new corpus is more similar to the Workshop test split than the Workshop train-

dev split. The Anchored-trained tagger achieves 91.86% word-level accuracy on its own test

set, with 0.5937 average F1-score value and 40.13% sentence-level accuracy. These results

indicate that a tagger trained on the anchored corpus is able to generalize quite well on

the same corpus, although overall the classification task is harder than on the Workshop
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corpus: the best word-level and sentence-level accuracies in the Workshop test set are much

higher than in the Anchored test set.

Finally, we trained a tagger on a combination of the Workshop and Anchored training

sets. This combined tagger achieves the best word-level accuracy on the Workshop corpus

(96.91%) as shown in the last row of Table 2.6. Similarly the combined tagger also achieves

the best sentence-level accuracy on the Workshop test set (73.53%).

Overall, the Anchored tagger achieves the best results on the Anchored test set for

every metric (91.86% word-level accuracy, 0.5937 average f1-score and 40.13% sentence-level

accuracy), despite being trained on much less data (the anchored train set has 7,025 tweets,

the workshop train set has 11,400 tweets and the combined train set has 18,425 tweets). It

also achieves the best average f1-score on the Workshop test set (0.4655). The Combination

tagger achieves the best word-level and sentence-level accuracy on the Workshop test set

(96.91% and 73.53% respectively).

We next examine the performance of the three taggers on the subset of code-switched

segments present in each test set in Table 2.7, where we define a code-switched segment as

the minimal span of tokens where a point code-switch occurs. Notice that a segment can

be longer than two tokens if there is a Named Entity, Other, Mixed or Ambiguous token

in between. For example, from the sentence “I watched The Godfather y me encantó”, the

code-switched segment would be “watched The Godfather y” where “The Godfather” is a

Named Entity.

From this table we can see that, in fact, taggers have most difficulty tagging words

that occur in the context of a code-switch, since the accuracy of all three models on both

test subsets of code-switched segments suffers a steep decline for the results shown for the

complete test set in the left subtable of Table 2.6. In the case of the Workshop tagger,

its accuracy has relative changes of -10.91 and -3.81% on the full workshop and anchored

test sets respectively. The Anchored model sees even larger relative decreases of -11.86

and -5.68%. In comparison, the Combination model has the smallest relative decreases in

accuracy, with -9.77 and -5.05%. The same trends can be observed for the average F1-Score

and the fragment-level accuracy metrics.

Overall the best performing model is the one trained on the combined training sets,
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followed by the Anchored model, which always gets better metric values on its own test

set and achieves similar metric values on the Workshop test set when compared to the

Workshop tagger. Notice though that the Anchored model was trained on less than 40% of

the number of tweets in the Combined train set.

2.7 Conclusions

In this Chapter we presented a method that made use of anchoring and monolingual Lan-

guage ID for detecting code-switched text. We relaxed strict anchoring constraints to query

the Twitter API and retrieved code-switched tweets. We crowdsourced language tags for the

tokens of 8,285 tweets and found that almost 70% of the collected tweets were indeed code-

switched. These tweet exhibit a relatively balanced amount of Spanish and English text and

a high amount of code-switching per tweet. The average number of code-switches per tweet

in the corpus is 1.19 switches while 7.77% of the tokens are followed by a code-switch. These

numbers compare favorably to the 2016 EMNLP Workshop Shared Task Code-Switched

Twitter corpus, which was obtained with a different and more labor-intensive method. We

evaluated the quality of our new Anchored corpus by training state-of-the-art language

taggers and showed that a) a tagger trained on the original Workshop corpus exhibited a

more considerable drop in accuracy when tested on the Anchored corpus; and b) a tagger

trained on the Anchored corpus achieved very good accuracy on both test corpora. These

results show great promise for automatic collection of other code-switched corpora for use

in training language models and for other NLP and speech tasks.
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Chapter 3

Crowdsourcing Part-of-Speech

Tags for Code-Switched Data

3.1 Introduction

High-quality linguistic annotations are extremely valuable for any NLP task, and perfor-

mance is often limited by the amount of high-quality labeled data available. However, little

such data exists for code-switching. In this Chapter, we describe crowdsourcing universal

part-of-speech tags for the Miami Bangor Corpus of Spanish-English code-switched speech.

With the advent of large scale machine learning approaches, the annotation of large

datasets has become increasingly challenging and expensive. Linguistic annotations by

domain experts are key to any language understanding task, but unfortunately they are

also expensive and slow to obtain. One widely adopted solution is crowdsourcing. In

crowdsourcing, naive annotators submit annotations for the same items on crowdsourcing

platforms such as Amazon Mechanical Turk and Crowdflower. These are then aggregated

into a single label using a decision rule like majority vote. Crowdsourcing allows one to

obtain annotations quickly at lower cost. It also raises some important questions about the

validity and quality of the annotations, mainly: a) are aggregated labels by non-experts as

good as labels by experts? b) what steps are necessary to ensure quality? and c) how does

one explain complex tasks to non-experts to maximize output quality? [Callison-Burch and

Dredze, 2010].
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The task of crowdsourcing part-of-speech tags is challenging insofar as part-of-speech

tagsets tend to be large and the task is intrinsically sequential. This means that workers

need to be instructed about a large number of categories and they need to focus on more

than the word to tag, making the task potentially longer, more difficult, and thus, more

expensive. More importantly, even though broad differences between part-of-speech tags

are not hard to grasp, more subtle differences tend to be critically important. An example

would be deciding whether a word like ”up” is being used as a preposition (”He lives up

the street”) or a particle (”He lived up to the expectations.”)

We present an annotation scheme for obtaining part-of-speech (POS) tags for code-

switching using a combination of expert knowledge and crowdsourcing. Part-of-speech

tags have been proven to be valuable features for NLP tasks like parsing, information

extraction and machine translation [Och et al., 2004]. They are also routinely used in

language modeling for speech recognition and in the front-end component of speech synthesis

for training and generation of pitch accents and phrase boundaries from text [Taylor et al.,

1998; Taylor and Black, 1998; Zen et al., 2009; Hirschberg, 1990; Watts et al., 2011].

We split the annotation task into three subtasks: one in which a subset of tokens are

labeled automatically, one in which questions are specifically designed to disambiguate a

subset of high frequency words, and a more general cascaded approach for the remaining

data in which questions are displayed to the crowd-source worker following a decision tree

structure. Each subtask is extended and adapted for a multilingual setting and the universal

tagset. The quality of the annotation process is measured using hidden check questions

annotated with gold labels. The overall agreement between gold standard labels and the

majority vote is between 0.95 and 0.96 for just three labels and the average recall across

part-of-speech tags is between 0.87 and 0.99, depending on the task.

The rest of the Chapter is organized as follows. Section 3.2 presents a summary of related

work on crowdsourcing linguistic annotations and more specifically part-of-speech tags.

Section 3.3 gives an overview of the Miami Bangor corpus, which we obtain annotations

for. This corpus will be used throughout the rest of this dissertation. Section 3.4 explains

our annotation scheme in detail. Section 3.5 shows our results and finally, Section 3.6

presents out conclusions.
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3.2 Related Work

There is a large body of work on the topic of crowdsourcing linguistic annotations for lan-

guage corpora. In [Snow et al., 2008] the authors crowdsourced annotations in five different

NLP tasks. To evaluate the quality of the new annotations they measured the agreement

between gold and crowdsourced labels. Furthermore, they showed that training a machine

learning model on the crowdsourced labels yielded a high-performing model. Callison-Burch

[2009] crowdsourced translation quality evaluations and found that by aggregating non-

expert judgments it was possible to achieve the quality expected from experts. In [Hsueh et

al., 2009] crowdsourcing was used to annotate sentiment in political snippets using multiple

noisy labels. The authors showed that eliminating noisy annotators and ambiguous exam-

ples improved the quality of the annotations. Finin et al. [2010] described a crowdsourced

approach to obtaining Named Entity labels for Twitter data from a set of four labels using

both Amazon Mechanical Turk and CrowdFlower. They found that a small fraction of

workers completed most of the annotations and that those workers tended to score highest

inter-annotator agreements. Jha et al. [2010] proposed a two-step disambiguation task to

extract prepositional phrase attachments from noisy blog data.

The aggregation scheme is a key component in a crowdsourcing task. Majority voting

is widely used but is sensitive to noisy labels. In [Hovy et al., 2013] the authors proposed

MACE (Multi Annotator Competence Estimation), an aggregation scheme based on item-

response models. MACE learns to identify which annotators are trustworthy and predict

correct labels. Similarly in [Rodrigues et al., 2014], a Conditional Random Field (CRF) is

used for situations where multiple annotations are available but not actual ground truth.

The algorithm proposed there was able to simultaneously learn the CRF parameters, relia-

bility of the annotators and the estimated ground truth.

Previous research has tackled the task of crowdsourcing part-of-speech tags. The authors

in [Hovy et al., 2014] collected five judgments per word in a task which consists of reading

a short context where the word to be tagged occurs, and selecting the part-of-speech tag

from a drop-down menu. Using MACE [Hovy et al., 2013] they obtained 82.6% accuracy

and 83.7% when restricting the number of words to be tagged using dictionaries. In his

M.S. thesis, Mainzer [2011] proposed an interactive approach to crowdsourcing part-of-
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speech tags, where workers are assisted through a sequence of questions to help disambiguate

the tags with minimal knowledge of linguistics. Workers following this approach for the Penn

Treebank Tagset [Santorini, 1990] achieved 90% accuracy.

In this Chapter, we propose to adapt the monolingual annotation scheme from [Mainzer,

2011] to crowdsource Universal part-of-speech tags in a code-switching setting for the Miami

Bangor Corpus. Our main contributions are the following: finding mappings to the univer-

sal part-of-speech tagset, extending a monolingual annotation scheme to a code-switching

setting, creating resources for the second language of the pair (Spanish) from zero and

creating a paradigm that others can adopt to annotate other code-switched language pairs.

3.3 The Miami Bangor Corpus

The Miami Bangor corpus is a conversational speech corpus recorded from bilingual Spanish-

English speakers living in Miami, FL. It includes 56 files of conversational speech from 84

speakers. The corpus consists of 242,475 words (transcribed) and 35 hours of recorded

conversation. 63% of transcribed words are English, 34% Spanish, and 3% are undeter-

mined. The manual transcripts include beginning and end times of utterances and per

word language identification.

The original Bangor Miami corpus was automatically glossed and tagged with POS tags

using the Bangor Autoglosser [Donnelly and Deuchar, 2011a,b]. The autoglosser finds the

closest English-language gloss for each token in the corpus and assigns the tag or group of

tags most common for that word in the annotated language. These tags have three main

problems: they are unsupervised, the tagset used is uncommon and not specifically designed

for multilingual text, and often the autoglosser does not disambiguate between predicted

tags (e.g. the Spanish token “śı” is simultaneously tagged as “yes.ADV.[or].himself.PRON”,

where “yes” and “himself” are the English glosses and “ADV” and “PRON” their part-of-

speech tags). To overcome these problems we decided to a) obtain new part-of-speech tags

through in-lab annotation and crowdsourcing and b) to use the Universal Part-of-Speech

Tagset [Petrov et al., 2012].

The Universal part-of-speech tagset is ideal for annotating code-switching corpora be-
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cause it was designed with the goal of being appropriate to any language. Furthermore,

it is useful for crowdsourced annotations because it is much smaller than other widely-

used tagsets. Comparing it to the Penn Treebank part-of-speech tagset [Santorini, 1990;

Marcus et al., 1993], which has a total of 45 tags, the Universal part-of-speech tagset has

only 17: Adjective, Adposition, Adverb, Auxiliary Verb, Coordinating and Subordinating

Conjunction, Determiner, Interjection, Noun, Numeral, Proper Noun, Pronoun, Particles,

Punctuation, Symbol, Verb and Other. A detailed description of the tagset can be found

in http://universaldependencies.org/u/pos/.

3.4 Annotation Scheme

The annotation scheme we have developed consists of multiple tasks: each token is assigned

to a tagging task depending on word identity, its language and whether it is present in one

of three disjoint wordlists. The process combines a) manual annotation by computational

linguists, b) automatic annotation based on knowledge distilled from the Penn TreeBank

guidelines and the Universal Tagset guidelines, and c) and d) two language-specific crowd-

sourcing tasks, one for English and one for Spanish. The pseudocode of the annotation

scheme is shown in Algorithm 1.

Table 3.1 shows the number and percentage of tokens tagged in each annotation task

(second and third column) and the percentage of tokens that was annotated by experts

in-lab, either because it was the manual task or because there was a tie in the crowdsourced

task. In the next subsections we explain in detail each one of the annotation blocks. All

the wordlists and sets of questions and answers mentioned but not included in the following

sections are available in Appendices A, B, C, and D.

3.4.1 Automatically Tagged Tokens

For English, the Penn Treebank Annotation guidelines [Santorini, 1990] instructs annotators

to tag a certain subset of words with a given part-of-speech tag. We follow those instructions

by mapping the fixed Penn Treebank tag to a Universal tag. Moreover we expand this

wordlist with a) English words that we found were always tagged with the same Universal

http://universaldependencies.org/u/pos/
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Algorithm 1: Pseudocode of the annotation scheme.

1 function RetrieveGoldUniversalTag (token, lang, tag);

Input: A word token, lang ID lang and POS tag tag

2 if IsInUniqueLists(token, lang) then

3 return RetrieveAutomaticTag(token, lang);

4 else if IsInManualAnnotationList(token, lang) then

5 return RetrieveManualTag(token, lang);

6 else

7 utag = Map2Universal(token, lang, tag);

8 if IsInTSQList(token, lang) then

9 utags = TokenSpecificQuestionTask(token, 2);

10 else

11 utags = QuestionTreeTask(token, lang, 2);

12 return MajorityVote([utag, utags]);

Task # Tokens % Corpus % by Experts

Automatic 156845 56.58 0.00

Manual 4,032 1.45 1.45

TSQ 57,248 20.65 0.93

English QT 42,545 15.34 0.32

Spanish QT 16,587 5.98 0.08

Total 277,257 100 2.78

Table 3.1: Breakdown of amount of corpus annotated per task.
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tag in the Universal Dependencies Dataset and b) low-frequency words that we found only

occur with a unique tag in the Bangor Corpus. Similarly, for Spanish, we automatically

tagged all the words tagged with a unique tag throughout the Universal Dependencies

Dataset (e.g. conjunctions like ‘aunque’, ‘e’, ‘o’, ‘y’, etc.; adpositions like ‘a’, ‘con’, ‘de’,

etc.; and some adverbs, pronouns and numerals) and low frequency words that only occurred

with one tag throughout the Bangor corpus (e.g. ‘aquella’, ‘tanta’, ‘bastantes’, etc.).

Given the abundance of exclamations and interjections in conversational speech, we

collected a list of frequent interjections in the corpus and tagged them automatically as

INTJ. For example: ‘ah’, ‘aha’, ‘argh’, ‘duh’, ‘oh’, ‘shh’. Finally, tokens labeled as Named

Entities or Proper Nouns in the original Miami Bangor Corpus were automatically tagged

as PROPN.

3.4.2 Manually Tagged Tokens

We identified a set of English and Spanish words that we found to be particularly challenging

for naive workers to tag and which occurred in the dataset in such low frequency that we

were able to have them tagged in the lab by computational linguists. Note that a question

specific to each one of these tokens could have been designed for crowdsourced annotations

the way it was done for the words in section 3.4.3.1. The majority of these are tokens that

needed to be disambiguated between adposition and adverb in English (e.g.‘above’, ‘across’,

‘below’, ‘between’) and between determinant and pronoun in Spanish (e.g. ‘algunos/as’,

‘cuántos/as’, ‘muchos/as’).

3.4.3 Crowdsourcing Universal Tags

We used crowdsourcing to obtain new gold labels for every word not manually or automat-

ically labeled. We started with the two basic approaches discussed in [Mainzer, 2011] for

disambiguating part-of-speech tags using crowdsourcing which we modified for a multilin-

gual corpus. In the first task (subsection 3.4.3.1), a question and a set of answers were

designed to disambiguate the part-of-speech tag of a specific token. In the second task

(subsection 3.4.3.2), we defined two Question Trees (one for English and one for Spanish)

that sequentially ask non-technical questions of the workers until the part-of-speech tag is
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disambiguated. These questions were designed so that the worker needs minimal knowledge

of linguistics. All the knowledge needed, including definitions, is given as instructions or

as examples in every set of questions and answers. Most of the answers contain examples

illustrating the potential uses for the token.

Two judgments were collected from the pertinent crowdsourced task and a third one

was computed from applying a mapping from the Bangor tagset to the Universal tagset.

The new gold standard was computed as the majority tag between the three part-of-speech

tags.

3.4.3.1 Token-specific questions (TSQ)

In this task, we designed a question and multiple answers specifically for particular word

tokens. The worker was then asked to choose the answer that is the most true in his/her

opinion. Below is the question we asked workers for the token ‘can’ (note that users cannot

see the part-of-speech tags when they select one of the answers):

In the context of the sentence, is ‘can’ a verb that takes the meaning of ‘being able to’ or

‘know’?

• Yes. For example: ‘I can speak Spanish.’ (AUX)

• No, it refers to a cylindrical container. For example: ‘Pass me a can of beer.’ (NOUN)

We began with the initial list of English words and the questions developed in [Mainzer,

2011] for English. However, we added additional token-specific questions for words that a)

we thought would be especially challenging to label (e.g. ‘as’, ‘off’, ‘on’) and b) appear

frequently throughout the corpus (e.g. ‘anything’, ‘something’, ‘nothing’).

We designed specific questions for a subset of Spanish words. Just as for English, we

chose a subset of most frequent words that we thought would be especially challenging for

annotation by workers like tokens that can be either adverbs or adpositions (e.g.‘como’,

‘cuando’, ‘donde’) or determiners and pronouns (e.g. ‘ese/a’, ‘este/a’, ‘la/lo’). We modified

many of the questions proposed in [Mainzer, 2011], to adapt them to a code-switching
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setting and to the universal part-of-speech tagset. For example, the token ‘no’ can be an

Adverb and Interjection in Spanish, and also a Determiner in English. Also, some of our

questions required workers to choose the most accurate translations for a token in a given

context:

In the context of the sentence, would ‘la’ be translated in English as ‘her’ or ‘the’?

• The (‘La niña está corriendo’ becomes ‘The girl is running’) (DET)

• Her (‘La dije que parase’ becomes ‘I told her to stop’) (PRON)

3.4.3.2 Annotations Following a Question Tree

In this task the worker is presented with a sequence of questions that follows a tree structure.

Each answer selected by the user leads to the next question until a leaf node is reached, when

the token is assigned a part-of-speech tag. We followed the basic tree structure proposed in

[Mainzer, 2011], but needed to modify the trees considerably due again to the multilingual

context. For example, the new Question Tree starts by first asking whether the token is

an interjection or a proper noun. This is very important since any verb, adjective, adverb

or noun can effectively be part of or itself be an interjection or proper noun. If the worker

responds negatively, then they are asked to follow the rest of the tree. The resulting tree

is slightly simpler than the one in [Mainzer, 2011]. This is mainly because we moved the

Particle-Adverb-Adposition disambiguation from this task into the Token-Specific Questions

task. On the other hand, we added question nodes designed to disambiguate between main

verbs and auxiliary verbs. The following is an example of the annotation task following the

English Question Tree:

Read the sentence carefully: “Sabes porque I plan to move in August but I need to find a

really good job.” In the context of the sentence, is the word ‘good’:

• A Proper Noun or part of a Proper Noun.
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• A single word used as an exclamation that expresses acknowledgement or an emotional

reaction.

• None of the above. X

In the context, ‘good’ is a:

• Noun, because it names a thing, an animal, a place, events or ideas.

• Adjective, because it says something about the quality, quantity or the kind of noun

or pronoun it refers to. X

• Verb, because it is used to demonstrate an action or state of being.

• Adverb, because it tells the how, where, when, when or the degree at which something

is done.

Could ‘good’ be a noun or a verb?

• It could be a Noun. For example, fun can be a noun as in ... or an adjective as in...

• It could be a Verb. For example, surprised can be a verb as in ... or an adjective as

in ...

• No, it’s definitely an Adjective. X

For the Spanish portion of the corpus, we modified the English subtasks still further,

adapting them according to the syntactic properties of Spanish. One of the key differences

from the English tree concerns verbs in their infinitival form. Users that choose to tag a

token as verb are then asked to confirm that the infinitival form is not a noun, and if it is

not, to decide whether a verb is acting as main verb or as an auxiliary verb (as a compound

verb or periphrasis). Figure 3.2 shows an example of an annotation task using the Spanish

Question Tree. More instances of part-of-speech tag disambiguation questions that we

created for the Spanish Question Tree include Auxiliary Verb-Main Verb disambiguation,

periphrasis detection, and Verb-Noun disambiguation.



CHAPTER 3. CROWDSOURCING PART-OF-SPEECH TAGS FOR
CODE-SWITCHED DATA 35

Figure 3.1: Example of part-of-speech annotation task using the English Question Tree

task.

Figure 3.2: Example of part-of-speech annotation task using the Spanish Question Tree

task.
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3.4.3.3 Mapping Stage

We used the pre-annotated tag from the Bangor corpus as the third tag to aggregate using

majority voting. To obtain it, we first cleaned the corpus of ambiguous tags, and then

defined a mapping from the Bangor tagset to the Universal tagset. This mapping process

was first published in [AlGhamdi et al., 2016].

3.5 Results

We ordered two judgments per token for each of our tasks. Before they were allowed to

begin the tasks, workers were pre-screened using a quiz of ten check questions (also referred

to as test questions). These check questions are very simple questions that no worker should

miss and ensure that the workers have the required knowledge to complete the task. If two

or more check questions were missed during the initial quiz, the worker was denied access

to the task.

Furthermore, workers were required to be certified for the Spanish language requirement

in Crowdflower. Only workers from Argentina, Canada, Mexico, U.K., U.S.A. and Spain

were allowed access to the task. The tasks for the workers were designed to present 9

questions per page plus one test question used to assess workers’ performance. When a

worker reached an accuracy lower than 85% on these test questions, all their submitted

judgments were discarded and the task made subsequently unavailable. Every set of 9+1

judgments was paid 5 cents (USD) for the Token-Specific Questions task and 6 cents for

the Question Tree tasks.

Table 3.2 shows the number of test questions for each task and of evaluation metrics to

estimate the accuracy of the annotations obtained from the crowdsourcing workers. Taking

into account all the judgments submitted for test questions, the majority voting tag had an

accuracy of 0.97-0.98 depending on the task. These estimations are not expected to match

the true accuracy we would get from the two judgments we obtained for the rest of non-test

tokens, so we re-estimate the accuracy of the majority vote tag for every subset of one, two,

three and four judgments collected, adding the initial Bangor tag. In this case we obtain an

average accuracy ranging from 0.89-0.92 with just one token to 0.95-0.96 when using four
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Task TSQ Eng QT Spa QT

# Tokens 57.2K 42.5K 16.6K

# Test Questions 271 381 261

Avg. # Judgments per TQ 55.72 28.60 16.28

Accuracy 0.98 0.98 0.97

Avg. Acc of SJ per TQ 0.88 0.89 0.87

Avg. Agrmnt of SJ wrt MV 0.89 0.90 0.87

Accuracy(1+1) 0.89 0.92 0.91

Accuracy(2+1) 0.94 0.92 0.92

Accuracy(3+1) 0.94 0.96 0.96

Accuracy(4+1) 0.96 0.95 0.96

Table 3.2: Accuracy and Agreement measurements per annotation task.

tags.

The best accuracy estimates for our part-of-speech tags are for the option of two crowd-

sourced tags and the Bangor tag, for which we obtained accuracies of 0.92 to 0.94. When

looking at non-aggregated tags, the average accuracy per token of single judgments (SJ)

were observed to be between 0.87 and 0.88. Measuring the agreement between single judg-

ments and the majority vote (MV) per token, the average agreement value is between 0.87

and 0.89.

We examined the vote split for every non-test token to obtain a measure of confidence

for the tags. We see that we consistently obtained full-confidence crowdsourced tags on at

least 60% of the tokens for each of the tasks, reaching 70% for the Spanish Question Tree

task. The option for which one of the crowdsourced tags was different from the other two

(marked as 2-1 Bangor) on the table occurred between 18% and 23% of the time depending

on the task, whereas the split where the Bangor tag was different from the crowdsourced tags

(marked as 2-1 CF) occurred only between 10.63 and 12.15% of the time. Finally the vote

was split in three different categories only between 1.29% and 4.51% of the time. In those

instances, the tie was broken by in-lab annotators. To further evaluate the performance of

the annotation process by different tag categories, we examined the recall on the gold test

questions. The recall across all tags and tasks is higher than 0.93 except for Interjections

and Adjectives for the Spanish Question Tree and Adverbs for the English Question Tree.
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Task TSQ English QT Spanish QT

3-0 60.12 67.20 70.09

2-1 (Bangor) 23.20 19.74 17.98

2-1 (CF) 12.16 10.97 10.63

1-1-1 4.51 2.09 1.29

Table 3.3: Voting split per annotation task on the Miami Bangor corpus.

Looking at the failed test questions for Adverbs, it becomes apparent that workers had

difficulty with adverbs of place that can also function as nouns, like: ‘home’, ‘west’, ‘south’,

etc. For example ‘home’ in ‘right when I got home’ was tagged 24 times as a Noun, and

only 5 as an Adverb.

3.6 Conclusions

We have presented a new scheme for crowdsourcing Universal part-of-speech tagging of

Spanish-English code-switched data derived from a monolingual process which also used a

different tagset. Our scheme consists of four different tasks (one automatic, one manual, and

two crowdsourced). Each word in the corpus was sent to only one task based upon curated

wordlists. For the crowdsourced tokens, we have demonstrated that, taking the majority

vote of one unsupervised tag and two crowdsourced judgments, we obtained highly accurate

predictions. We have also shown high agreement on the predictions: between 95 and 99%

of the tokens received two or more votes for the same tag. Looking at the performance of

each part-of-speech tag, our predictions averaged between 0.88 and 0.93 recall depending

on the task.
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Task TSQ Eng QT Spa QT

ADV 0.98 0.2 1.0

ADJ 1.0 0.97 0.86

ADP 1.0 X X

AUX 1.0 0.98 1.0

CONJ 1.0 X X

DET 1.0 X X

INTJ 1.0 1.0 0.78

NOUN 1.0 1.0 0.96

NUM 1.0 X X

PART 1.0 X X

PRON 0.93 X X

PROPN X 1.0 X

SCONJ 0.96 X X

VERB 1.0 0.99 1.0

Average 0.99 0.88 0.93

Table 3.4: Recall per part-of-speech tag and annotation task.
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Chapter 4

Joint Part-of-Speech and Language

ID Tagging for Code-Switched

Data

4.1 Introduction

Part-of-speech tagging is a key component of any Natural Language Understanding system

and one of the first that researchers employ to process data. As such, it is crucial that

part-of-speech taggers be able to process CS content. Monolingual part-of-speech taggers

stumble when processing CS sentences due to out-of-vocabulary words in one language,

confusable words that exist in both language lexicons, and differences in the syntax of the

two languages.

For example, when running monolingual English and Spanish taggers on the CS English-

Spanish shown in Figure 4.1, the English tagger erroneously tagged most Spanish tokens,

and similarly the Spanish tagger mistagged most English tokens. A tagger trained on

monolingual English and Spanish sentences (EN+ES tagger) fared better, making only

two mistakes: on the word “when”, where the switch occurs (confusing the subordinating

conjunction for an adverb), and the word “in” (which exists in both vocabularies). A tagger

trained on CS instances of English-Spanish, however, was able to tag the whole sentence
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Words: Ella     lo        había leído when       she        was       in     third    grade
Translation: She      it         had      read        - - - - - -
Gold: PRON  PRON   AUX      VERB     SCONJ  PRON      VERB     ADP     ADJ     NOUN
EN Tagger: NOUN ADV NOUN VERB     ADV PRON      VERB     ADP     ADJ     NOUN
ES  Tagger: PRON  PRON   AUX      VERB     PROPN PROPN PROPN ADP       X PROPN
EN+ES Tagger: PRON  PRON   AUX      VERB     ADV PRON      VERB     ADV ADJ     NOUN
CS Tagger: PRON  PRON   AUX      VERB     SCONJ  PRON      VERB     ADP     ADJ     NOUN

Figure 4.1: Example of an English-Spanish code-switched sentence. The figure shows the

original code-switched sentence, English translations of each token, gold part-of-speech tags

and the tagging output of an English tagger, of a Spanish tagger, of a tagger trained

on English and Spanish sentences, and of a tagger trained on a corpus of code-switched

sentences, in that order. Errors made by each tagger are underlined.

correctly.

In this Chapter, we propose an approach to part-of-speech tagging of code-switched

English-Spanish data based on recurrent neural networks. We test our model on known

monolingual benchmarks to demonstrate that our neural part-of-speech tagging model is

on par with state-of-the-art methods. We next test our code-switched methods on the Miami

Bangor corpus of English-Spanish conversation, focusing on two types of experiments: part-

of-speech tagging alone, for which we achieve 96.34% accuracy, and joint part-of-speech and

language ID tagging, which achieves similar part-of-speech tagging accuracy (96.39%) and

very high language ID accuracy (98.78%). Finally, we show that our proposed models

outperform other state-of-the-art code-switched taggers.

The rest of this Chapter is organized as follows. In Section 4.2 we present an overview

of previous work on part-of-speech tagging and language tagging on code-switched data.

Section 4.3 gives a short introduction to recurrent neural networks and long short-term

memory networks, and Section 4.4 contains the details of the the classification models used

in this Chapter. In Section 4.5 we give an overview of the corpora used for our experiments.

Section 4.6 details the methodology followed to design our experiments and Section 4.7

contains the experiments and results. In Section 4.8 we present an error analysis of our

taggers and finally, Section 4.9 concludes the Chapter.
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4.2 Related Work

A variety of tasks have been studied in CS data. For language identification (LID), Rosner

and Farrugia [2007] proposed a word-level Hidden Markov Model and a character-level

Markov Model to revert to when a word is out-of-vocabulary, and tested these on a corpus

of Maltese-English sentences, achieving 95% accuracy. Working on a Bengali-Hindi-English

dataset of Facebook posts, Barman et al. [2014] employed classifiers using n-gram and

contextual features to obtain 95% accuracy.

In the first statistical approach to POS-tagging on CS data, Solorio and Liu [2008b] col-

lected the Spanglish corpus, a small set of 922 English-Spanish sentences. They proposed

several heuristics to combine monolingual taggers with limited success, achieving 86% ac-

curacy when choosing the output of a monolingual tagger based on the dictionary language

ID of each token. However, an SVM trained on the output of the monolingual taggers per-

formed better than their oracle, reaching 93.48% accuracy. On the same dataset, Rodrigues

and Kübler [2013] compared the performance of a POS-tagger trained on CS sentences with

a dynamic model that switched between taggers based on gold language identifiers; they

found the latter to work better (89.96% and 90.45% respectively). Note, however, that the

monolingual taggers from [Solorio and Liu, 2008b] were trained on other larger corpora,

while all the models used in [Rodrigues and Kübler, 2013] were trained on the Spanglish

corpus.

Jamatia et al. [2015] used CS English-Hindi Facebook and Twitter posts to train and

test part-of-speech taggers. They found a Conditional Random Field model to perform best

(71.6% accuracy), and a combination of monolingual taggers similar to the one in [Solorio

and Liu, 2008b] achieved 72.0% accuracy. Again using Hindi-English Facebook posts, Vyas

et al. [2014] ran Hindi and English monolingual taggers on monolingual chunks of each

sentence. Sequiera et al. [2015] tested algorithms from [Solorio and Liu, 2008b] and [Vyas

et al., 2014] on the Facebook dataset from [Vyas et al., 2014] and the Facebook+Twitter

dataset from [Jamatia et al., 2015], and found that [Solorio and Liu, 2008b] yielded better

results. Similarly, the authors in [Barman et al., 2016] compared the methods proposed in

[Solorio and Liu, 2008b] and [Vyas et al., 2014] on a subset of 1,239 code-mixed Facebook

posts from [Barman et al., 2014] and found that a modified version of [Solorio and Liu,
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2008b] performed best. They also experimented with performing joint part-of-speech and

LID tagging using 2-level factorial Conditional Random Field and achieved statistically

similar results.

In [AlGhamdi et al., 2016], the authors tested seven different part-of-speech tagging

strategies for CS data: four consisted of combinations of monolingual systems and the

other three were integrated systems. They tested them on MSA-Egyptian Arabic and

English-Spanish. The first three combined strategies consisted of running monolingual part-

of-speech taggers and language ID taggers in different order and combining the outputs in

a single multilingual prediction. The fourth approach involved training an SVM on the

output of the monolingual taggers. The three integrated approaches trained a supervised

model on a) the Miami Bangor corpus (which contains switched and monolingual utter-

ances); b) the union of two monolingual corpora (Ancora-ES and Penn Treebank); c) the

union of the three corpora. The monolingual approaches consistently underperformed com-

pared to the other strategies. The SVM approach consistently outperformed the integrated

approaches. However, this method was trained on both monolingual and multilingual re-

sources – the Penn Treebank Data for the English model, and the Ancora-ES dataset for the

Spanish model. In Section 4.7.4, we run experiments in similar conditions to the integrated

approaches from [AlGhamdi et al., 2016], to which we will compare our work.

The main contributions of this Chapter over the previous research on part-of-speech

tagging for CS data, are the following: a) Our tagger is a bi-directional LSTM that

achieves part-of-speech tagging accuracy comparable to state-of-the-art taggers on bench-

mark datasets like the Wall Street Journal corpus and the Universal Dependencies cor-

pora. It is the first such model used to train code-switched part-of-speech taggers; b) Our

model can simultaneously perform part-of-speech and LID tagging without loss of part-of-

speech tagging accuracy; c) We run experiments on the Miami Bangor corpus of Spanish

and English conversational speech. However, unlike AlGhamdi et al. [2016] which used

part-of-speech tags which were obtained from an automatic tagger and then mapped to

a deprecated version of the Universal part-of-speech tagset, our experiments are run on

newly crowd-sourced Universal part-of-speech tags [Soto and Hirschberg, 2017], which were

obtained with high accuracy and inter-annotator agreement.



CHAPTER 4. JOINT PART-OF-SPEECH AND LANGUAGE ID TAGGING FOR
CODE-SWITCHED DATA 45

4.3 Recurrent Neural Networks and LSTMs

A recurrent neural network (RNN) is a feed-forward NN with cyclical connections. Whereas

a feed-forward NN can only map from input to output vectors, an RNN is able to map

sequences of input vectors to sequences of output vectors. The recurrent connections in

an RNN allow a memory of previous inputs to persist in the network’s internal state s,

therefore influencing the network’s subsequent output. A simple RNN with one hidden

layer would be modeled as:

st = f(Uxt +Wst−1) (4.1)

ot = g(V st) (4.2)

where xt and ot are the input and output of the network at time t, st is the network’s

internal state at time t, U , W and V are the RNN weight parameters and f() and g() are

differentiable functions like tanh, ReLU or softmax.

Standard unidirectional RNNs process sequences in temporal order, using only past

context. A bi-directional RNN (Bi-RNN) goes through every training sequence forward

and backward using two separate recurrent hidden layers, both of which are connected to

the same output layer (the two hidden layers are self-connected but not interconnected).

The output layer, therefore, has access to all the context for every example in the sequence.

Bi-RNNs generally outperform RNNs [Graves, 2012] and have been used with success in

many tasks such as machine translation [Sundermeyer et al., 2014], handwriting recognition

[Liwicki et al., 2007] and protein structure prediction [Baldi et al., 1999].

One of the major weaknesses of RNNs is their ineffectiveness in modeling long-term

dependencies [Bengio et al., 1994]. Long Short-Term Memory networks (LSTMs) are one

type of RNN specifically designed to address this problem [Hochreiter and Schmidhuber,

1997]. The key to LSTM’s effectiveness, and its main difference with respect to the rest of

mainstream RNNs, lies in the function used to compute its cell state. LSTMs make use of

three “gates” to control the cell state: input gate layer, output gate layer and forget gate

layer. Broadly speaking, at every time t, the forget gate layer decides what information to

discard from the previous cell state, the input gate layer decides what information to add

to the cell state, and the output gate layer decides what information to output from the
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cell state. LSTMs have been applied with great success to a variety of sequence learning

problems like language modeling [Sundermeyer et al., 2012], POS tagging [Huang et al.,

2015], acoustic modeling [Sak et al., 2014], machine translation [Sutskever et al., 2014], and

image captioning [Vinyals et al., 2015].

4.4 A Model for Neural Part-of-Speech Tagging

For our experiments we used a bi-directional LSTM network similar to the one proposed

in [Wang et al., 2015] with the following set of features: 1) word embeddings; 2) prefix

and suffix embeddings of one, two and three characters; and 3) four boolean features that

encode whether the word is all upper case, all lower case, formatted as a title, or contains

any digits. In total, the input space consists of seven embeddings and four boolean features.

For the embeddings, we computed word, prefix and suffix lexicons, excluding tokens that

appear less than five times in the training set, and then assigned a unique integer to each

token. We also reserved two integers for the padding and out-of-lexicon symbols.

We present two architectures for part-of-speech tagging and one for joint part-of-speech

and LID tagging. In the most basic architecture the word, prefix and suffix embeddings

and the linear activation units are concatenated into a single layer. The second layer of the

network is a bidirectional LSTM. Finally, the output layer is a softmax activation layer,

whose i-th output unit at time t represents the probability of the word wt being the part-

of-speech POSi. We refer to this model as Bi-LSTM part-of-speech Tagger for the rest

of this chapter and in our tables. For the second model, given the multilingual nature of

our experiments, we modified the input space of our Bi-LSTM tagger to make use of the

language ID information in our corpus. We added five more boolean features to represent

the language ID and add six linear activation units in the first hidden layer, which are

then concatenated with the rest of linear activation units and word embeddings in the basic

model. This model is referred to as Bi-LSTM part-of-speech tagger + LID features.

Finally, our third model simultaneously tags words with part-of-speech and language

labels. The architecture of this model can be seen in Figure 4.2 and follows the Bi-LSTM

part-of-speech architecture very closely adding a second output layer with softmax acti-
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wtpref(wt) suff(wt) f1:4(wt)

i-th output: P (POS(wt)  = posi | context )

Bidirectional LSTM Layer

Softmax Layers

k-th output: P (LID(wt)  = lidk | context )

……

…

………

Figure 4.2: The joint POS+LID tagging model. This figure shows only one prefix and one

suffix embedding for clarity of presentation.

vations for LID prediction. Note that the part-of-speech and LID output layers are in-

dependent and are connected by their weight matrices to the hidden layer, and both loss

functions are given the same weight. This model is referred to as joint POS+LID tagger.

We implemented our code using the library for deep learning Keras [Chollet, 2015], on a

Tensorflow backend [Abadi et al., 2015].

4.5 Datasets

Throughout our experiments we used three corpora for different purposes. The Wall Street

Journal (WSJ) corpus was used to demonstrate that our proposed Bi-LSTM part-of-speech

tagger is on par with current state-of-the-art English part-of-speech taggers. The Universal

Dependencies (UD) corpus was used to train baseline monolingual part-of-speech taggers

in English and Spanish that we can use to test on our CS data since both employ the

Universal part-of-speech tagset [Petrov et al., 2012]. The Miami Bangor corpus, which

contains instances of inter- and intra-sentential CS utterances in English and Spanish, was
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Corpus Split # Sents # Toks

WSJ

Train 38.2K 912.3K

Dev. 5.5K 131.7K

Test 5.5K 129.7K

UD-EN

Train 12.5K 204.6K

Dev. 2K 25.1K

Test 2K 25.1K

UD-ES

Train 14.2K 403.9K

Dev. 1.6K 43.5K

Test 274 8.4K

Full 42.9K 333.1K

Miami Train 38.7K 300.3K

Bangor
Test 4.2K 32.8K

Train Inter-CS 36.0K 267.3K

Test Intra-CS 285 3.6K

Table 4.1: Corpora and splits used for POS tagging experiments.

used for training and testing CS models and comparing these to monolingual models. Table

4.1 shows the number of sentences/utterances and tokens in each dataset split. For the MB

corpus, Inter-CS refers to the subset of monolingual sentences and Intra-CS refers to the

subset of CS sentences.

4.5.1 Wall Street Journal Corpus

The WSJ corpus [Marcus et al., 1999] is a monolingual English news corpus comprised of

49208 sentences and over 1.1 million tokens. It is tagged with the Treebank tagset [Santorini,

1990; Marcus et al., 1993], which has a total of 45 tags. We used the standard training,

development and test splits from [Collins, 2002] which span sections 0-18 19-21 and 22-24

respectively.
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4.5.2 Universal Dependency Corpora

Universal Dependencies (UD) is a project to develop cross-linguistically consistent treebank

annotations for many languages. The English UD corpus [Silveira et al., 2014] is built

from the English Web Treebank [Bies et al., 2012]. The corpus contains data from web

media sources, including web logs, newsgroups, emails, reviews and Yahoo! answers. The

trees were automatically converted into Stanford Dependencies and then hand-corrected

to Universal Dependencies. The corpus contains 16,622 sentences and over 254K tokens.

The Spanish UD corpus [McDonald et al., 2013] is built from the content head version of

the Universal Dependency Treebank v2.0, to which several token-level morphology features

were added. It is comprised of news blog data and has a total of 16,013 sentences and over

455k tokens.

4.6 Methodology

For the experiments involving the Bangor corpus, we performed 4-fold cross-validation (CV)

on the training corpus to run grid search and obtain the best learning rate and decay

learning rate parameter values. For the experiments on WSJ and UD, we used the official

development set. The performance of the best parameter values is reported as “Dev”

accuracy. We then trained a model using the best parameter values on the full train set and

obtained predictions for the test set (reported as “Test”). When pertinent we also report

results on the subset of intra-sentential CS utterances of the test set (reported as “Intra-CS

Test”).

During cross-validation, each model was trained for a maximum number of 75 epochs

using batches of 128 examples. We used early stopping to halt training when the devel-

opment part-of-speech accuracy had not improved for the last three epochs, and kept only

the best performing model. However, when training the final model, we stopped training

after the number of epochs that the best model trained for during cross-validation. The

loss function used is categorical cross-entropy and we used ADAM [Kingma and Ba, 2015]

with its default β1, β2 and ε parameter values as the stochastic optimization method.

The word embeddings [Bengio et al., 2003] we used were trained with the rest of the
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network during training following the Keras implementation [Gal and Ghahramani, 2016].

The size of the embedding layers is 128 for the word embeddings and 4, 8 and 16 for the

prefix and suffix embeddings of length 1, 2 and 3 respectively. The Bi-LSTM hidden layer

has 200 units for each direction.

Finally, we ran McNemar’s test [McNemar, 1947] to show significant statistical differ-

ence between pairs of classifiers when the accuracy of the classifiers is similar, and report

statistical significance for p-values smaller than 0.05.

4.7 Experiments & Results

In this section, we present our experiments using the three Bi-LSTM models introduced in

Section 4.4 and the datasets from Section 4.5. Our goal is a) to show that the basic Bi-LSTM

part-of-speech tagger performs very well against known part-of-speech tagging benchmarks;

b) to obtain baseline performances for monolingual taggers when tested on CS data; and

c) to train and test the proposed models on CS data and analyze their performance when

trained on different proportions of monolingual and CS data.

4.7.1 WSJ results

We begin by evaluating the performance of the Bi-LSTM part-of-speech tagger on the

benchmark WSJ corpus to show that it is on par with current state-of-the-art English part-

of-speech taggers. We trained taggers on three incremental feature sets to measure how

much each feature adds. Using only word embeddings we achieved 95.14% accuracy on

the test set; adding word features increased accuracy to 95.84%; and adding the prefix and

suffix embeddings further increased accuracy by up to 97.10%. This demonstrates that

our tagger is on par with current state-of-the-art systems which report 97.78% [Ling et al.,

2015], 97.45% [Andor et al., 2016], 97.35% [Huang et al., 2012], 97.34% [Moore, 2014] and

97.33% [Shen et al., 2007] accuracy on their standard test set. Systems most similar to our

Bi-LSTM tagger with basic features reported 97.20% in [Collobert et al., 2011] and 97.26%

[Wang et al., 2015].
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UD MB

Training Dev Test Test CS Test

UD EN 94.53 94.78 69.97 56.20

UD ES 96.20 95.02 45.13 55.32

UD EN&ES 94.88 94.25 88.17 87.18

Table 4.2: Bi-LSTM part-of-speech tagging accuracy when trained on the Universal Depen-

dency corpora. The left subtable shows the accuracy on the UD dev and test sets. The

right subtable shows the accuracy on the MB test set and on the subset of CS utterances.

4.7.2 Universal Tagset Baseline

In the second set of experiments we trained baseline monolingual Spanish and English

taggers on the UD corpora: one monolingual Spanish and one monolingual English tagger,

and one tagger trained on both corpora. The goal of these experiments was to obtain

taggers trained on the Universal tagset that we could use to obtain a baseline performance

of monolingual taggers on the CS Bangor corpus. The results are shown in Table 4.2. The

accuracy of the baseline UD taggers is slightly worse than the WSJ taggers, probably due

to the smaller size of the UD datasets. The accuracy of the taggers on their own test

sets is 94.78% and 95.02% for English and Spanish respectively. In comparison, Stanford’s

neural dependency parser [Dozat et al., 2017] reports accuracy values of 95.11% and 96.59%

respectively.

In order to approximate how a monolingual tagger trained on established datasets per-

forms on a conversational CS dataset, we tested the baseline UD taggers on the MB test set

and observed a dramatic drop in accuracy, due perhaps to the difference in genre (web blog

data vs. transcribed conversation) and the bilingual nature of the Miami corpus. Note that,

when training on both EN and ES UD, the Bi-LSTM taggers reached 88.17% accuracy,

from only 69.97 and 45.13% by the monolingual taggers. When looking at the multilingual

subset of sentences from the test set (CS Test in Table 4.2), we observe that the English

model decreases in accuracy further, whereas the Spanish tagger has better performance.

This is due to the CS sentences having more Spanish than English.
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Training Task Dev Test CS Test

MB

Tagger 96.27 96.34 96.10

Tagger+LID 96.35 96.49 96.44

Joint Tagger 96.30 96.39 95.97

MB + UD

Tagger 96.34 96.47 95.99

Tagger+LID 96.40 96.63 96.44

Joint Tagger 96.39 96.61 96.35

MB Inter-CS

Tagger 96.24 96.03 95.27

Tagger+LID 96.26 96.16 95.55

Joint Tagger 96.25 96.11 95.22

Table 4.3: POS tagging accuracy (%) on the MB corpus. Underlined font indicates best

result in test set by each training setting across different tagging models. Bold results

indicate best overall result in that test set.

4.7.3 Miami Bangor Results

In the third set of experiments we trained the three proposed models (Bi-LSTM tagger,

Bi-LSTM tagger with LID features and joint part-of-speech and LID tagger) on: a) the full

MB corpus, b) the joint MB and UD ES&EN corpora, and c) instances of inter-sentential

CS utterances from the MB corpus. part-of-speech and LID accuracy results are shown in

Table 4.3 and Table 4.4 respectively.

When training on the full MB corpus (top subtable from table 4.3), the part-of-speech

tagger achieved 96.34% accuracy, a significant improvement from the 88.17% of the UD

EN&ES. The improvement holds up on the subset of CS utterances, achieving 96.10% accu-

racy. Adding the LID features improved performance by 0.15 and 0.34 absolute percentage

points. In both cases these differences are statistically significant (p = 0.03). Furthermore,

when running joint part-of-speech and LID tagging, we see that tagging accuracy decreased

slightly with respect to the part-of-speech tagger with LID features. This result reaffirms

the contribution of the LID features. The difference in performance between the joint tagger

and the basic tagger is slightly higher but not statistically significant (p ∼ 0.5), showing

that joint decoding does not harm overall performance. The best part-of-speech tagging
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accuracy was always achieved by the Bi-LSTM tagger with LID features on both Test and

CS Test; however, the joint Tagger was very close at no more than 0.1 percentage points

on Test. When adding the UD corpora during training (middle subtable from Table 4.3)

we see some improvements for the three models (0.13, 0.14 and 0.22 absolute percentage

points respectively), and once again the difference in performance between the basic tagger

and the tagger with LID features is statistically significant (p < 0.05).

We performed statistical tests to measure how different the models trained on MB were

from the models trained on MB+UD and found that the addition of more monolingual data

only made a difference for the joint tagger (p < 0.01) when looking at the performance on

the Test set. On the CS test set, these models achieved about the same performance in part-

of-speech tagging with a slight decrease for the basic tagger (-0.11 points, not significant)

and a slight increase in accuracy for the joint tagger (0.38 percentage points, again not

significant). Thus, it is clear that our model is able to learn from a few CS examples – even

when many more monolingual sentences, from a different genre, are added to the train set.

Finally, we trained models on the subset of monolingual English and Spanish sentences

from the MB training set to measure how a model trained on the same genre would be

able to generalize to unseen intra-sentential CS sentences (bottom subtable from Table 4.3,

marked as Inter-CS). This model would be closer to an in-genre inter-sentential CS tagger,

tested on intra-sentential CS. Compared to the models trained on UD EN&ES, this model

performed much better: 96.03% compared to 88.17% on the MB test set. This is mainly due

to the fact that the UD corpus is not conversational speech. When comparing this result to

the taggers trained on the full MB corpus, it can be seen that these new models achieved

the lowest test accuracy across all models, probably due to the lack of bilingual examples

in their training set. The difference in performance is more pronounced on the subset of

CS utterances. Again, we ran statistical tests to compare these three new taggers to the

taggers trained on the full MB corpus, and we found that their differences were statistically

significant in all three cases (p < 0.001).

With respect to the LID accuracy of the joint Tagger, the best model is the one trained

on the MB corpus, followed very closely by the model trained on MB and UD data. In

both cases, the test set accuracy is above 98.49%. The accuracy on the CS test subset
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Training Dev Test CS Test

MB 98.82 98.78 98.01

MB + UD EN&ES 98.60 98.49 97.93

MB Inter-CS Subset 98.53 97.99 90.25

Table 4.4: LID tagging accuracy by the Bi-LSTM joint POS+LID Tagger on the MB corpus.

Underlined results indicate best overall result in that test set.

is sightly lower at 98.01% and 97.93%. The monolingual Bangor tagger sees a decrease

in test accuracy (97.99%) and a bigger drop, down to 90.25%, on the CS subset. All the

differences in performance between every pair of the three LID taggers are statistically

significant (p < 10−5).

4.7.4 Comparison to Previous Work

We compare the performance of our models to the Integrated and Combined models pro-

posed in [AlGhamdi et al., 2016]. In that paper, part-of-speech tagging results are reported

on the MB corpus, but using a preliminary mapping to the first iteration of the Universal

tagset (12 tags, as opposed to the current 17); furthermore, the train and test splits were

different. Therefore, we decided to replicate their experiments using their code and our

data configuration, and compare them to our own classifiers.

With respect to their “Integrated” models, INT3:AllMonoData+CSD, which is their

Tree Taggers trained on all available monolingual and code-switched data, can be compared

to our Bi-LSMT POS Tagger trained on the full MB set and UD EN&ES. In this setting,

our model outperformed the TreeTagger by more than 4 absolute points (ours at 96.47%

compared to 92.33%). Similarly, their Tree Tagger trained exclusively on monolingual data

(referred to as INT2:AllMono in their paper) performed significantly worse than our Bi-

LSMT Tagger trained on the same data (ours at 88.17% compared to 84.47%). Finally,

when trained exclusively on code-switched data, their model (INT1:CSD) underperformed

compared to ours (92.71% versus 96.34%).

For their “Combined” models, COMB4:MonoLT-SVM trained two monolingual taggers

on the UD-EN and UD-ES corpora and then a SVM on top from the output of the taggers
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EN ES EN&ES Bangor

OOV 40.9 32.7 10.7 7.9

SAcc. 2.5 4.2 21.8 60.7

WAcc. 56.2 55.3 87.2 96.1

CSFAcc. 10.9 12.6 57.5 84.2

CSFWAcc. 12.6 16.1 63.3 86.7

AvgMinDistCSF 4.0 5.4 3.9 3.5

%ErrorsInCSF 26.9 24.3 32.5 36.9

Table 4.5: Out-of-vocabulary (OOV) rate, sentence (Sacc) and word accuracy (Wacc) at

the sentence level, fragment (CSFAcc) and word accuracy (CSFWacc) at the fragment level,

average minimum distance from tagging error to CSF (AvgMinDistCSF), and percentage

of errors that occur within a CSF (%ErrorsInCSF).

on the MB corpus. We do not perform system combination in this Chapter, but in terms

of data, this model would be most similar to our part-of-speech tagger trained on Miami

and EN&ES UD, in which we reached 96.47% compared to their 92.20%. Furthermore,

we note that our joint POS+LID tagger also has better part-of-speech accuracy than its

counterparts Integrated systems from [AlGhamdi et al., 2016] in addition to performing

LID tagging.

4.8 Error Analysis

In this section we aim to analyze the performance of the POS taggers on the CS sentences of

the Bangor test set and more specifically, on the CS fragments (CSF) of those test sentences.

We define a CSF as the minimum contiguous span of words where a CS occurs. Most often a

CSF will be two words long, spanning a Spanish token and an English one or vice versa, but

it is also possible for fragments to be longer than that, given that a Mixed or Ambiguous

token can occur within a fragment. The average CSF length in the Bangor test set is

2.16. We compared the performance of the UD-EN, UD-ES, UD-EN&ES and the Bangor-

trained taggers on the Bangor CS Test set to understand the difference in errors made by

monolingual and CS taggers. Table 4.5 shows the following measures: OOV rate, part-of-
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speech tagging accuracy at the sentence and word level, part-of-speech tagging accuracy in

CS fragments at the fragment and word level, the average distance from a part-of-speech

tagging error to the nearest CSF (AvgMinDistCSF) and the percentage of part-of-speech

tagging errors that occur within the boundaries of a CS utterance (%ErrorsInCSF). All

measures were computed on the CS subset of test sentences of the Bangor corpus using

the basic part-of-speech taggers trained on UD-EN, UD-ES, UD EN&ES and the Bangor

corpus. In the table, we see that the multilingual models have much lower OOV rates, which

translates into much higher sentence-level and word-level part-of-speech tagging accuracy.

The CS Bangor-trained model fares much better than the UD EN&ES model in terms

of word-level accuracy (96.1 versus 87.2%), especially when looking at the sentence-level

accuracy (60.7 versus 21.8%), because the Bangor model is able to deal with code-switches.

When looking at the tagging accuracy on the CS utterances the relative gains at the word

level are even larger. This demonstrates that training on CS sentences is an important

factor to achieving high-performing part-of-speech tagging accuracy.

It can also be seen from the table that, as the models achieve CS tagging accuracy,

tagging errors are still concentrated near or within CSFs – for the UD EN&ES and Bangor

models, AvgMinDistCSF and %ErrorsInCS decrease as the CSF-level accuracies increase.

This shows that, even as the models improve at tagging CS fragments, CS fragments still

remain the most challenging aspect of the task.

4.9 Conclusions

In this Chapter, we have presented a neural model for part-of-speech tagging and language

identification on CS data. The neural network is a state-of-the-art bidirectional LSTM

with prefix, suffix and word embeddings and four boolean features. We used the Miami

Bangor corpus to train and test models and showed that: a) monolingual taggers trained on

benchmark training sets perform poorly on the test set of the CS corpus; b) our CS models

achieve high part-of-speech accuracy when trained and tested on CS sentences; c) expanding

the feature set to include language ID as input features yielded the best performing models;

d) a joint POS and language ID tagger performs comparably to the part-of-speech tagger
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and its LID accuracy is higher than 98%, and e) a model trained on instances of in-genre

inter-sentential CS performs much better than the monolingual baselines, but yielded worse

test results than the model trained on instances of inter-sentential and intra-sentential code-

switching. Furthermore, we compared our results to the previous state-of-the-art part-of-

speech tagger for this corpus and showed that our classifiers outperform them in every

configuration.
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Chapter 5

Lexical, Syntactical and

Conversational Factors in

Code-Switching

5.1 Introduction

One of the often asked but unresolved questions regarding code-switching is whether there

are particular conditions that facilitate or “trigger” its occurrence. Some linguistics liter-

ature on code-switching has proposed that a) cognates, defined as words in two different

languages with the same etymology and similar spelling and meaning, are more likely to pre-

cede a code-switch; and that b) there are syntactic constraints to code-switching. However,

there has been little research validating these proposals empirically.

Obtaining definitive statistical proof as to what factors elicit or trigger code-switching

is not only important to further understand the dynamics behind language switching, but

will also help us better model code-switching in language and speech technologies. Expert

knowledge of linguistic factors to code-switching could have enormous impact in language

modeling, word-level language identification, code-switching prediction, speech synthesis,

speech recognition and dialog systems.

As with many aspects to code-switching, there are two main challenges to finding defini-
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tive statistical proof of which factors influence code-switching. The first one is that code-

switching seems to be heavily dependent on the two languages at hand, specifically lexical

similarity and syntactical compatibility. The second one is the lack of a large enough corpus

with enough natural code-switching in it. There is a wealth of studies in linguistics that

have looked into factors that influence code-switching, but all of them have lacked, in our

opinion, a corpus large enough to draw strong statistical proof.

In this chapter, we test the following hypotheses proposed in linguistic code-switched lit-

erature: first, that cognate stimuli are directly correlated with code-switching; second, that

syntactic information facilitates or inhibits code-switching; and third that speakers entrain

to one another in code-switching in conversation between bilinguals. We use statistical sig-

nificance tests on the Miami Bangor corpus of code-switched English-Spanish conversation,

and find that a) there is strong statistical evidence that cognates and switches occur simul-

taneously in the same utterance and that cognates facilitate switching when they precede a

code-switch; b) there is strong statistical evidence of the relationship between part-of-speech

tags and code-switching; and c) speakers tend to show converging entrainment behavior with

respect to their rate of code-switching in conversation.

The remainder of the Chapter is organized as follows. Section 5.2 describes previous

work on the relationship between cognate words, part-of-speech tags, entrainment, and

code-switching. In Section 5.3, we describe the list of English-Spanish cognate words that

we collected from the Internet. Section 5.4 describes the analysis of cognate influence

on code-switching. Section 5.5 discusses the role of part-of-speech tags in code-switching.

Section 5.6 discusses entrainment in the Miami Bangor corpus. Finally, Section 5.7 presents

our conclusions and plans for future research.

5.2 Related Work

On the topic of eliciting code-switching, Michael Clyne proposed his triggering hypothesis

which has been reformulated during the years [Clyne, 1967, 1980, 2003]. This hypoth-

esis claims that code-switching can be facilitated by words that exist in both languages

with similar form and meaning if those words occur immediately preceding or immediately
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following a code-switch. Those words are said to include lexical transfers, bilingual homo-

phones and proper nouns. Clyne’s triggering hypothesis states that trigger words facilitate

code-switching but does not imply direct causality, since it has also been observed that syn-

tactic, prosodic and sociolinguistic factors also play a role. Broersma and Bot [Broersma

and De Bot, 2006] evaluated this triggering hypothesis on a corpus of Dutch-Moroccan Ara-

bic transcribed conversations and proposed alternative hypotheses based on modern speech

production models. Although they were able to confirm and reject some aspects of Clyne’s

hypothesis, the corpus used in their analysis is severely limited by its size: 3 speakers, 318

clauses, 1,723 words, of which 60 include instances of code-switching.

In this Chapter, we test the triggering hypothesis for code-switching on a much larger

corpus of English-Spanish speech following the methodology proposed in [Broersma and

De Bot, 2006]. Our findings confirm some aspects of the hypothesis with much higher

statistical power than Broersma and Bot’s findings [Broersma and De Bot, 2006].

On the topic of syntax and code-switching, there has been much research mainly focusing

on the study of how multiple monolingual grammars interact to produce mixed speech

[Woolford, 1983] and whether they work together in a symmetric relationship [Sankoff and

Poplack, 1981] or whether one (embedded) language is subsumed by the other (matrix)

language [Joshi, 1982; Myers-Scotton, 1997]. Part-of-speech tags have played a role in many

of these theories, typically being used to identify constraints that researchers have observed

in their data. In this Chapter, we test the significance of the statistical relationship between

code-switching and part-of-speech tags and inspect the role of different part-of-speech tags

in the triggering process. Another contribution of this Chapter is an analysis of speaker

entrainment on the code-switching rate we observe in the Miami Bangor corpus. While

Fricke and Kootstra [2016] have investigated lexical priming in entrainment, no research

has been done on longitudinal entrainment and code-switching.

5.3 Data

We use the Miami Bangor corpus (Section 3.3) for the statistical analysis carried out in this

Chapter. We use the following naming convention throughout the rest of the Chapter: code-
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switched word is the first word where a change of language occurs, the word preceding a

code-switch is the word that occurs immediately before a code-switched word. Similarly, the

word following a code-switch is the word that occurs immediately afterwards. For example,

in the sentence ’Mis papás were so happy to see you’, ‘were’ is the code-switched word

and ‘papás’ and ‘so’ are the words immediately preceding and following the code-switch

respectively.

A list of English-Spanish cognate pairs were collected from a variety of online sources1.

We pre-processed the list of cognates first automatically and then manually to remove

determiners, break cognate compound words into single words and remove duplicates. Not

counting masculine/feminine duplicates, a total of 3,432 cognate word pairs were collected,

of which 1,305 appear on the Miami Bangor corpus. This corpus can be obtained from

GitHub2.

5.4 Code-Switching and Cognate Words

In this section we analyze the statistical relationship between code-switching and cognate

words on the Miami Bangor corpus, testing the triggering hypothesis. All the tests are

performed on the surface-level form of the cognates words, and multiple word senses are

not accounted for.

First, we observe that there is a strong statistical relationship between code-switched

utterances and the presence of cognates in those utterances: Table 5.1 shows the contingency

table for all the utterances in the corpus split in utterances with and without cognates

and monolingual and code-switched utterances. The results of a χ2 test returns a highly

significant p-value that rejects the hypothesis that both distributions are independent. The

percentage of code-switched utterances in each group (last row of the table) confirms that

utterances that contain a cognate are more likely to be in code-switched utterances than in

monolingual utterances.

1http://nlp.cs.berkeley.edu/projects/historical.shtml; http://spanishcognates.org/;

http://www.colorincolorado.org/sites/default/files/Cognatelist.pdf; https://www.duolingo.

com/comment/5508808/The-Most-Useful-Spanish-Cognates

2https://github.com/vsoto/cognates_en_es

http://nlp.cs.berkeley.edu/projects/historical.shtml
http://spanishcognates.org/
http://www.colorincolorado.org/sites/default/files/Cognatelist.pdf
https://www.duolingo.com/comment/5508808/The-Most-Useful-Spanish-Cognates
https://www.duolingo.com/comment/5508808/The-Most-Useful-Spanish-Cognates
https://github.com/vsoto/cognates_en_es
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χ2 = 309.63 Cognate

p < 10−68 no yes

CS
no 20,029 18,767

yes 1,037 1,937

% yes 4.92 9.36

Table 5.1: Number of code-switched and monolingual utterances split by utterances that

contain a cognate or not.

χ2 = 0.14 Cognate

p = 0.71 No bordering Precedes

CS
no 206,005 28,901

yes 3,256 466

% yes 1.56 1.59

Table 5.2: Number of code-switched words and percentage of code-switched words split by

words preceding a cognate and words not bordering cognates.

Next, we replicated the experiments from [Broersma and De Bot, 2006] in Tables 5.2,

5.3, 5.4, 5.5 and 5.6. For all tables, we present contingency tables for the two groups

being compared (one always code-switched words and the other some aspect of immediately

adjacent cognates), plus the percentage of code-switched words for the second group, and

the results of a χ2 test on the contingency table, including the test’s statistic value (χ2) and

its p-value p. Table 5.2 shows that there is no significant statistical relationship between

words that precede a cognate and code-switching when compared to words that do not

border on cognates.

Table 5.3 shows that there is a strong statistical relationship between code-switched

words and words that follow cognates, when compared to words that do not border on

cognates. Furthermore, it can be seen that the percentage of CS words increases for the

group of words that immediately follow cognates.

A variation of the same test, Table 5.4, shows that there is a strong statistical relation-
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χ2 = 26.55 Cognate

p < 10−6 No bordering Follows

CS
no 206,005 26,812

yes 3,256 540

% yes 1.56 1.97

Table 5.3: Number of code-switched words and percentage of code-switched words split by

words following a cognate and words not bordering cognates.

χ2 = 26.63 Follows a Cognate

p < 10−6 no yes

CS
no 230,768 26,812

yes 3,653 540

% yes 1.56 1.97

Table 5.4: Number of code-switched words and percentage of code-switched words split by

words following and not following a cognate.

ship between code-switching and words that follow cognates when compared to words that

do not follow cognates. Ignoring the restriction that words are not followed by cognates,

the result of the test is the same, which suggests that cognates that follow code-switching

have no effect on them. This is further confirmed in Table 5.5, which shows that there is no

statistical relationship between code-switching and the disjoint sets of words that border

on cognates and words that only follow cognates.

From these experiments we can confidently conclude that cognates immediately preced-

ing a code-switch help facilitate the switch and cognates immediately following a code-switch

do not have a meaningful impact on it. Furthermore from Table 5.5 we conclude that code-

switching does not occur significantly more often when words are immediately preceded

and followed by cognates. Overall, it can be observed that the same results obtained for

Dutch-Moroccan Arabic in [Broersma and De Bot, 2006] translate to the English-Spanish

Miami Bangor corpus with much higher statistical power. We also examined the statistical
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χ2 = 2.67 Cognate

p = 0.1 Follows Bordering

CS
no 22,674 4,138

yes 471 69

% yes 2.03 1.64

Table 5.5: Number of code-switched words and percentage of code-switched words split by

words that border on two cognates and words that only follow a cognate word.

χ2 = 26.23 Cognate

p < 10−6 no yes

CS
no 222,703 34,877

yes 3,740 453

% yes 1.65 1.28

Table 5.6: Number of code-switched words and percentage of code-switched words split by

cognate and non cognate words.

relationship between code-switched words being cognate words (Table 5.6) and found that

there is a strong statistical relationship between both variables. However, surprisingly, we

found that code-switched words are overall less likely to be cognates than other words.

5.5 Code-Switching and Part-of-Speech Tags

The second set of experiments examines the relationship between code-switching and part-

of-speech tags. Here we examine the role that part-of-speech categories play when im-

mediately preceding and following a code-switch, and when they are themselves a code-

switch. We started by measuring the statistical relationship between the tagset and the

code-switched words. In order to do so, we creates three contingency tables for the counts

of all part-of-speech tags and whether they occur in one of the mentioned positions, and ran

a χ2 test on them. Results for the three tests are shown in Table 5.7. It can be observed

that, in the three cases, the null hypothesis that the part-of-speech tag distribution and the
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POS

Preceding Current Following

χ2 1,817.8 795.0 35.39

p-value 0.0 < 10−158 < 0.01

Table 5.7: Statistical significance results of performing the χ2 test of all part-of-speech tags

in three pairs of groups: words preceding a code-switch, code-switched words, and words

following a code-switching.

code-switching distribution are independent can be rejected. Specifically, part-of-speech

tags seem to have a statistically strong relationship to the words preceding a code-switch

and the code-switched words themselves.
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ADJ ADP ADV AUX CONJ DET INTJ NOUN NUM PART PRON PROPN SCONJ VERB

POS (%) 4.1 6.97 8.11 3.25 4.4 8.81 5.94 11.04 1.51 2.58 15.98 2.49 3.88 20.00

POS(t-1)|CS(t) (%) 3.84 5.08 7.66 0.33 5.29 13.90 9.23 18.89 0.79 0.60 4.46 4.41 6.01 17.72

POS(t)|CS(t) (%) 5.03 7.23 7.51 2.12 4.89 7.27 5.13 21.23 1.48 0.38 17.10 2.89 6.32 11.42

POS(t+1)|CS(t) (%) 4.17 6.78 6.98 3.28 2.59 10.09 2.27 14.71 1.67 2.21 15.66 2.93 3.59 22.21

CS(t)|POS(t-1) (%) 2.37 1.21 1.86 0.17 1.99 2.57 3.94 4.44 1.01 0.38 0.50 4.36 2.57 1.63

CS(t)|POS(t) (%) 1.97 1.66 1.48 1.05 1.78 1.32 1.38 3.08 1.57 0.24 1.71 1.85 2.61 0.91

CS(t)|POS(t+1) (%) 1.43 1.39 1.34 1.52 1.82 1.65 1.41 1.81 1.61 1.16 1.62 1.78 1.58 1.61

CS(t), POS(t-1) X XX XXX XX XXX XXX X XX XXX XXX XX

CS(t), POS(t) X XX XX XXX XX XX XXX

CS(t), POS(t+1) X X XX

Table 5.8: The First subtable shows the percentage of part-of-speech tags in the Miami Bangor corpus. The Second shows

the % part-of-speech preceding, on, and following a code-switched word. The Third shows the percentage of words that are

code-switched for each part-of-speech tag category preceding, on or following code-switched words. The Bottom subtable shows

the significance of running χ2 statistical tests on each group of part-of-speech tag and code-switched words. One check mark

indicates p < 0.01, two indicate p < 1× 10−4 and three indicate p < 1× 10−18.
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In order to study the role that specific tags play in eliciting code-switching, we started

by comparing the tagging distribution over the whole corpus (top subtable on Table 5.8)

with the tagging distribution of the words neighboring a code-switch (second subtable on

Table 5.8). Some things are immediately clear: auxiliary verbs are very unlikely to precede

code-switching; determiners and interjections are very likely to precede a code-switch; nouns

appear more frequently as code-switched or neighboring a code-switch than on the rest of

the corpus; particles are unsurprisingly not involved in code-switching; pronouns very rarely

precede a code-switched word; and verbs are less likely to be code-switched.

We also studied which tags are more likely to precede, occur in, or follow a code-switch

by examining the rows from the third subtable in Table 5.8. It can be observed that Proper

Nouns, Nouns and Interjections are the tags most likely to trigger a code-switch; Nouns and

Subordinating Conjunctions are the two categories that are more often switched. Moreover,

we observe that the tags following a code-switch are all comparably likely to be switched

(third row).

To end this section, we examined the statistical relationship between specific tags and

code-switching by running a χ2 test on the contingency tables populated by the counts

of specific tags when preceding, occurring in, or following a code-switch. These results are

shown in the bottom subtable of Table 5.8, where Xindicates that the p-value of the statisti-

cal test is significant. The remaining (empty) cells have p-values larger than 0.01. The first

observation we make from the first row of the subtable is that most of the part-of-speech

tags have a strong statistical relationship when preceding a code-switch (first row), whether

because they precede a code-switch more often (DET, INTJ, NOUN, PROPN, SCONJ)

or less often (ADJ, ADP, AUX, NUM, PART, PRON). With respect to the code-switched

words themselves, the second row shows that ADJ, NOUN and SCONJ significantly increase

their presence in code-switching compared to AUX, DET, PART and VERB.

Some of these results might be expected: a code-switch between an auxiliary verb and

a verb would be highly disruptive. Similarly, a switch is not likely to occur right after a

pronoun, since most often pronouns are followed by verbs that need to agree on person

and number. Indeed, the statistical relationship between verbs and code-switched words

is very strong; the percentage of verbs that are switched is much smaller than the overall



CHAPTER 5. LEXICAL, SYNTACTICAL AND CONVERSATIONAL FACTORS IN
CODE-SWITCHING 68

percentage of verbs in the corpus.

Both pronouns and nouns have a strong relationship with code-switching when imme-

diately preceding the switch, albeit in different ways. Whereas nouns are very likely to

precede a switch (18.89% of the tokens preceding a switch in the corpus are nouns), pro-

nouns are much less likely to occur before a switch than in general (4.46% of the words

before a switch are pronouns, compared to their percentage of 15.98% throughout the cor-

pus). This fact is counter-intuitive since pronouns substitute for nouns and noun phrases

and both must agree with following verbs in person and number. So, it is not immediately

clear why they behave so differently with respect to code-switching. However this finding

agrees with previous research on pronoun-verb code-switching [Woolford, 1983] that states

that even though most often such switches are banned [Barkin and Rivas, 1979] they can

still occur [Sankoff and Poplack, 1981], depending, among other things on the length of the

noun phrase they represent.

Another unexpected observation comes from the disparity between coordinating and

subordinating conjunctions. We observe from the second subtable that the fraction of

subordinating conjunctions that appear preceding or on a code-switch is higher than the

number in the corpus as a whole, and, while the same can be said about coordinating

conjunctions, the increase is not significant. Indeed conjunctions seem to be the ideal place

to facilitate a switch, since they can often start a new sentence. We hypothesize that the

reason for this difference is that the “and/y” coordinating conjunctions, which make up

the majority of that tag category, are most often used for pairing objects in which case the

switch could be disruptive.

5.6 Code-Switching and Entrainment

In this section, we analyze the Miami Bangor corpus for evidence of entrainment in code-

switching between conversational partners throughout the conversation. Entrainment is

the phenomenon of conversational partners becoming similar to each other in their behav-

iors in dialogue. It has been found to occur in multiple dimensions of spoken language,

including acoustic-prosodic [Levitan et al., 2012], linguistic style [Danescu-Niculescu-Mizil
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et al., 2011], and syntactic structure [Reitter and Moore, 2006]. Importantly, entrainment

has been associated with positive conversation outcomes, such as likability [Chartrand and

Bargh, 1999], naturalness, and task success [Nenkova et al., 2008]. To measure entrainment

in code-switching, we measure convergence (becoming more similar over time) between the

conversational partners in the frequency of their code-switching behavior.

Earlier work on priming in code-switching [Fricke and Kootstra, 2016] investigated struc-

tural priming effects as they relate to code-switching, also in the Miami Bangor corpus. They

found that the probability of an utterance featuring code-switching was higher when the

previous utterance contained a code-switch. We further analyzed the Miami Bangor cor-

pus for evidence of entrainment in code-switching behavior beyond utterance-to-utterance

priming. We measured convergence between the conversational partners frequency of code-

switching, and the degree to which the amount of code switched segments produced by

each speaker became more like that of their partner through the conversation as a whole.

In total, we analyzed 37 conversations from the Miami Bangor corpus, excluding those with

more than 2 speakers, conversations for which we only have the dialogue of 1 speaker, and

conversations lacking code-switching entirely.

Convergence was calculated by using a Pearson-R correlation analysis on each speakers

code-switching ratio (total number of code-switches normalized by total number of tokens)

for each speaker turn. A significant positive correlation is indicative of convergence, the

pairs code switching frequency becomes more similar to each other, while a significant

negative correlation is indicative of divergence, the pairs code-switching frequency becomes

more different over the course of the conversation. Out of 37 pairs, 32 show significant

correlations in convergence or divergence of code-switching ratio. A total of 28 conversations

are converging, of which 10 were weakly converging (0 < r < 0.5), 7 were moderately

converging (0.5 ≤ r < 0.7), and 11 were strongly converging (r ≥ 0.7). The other 4

conversations showed diverging patterns: 2 weakly diverging (0 > r > −0.5) pairs and 2

moderately diverging (−0.7 < r ≤ −0.5) pairs.

We know from previous studies that the introduction of code-switching may immediately

prime a code-switch in the following utterance. Here we find interlocutors adapting to each

others code-switching rates over the course of a conversation. Fricke and Kootra [Fricke
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and Kootstra, 2016] speculate that other factors must be prompting code-switching beyond

mechanistic language priming due to the infrequency of code-switching in the Miami Bangor

corpus. Based on our findings, we propose entrainment as one such high-level mechanism

driving code-switching behavior.

5.7 Conclusions

In this Chapter, we have presented a thorough analysis of the relationship between code-

switching and cognate words, and code-switching and part-of-speech tags for English and

Spanish. We presented statistical evidence that there is a strong relationship between

code-switching and part-of-speech tags, and we examined the specific tags that occur more

and less frequently in the vicinity of a switch. We confirmed that cognate words facilitate

code-switching when immediately preceding the code-switch, but have no effect on it when

they immediately follow the switch. Finally, we have demonstrated that speakers entrain

to one another in the rate at which they code-switch, a finding that may provide further

socio-linguistic insight into the social aspects of code-switching.
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Chapter 6

Improving Code-Switched

Language Modeling Using Cognate

Features

6.1 Introduction

In the NLP field, there has been some prior research on the task of language modeling

for code-switched data, often using manually labeled language identification and syntactic

information. These features, while useful, are difficult to obtain both in terms of expense

and in the difficulty of training annotators.

Current state-of-the-art models in NLP, like bi-directional LSTMs, encoder-decoders,

and transformers ingest huge amounts of data in order to be able to obtain optimal configu-

rations for their parameters. For the past few years, the trend in NLP has become to avoid

explicit feature engineering in favor of using character, word or even sentence embeddings

to obtain continuous representations of language units and then using deep neural networks

on top of these embeddings to perform unsupervised feature extraction. In the context of

code-switching, there are two reasons to avoid this strategy. The first one is that these

models shed no light on the nature of code-switching and the task at hand. The second one

is that, for code-switching, the amount of data needed to effectively train these systems is
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often unobtainable.

In this Chapter, we focus on how information about cognate words can improve language

modeling performance of code-switched English-Spanish (EN-ES) language. We have found

that the degree of semantic, phonetic or lexical overlap between a pair of cognate words is

a useful feature in identifying code-switching in language. We derive a set of orthographic,

phonetic and semantic features from a list of of EN-ES cognates and run experiments

on a corpus of conversational code-switched EN-ES. First, we show that there exists a

strong statistical relationship between these cognate-based features and code-switching in

the corpus. Secondly, we demonstrate that language models using these features obtain

similar performance improvements to manually tagged features including language and part-

of-speech tags. We conclude that cognate features can be a useful set of automatically-

derived features that can be easily obtained for any pair of languages. Better LMs for

code-switched data can thus be developed without the need for large amounts of manually-

labeled training data, thus leading to improvements in speech and language processing of

code-switching in many more language pairs.

The remainder of the Chapter is organized as follows. Section 6.2 describes previous

work on language modeling for code-switched language. Section 6.4 outlines the cognate-

based features we are proposing. Section 6.5 gives a short introduction to the Factored

Language Model (FLM) approach we are using for our experiments. Sections 6.6 and 6.7

describes our experiments. Finally, Section 6.8 presents our conclusions and plans for future

research.

6.2 Related Work

Work on computational approaches to modeling code-switching has been increasing in the

last few years. Most efforts have focused on language identification and code-switching

detection [Solorio et al., 2014; Molina et al., 2016], but there has also been some research

on language modeling [Li and Fung, 2012; Adel et al., 2013b; Li and Fung, 2014], part-of-

speech tagging [Solorio and Liu, 2008b; Rodrigues and Kübler, 2013; Jamatia et al., 2015;

AlGhamdi et al., 2016] and even speech recognition [Ahmed and Tan, 2012; Lyudovyk and
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Pylypenko, 2014]. While some of this research has attempted to incorporate existing lin-

guistic theories of code-switching [Li and Fung, 2012, 2014], the vast majority have focused

on standard machine learning approaches. Ultimately, even if some of these models success-

fully solve the task they are trained for, they shed little insight on the intrinsic mechanics

of code-switching and why and how it takes place.

In the last decade there has been increasing interest in tackling the problem of modeling

code-switched language in the computational linguistics community. Most efforts have

focused on applying machine learning methods to the task of language modeling. The

first example of a statistical language model (SLM) applied to code-switched data was

presented in [Franco and Solorio, 2007]; the authors trained 2-,3-,4- and 5-grams on a very

small corpus (unlabeled for language ID), obtaining perplexity values ranging from 49.40

to 50.95. Li and Fung [2012] is the first example of an SLM to incorporate a syntactical

constraint (“the equivalence constraint” [Sankoff and Poplack, 1981] which states that “the

order of constituents immediately adjacent to the code-switching point must be the same

in both language’s grammars”) from the linguistics community. This work achieved a word

error rate of 35.2% and 45.9% in two conversational speech corpora. In [Li and Fung, 2014]

the same authors incorporated the Functional Head Constraint [Belazi et al., 1994], which

states that code-switching cannot occur between a functional head and its complement,

and achieved further improvements in word error rates of 33.70% and 43.58% on the same

corpora.

Adel et al. [2013b] performed LM experiments using FLMs and RNNs on the SEAME

corpus of English and Mandarin code-switching. They found that RNNs achieved better

results than FLMs and demonstrated that LID and part-of-speech tags are useful features

for code-switched LM. However, their perplexity values were very high (239.21 for the best

single model and 192.08 for the best combined model). In a similar vein as the work we

present here, Adel et al. [2013a] presented an analysis that shows that certain words and

part-of-speech tags are more likely to precede a code-switch; however their proposed RNN

model for LM ended up using only POS classes and words as input, without any attempt

to flag what type of words were useful.

Winata et al. [2018] proposed that a multi-task learning approach to POS tagging and
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Split # Sentences # Tokens

Full 42.9K 321,630

Train 36,710 274,863

Dev 2,000 15,588

Test 4,200 31,179

Table 6.1: Partition of Miami Bangor corpus used for Language Modeling experiments.

Table shows number of sentences and tokens in the full Miami Bangor Corpus and each of

its splits.

LM can help improve LM performance and showed relative perplexity improvements of 9.7%

on the SEAME corpus. Similarly, Chandu et al. [2018] achieved some improvements on the

joint task of LID tagging and LM.

In this Chapter, we continue to investigate how cognate-based features, part-of-speech

tags and LID tags effect code-switching, and specifically how they can help improve perfor-

mance on the task of language modeling.

6.3 Data

In this research we use the Miami Bangor corpus detailed in Section 4.5 and the list of

EN-ES cognate words from Section 5.3.

The Miami Bangor corpus was split into train, development and test sets for the exper-

iments presented in Section 6.6. The size of each split is shown in Table 6.1.

6.4 Feature Engineering

6.4.1 Feature Extraction

We used the list L = {(ek, sk)} of English-Spanish pairs of cognate words described in [Soto

et al., 2018], which can be obtained from Github.1

1https://github.com/vsoto/cognates_en_es

https://github.com/vsoto/cognates_en_es
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Each entry in the list consists of an English word ek and a Spanish word sk of the same

cognate (e.g. “mathematics” and “matemáticas”). The list contains a total of 3,423 cognate

word pairs, of which a total of 1,305 appear at least once in the Miami Bangor corpus. For

each of these word pairs (ek, sk), we extracted the following set of features, fkl = fl(e
k, sk)

quantifying the difference between cognate pairs in terms of orthography, pronunciation,

and meaning:

Orthographic features: To compute these features we measured the distance or sim-

ilarity between the sequence of letters of the pair of cognates. Distances used include the

DamerauLevenshtein (DLD), Hamming (HD), and Levenshtein (LD) distances. We also

computed the Jaro (JS) and Jaro-Winkler (JWS) similarities. We also included a ‘perfect

cognate’ feature which is 1 if the spelling is identical in Spanish and English (not account-

ing for tildes) and 0 otherwise. For example, for the cognate pairs “mathematics” and

“matemáticas”, the Levenshtein distance is 0.18, and “actor” is a perfect cognate.

Pronunciation features: These features reflect how different the pronunciation be-

tween a pair of words is. We obtained the pronunciations from the CMU English pronun-

ciation dictionary and a Spanish pronunciation dictionary. For the pronunciation entries of

words not found in these dictionaries, we trained grapheme-to-phoneme systems using the

CMU Sphinx sequence-to-sequence system described in [Yao and Zweig, 2015]. Once all

the pronunciations were obtained, we computed the distance between both pronunciations

using the Binary (BD), Hamming (HD), Jaccard (JD) and Levenshtein (LD) distances.

Semantic features: These features are intended to reflect how close in meaning the two

words in each cognate pair are. We used the MUSE bilingual word embeddings [Conneau

et al., 2018] and computed the Euclidean (EUC) distance and the Cosine (COS) Similarity

between the cognate pairs. Only 15 cognate words that appeared in the Miami Bangor

corpus were not covered by the bilingual embeddings.

6.4.2 Feature Normalization

All the features not naturally bounded to [0, 1] were normalized by the feature’s maximum

possible value, which for most distances is the maximum sequence length of one of the

cognates in the pair. All the distance features were transformed into similarities using a
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simple transformation sim = 1− dist.

6.4.3 Statistical Relationship between Code-switching and Cognate Fea-

tures

To analyze the relationship between code-switching and the cognate-based features, and

to determine if these features can be predictive of code-switching behavior, we first looked

at how similar the distribution of the features is when looking at the words surrounding a

code-switch compared to those in the rest of the utterance.

To do so, we ran the Kruskal-Wallis statistical test to compare the distribution of features

with respect to their position relative to a (labeled) code-switch. Kruskal-Wallis tests the

null hypothesis that the population medians for two or more groups are equal, which can be

rejected with a sufficiently small p-value. If the distributions (medians) of two subgroups of

feature values are different enough, these features will be potentially usable for code-switch

detection and language modeling.

To run the statistical significance tests we assign feature values fl to every word wi in

an utterance: If the word wi is a cognate (ek, sk) present in the list of cognates, the word

is given the feature value fl(wi) = fl(e
k, sk); otherwise, the word is assigned the minimum

possible value for that feature, which is zero. For example, for the phrase “very simpático”,

where “very” is not a cognate and “simpático” is a cognate in the list, we would assign

a zero to the first word and the pertinent feature value to the second word. We ran this

statistical test for each feature described in Section 6.4.1 and in three different modalities

to compare the feature distributions of a) code-switched words and the rest of words in an

utterance; b) words that immediately precede a code-switch and the rest of words in an

utterance and c) words that immediately follow a code-switch and the rest of the words in

the utterance.

Results of these tests are presented in Table 6.2. In this table, each row contains

the results from the Kruskal-Wallis test for a given feature and each column specifies the

distributions that are being compared. Column 3 compares the feature distributions of the

words immediately preceding a code-switch and the rest of the words in the corpus. Column

4 compares the feature distributions of the code-switched words and the rest of the words
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in the corpus; and column 5 compares the feature distributions of the words immediately

following a code-switch and the rest of the words in the corpus. Check marks indicate

p-values p < 0.001.

Following the same trend that we observed in [Soto et al., 2018], the p-values confirm

that all engineered features values have different median values when they precede a code-

switch and when they are code-switched; however, they do not present statistical differences

when they immediately follow a code-switch.

For the orthographic features, all show significantly different distributions when the word

they are calculated from precedes (10−19 < p < 10−15) or is itself a code-switch (10−20 <

p < 10−8). Similarly for the pronunciation features, p-values range from 10−22 < p < 10−10

for feature values of code-switched words and 10−18 < p < 10−15 for feature values for

words immediately preceding a code-switch (Hamming and Levenshtein distance). Tests

run on semantic features return smaller p-values when focused on words preceding a switch

(10−7 < p < 10−4) but similar power on code-switched words (10−22 < p < 10−20). Overall,

the largest differences were always found on the code-switched word (perfect spelling, binary

distance on pronunciation entries and cosine similarity on word embeddings).

6.5 Factored Language Models

Factored Language Models (FLMs) [Bilmes and Kirchhoff, 2003] are language models that

encode each word wi in a sentence as a vector of k factors wi = (f1i , . . . , f
k
i ) = f1:kt = Fi,

where each factor can be a feature of the word, i.e. the language of the word or its part-

of-speech tag. An FLM is a directed graphical model where p(Ft|Ft−l, . . . , Ft−1) can be

factored into probabilities of the form p(f |f1, . . . , fN ). An FLM is described by its backoff

graph, which shows the various backoff paths from the parent node p(F |F1, . . . , FN ) to the

child node P (F ). Given a chosen backoff graph topology, FLMs can be trained using the

Generalized Parallel Backoff algorithm, which allows the language model to back off on a

single path or on multiple parallel paths simultaneously during runtime.

For the experiments presented in this Section, we used the FLM implementation in

the SRILM toolkit [Stolcke, 2002; Stolcke et al., 2011], which allows for fast training and



CHAPTER 6. IMPROVING CODE-SWITCHED LANGUAGE MODELING USING
COGNATE FEATURES 78

Group Feat. Prec CS After

Orthography

DL X X -

Hamming X X -

Jaro X X -

Jaro-Winkler X X -

Levenshtein X X -

Perfect X X -

Pron.

Binary - X -

Hamming X X -

Jaccard - X -

Levenshtein X X -

Semantic
Cosine X X -

Euclidean X X -

Table 6.2: Statistical significance results of running the Kruskal-Wallis test by ranks of all

the features split into two groups. Three pairs of groups are tested: words preceding a

code-switch and the rest of words, code-switched words and the rest of words; and words

following a code-switch and the rest. Check marks indicate that there is a statistically

significant difference between the distribution of the features values of the two groups.
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Model PP

W 73.57

W + LID 68.88

W + POS 68.87

W + LID + POS 59.28

Table 6.3: Test set perplexity of Factored Language Models trained on word trigrams and

language identifiers and part-of-speech tags.

evaluation of FLMs. Some of the key implementation issues when using FLMs are the choice

of factors to use in the model and the design of the backoff graph. Many factors go into the

design of the backoff graph, including: the topology of the graph (including the number of

backoff graph nodes, and the dependencies between them) and the discounting, smoothing

and combination options for each node. Given all these design factors, finding the optimal

FLM structure for a given corpus is a highly intractable problem. We use GA-FLM [Duh

and Kirchhoff, 2004], a genetic algorithm that searches over the space of possible FLMs

structures optimizing for development set perplexity. Specifically, for each of FLMs trained

on the next section, the GA-FLM was run on 10 generations, each one with a population

size of 100, with a cross-over probability of 0.9 and a mutation probability of 0.01.

6.6 Experiments & Results

We started by training FLMs using exclusively word tokens and the gold features we have

on the Miami Bangor corpus: LID and part-of-speech tags. All FLMs were trained using

features of two previous words (3-grams). Table 6.3 shows the perplexity achieved by the

baseline tri-gram language models and by the same language models when adding the gold

LID and part-of-speech features to the Bangor Corpus. The addition of the LID and part-

of-speech tags separately helped achieve similar improvements, from 73.57 down to 68.88

and 68.87 respectively. When used together the perplexity dropped much further to 59.28,

proving that the two features are complementary and equally useful for language modeling.



CHAPTER 6. IMPROVING CODE-SWITCHED LANGUAGE MODELING USING
COGNATE FEATURES 80

Table 6.4 shows the performance of a trigram FLM when adding the cognate-based

features. The top subtable shows the LM performance when adding the cognate and perfect

cognate flags. In both cases perplexity improved with respect to the 73.57 baseline, but none

of the features were as useful as LID or part-of-speech tags for LM. The next three subtables

show the perplexity of the LM when adding just one of the orthographic, pronunciation,

or semantic cognate-based features. For the lexical features, the best performance was

achieved when using the Jaro-Winkler distance between the English and Spanish cognates

(65.35); for the pronunciation features, the best performance was achieved when using the

Hamming distance (65.99); and for the semantic features, both the cosine and euclidean

distances performed similarly (66.02). Comparing tables 6.3 and 6.4, the cognate-based

features can achieve better perplexity performance than the LID and part-of-speech tags

features when used separately. This is important because LID and part-of-speech tags for

this corpus were crowdsourced and expensive to obtain. However, no cognate-based feature

helps achieve similar performance to the combination of the manual LID and part-of-speech

tags.

Table 6.5 shows the perplexity performance of the FLM models when adding a com-

bination of the cognate-based features. For each category (LEX, PRON and SEM) the

best performing feature from Table 6.4 was chosen. The table shows that the combination

of PRON+SEM, and the combination of LEX+PRON+SEM helps improve the perplexity

achieved by the models shown in Table 6.4, although the gains are very small. We hy-

pothesize that the combination of LEX and PRON features may not offer perplexity gains

since the features are computed very similarly (the first as the string distance and the sec-

ond as the distance between two phone sequences) whereas adding the SEM feature always

helps improve performance. However, the addition of all cognate-based features does not

bring performance improvements comparable to the addition of LID and part-of-speech tags

(64.51 compared to 59.28).

We concluded these experiments by examining how much gain we could obtain from

adding the cognate-based features to the LID and part-of-speech tags, which obtained a

perplexity of 59.28 (see Table 6.3). We see that adding any subset of cognate features adds

value to the W+L+P model, with perplexity numbers ranging from 58.30 to 59.17, although
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Model PP

W + Cognate 70.17

W + Perfect Cognates 71.71

W + LEX(JWS) 65.35

W + LEX(LD) 65.88

W + LEX(DLD) 66.02

W + LEX(JS) 67.02

W + LEX(HD) 72.01

W + PRON(JD) 66.42

W + PRON(HD) 65.99

W + PRON(BD) 70.14

W + PRON(LD) 66.42

W + SEM(EUC) 66.02

W + SEM(COS) 66.02

Table 6.4: Test set perplexity of Factored Language Models trained on word trigrams and

each of the cognate-based features.

Model PP

W + LEX + PRON 66.23

W + LEX + SEM 65.90

W + PRON + SEM 64.95

W + LEX + PRON + SEM 64.51

Table 6.5: Test set perplexity of Factored Language Models using a combination of two or

the three cognate-based features.
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Model PP

W + C + L + P 58.85

W + C + L + P + PRON 58.32

W + C + L + P + SEM 58.32

W + C + L + P + LEX 58.75

W + C + L + P + LEX + PRON 58.30

W + C + L + P + LEX + SEM 59.17

W + C + L + P + PRON + SEM 60.01

W + C + L + P + LEX + PRON + SEM 58.84

Table 6.6: Test set perplexity of FLMs using cognate flags, LID and part-of-speech tags

plus one set of one, two, or three cognate-based features.

these improvements are very small.

6.7 Cross-Lingual Feature Transfer

So far in this Chapter, we have studied the relationship between code-switching and cognate

words and part-of-speech roles. We have also proved that cognate-based features offer

significant performance improvements over gold-label features like part-of-speech tags or

language identifiers. All these results have been obtained from experiments run on the

Miami Bangor corpus of English-Spanish code-switched language. The next questions we

want to tackle are: 1) How much of these findings hold from English-Spanish to a different

language pair? and 2) Can we transfer cognate-based features across language pairs to

obtain improvements on language modeling?

Code-switching between two languages seems to be heavily dependent on lexical overlap

[Clyne, 1980; Broersma and De Bot, 2006] and syntactical compatibility [Woolford, 1983;

Belazi et al., 1994], and there seems to be consensus that there is not a single unified

theory to the way two languages switch [Clyne, 1987], despite some efforts in that direction

[Myers-Scotton and Jake, 2009]. While we certainly do not expect a pair of languages like

English and Mandarin Chinese to behave as English and Spanish do, it would be reasonable
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to expect that, for example, English and another Romance language behave similarly to

English and Spanish.

In this research, we chose English and French as the next language pair to study and

a) confirmed that cognate-based features are again a valuable addition to the task of lan-

guage modeling; and b) confirmed that we can use cognate-based features computed for

English-Spanish code-switching and for English-French and obtain similar language model-

ing improvements. We began by collecting a small dataset of code-switched English-French

sentences from the Hansard corpus.

Then we showed that the statistical relationship between cognates and code-switching in

English-French is similar to that of English-Spanish. We trained language models on code-

switched language and showed that cognate-based features obtained from the Hansard offer

language modeling performance gains. Finally, we used cross-lingual features for English-

French obtained in English-Spanish.

6.7.1 Data Collection for English-French Code-Switched Sentences

The Hansard corpus is a collection of parallel documents in English and French of the

proceedings of the Canadian parliament. The corpus is divided into three different sets of

which only the first two clearly state which document is the source (and unedited) document

from the parallel pair, and which is the translated document.

Despite being a corpus whose content is mostly very formal, the Hansard corpus does

contain examples of code-switching [Carpuat, 2014], both on the section of the corpus

composed of transcriptions drawn from meetings from the House of Commons, and on the

section of the corpus composed of transcriptions of the committee meetings.

We used our code-switched sentence detection methods detailed in Chapter 2 to identify

code-switching. The sizes of the strong and weak anchor wordlists are shown on Table 6.7

and the number of sentences retrieved by the Strong Anchoring, Weak Anchoring and Weak

Anchoring + LID methods are shown on Table 6.8.

We used a combination of anchor-word and common-word sentence detection methods

and obtained a total of 2,098 sentences, for which we crowd-sourced language tags at the

word level. A subset of 811 sentences turned out to be code-switched. From the sentences
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EN FR

Strong Anchors 32,257 53,031

Weak Anchors 58,693 68,692

Table 6.7: Size of the Strong Anchor and Weak Anchor wordlists for English and French.

Method # Retrieved Sentences Unique CS Sentences Precision

Common Words 800 764 172 21.5

Weak Anchoring 1,333 1,297 673 50.48

Joint 2,098 X 811 38.65

Table 6.8: Number of sentences retrieved from the Hansard corpus by Common Words and

Weak Anchoring methods, along with the percentage of sentences that are code-switched.

retrieved using common words only 21.5% were code-switched, whereas 50.48% of the sen-

tences retrieved using anchor words were code-switched. Note that both methods are very

complementary, since only a total of 36 sentences were collected by both methods (1.71%

of the total).

Given the 811 code-switched sentences, we aimed to augment the collected corpus to

reflect a similar proportion of code-switched sentences to monolingual sentences as the

Miami Bangor corpus. We selected 200 code-switched sentences for test purposes and added

the rest of 611 sentences for training and validation. We added mono-lingual sentences in

English and French from the source documents until we obtained a total of 8,800 sentences

in the training set, including the 611 code-switched sentences (7% ratio).

6.7.2 Experiments

Following the methodology we used on the Miami Bangor corpus, we trained Factored

Language Models on every subset of cognate-based features. On the left side of Table 6.9

we show the results of training and testing FLMs on Hansard using native features, and

on the right subtable we show the results of training and testing FLMs on Hansard using

feature values that were computed from English-Spanish cognate pairs.
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Model EN+FR FEATS PPL EN+ES FEATS PPL

W 82.1 -

W + L 68.9 -

W + LEX 76.72 77.61

W + SEM 76.87 79.73

W + PRON 77.36 77.97

W + LEX + PRON 71.11 71.87

W + LEX + SEM 70.84 71.81

W + PRON + SEM 71.91 72.10

W + LEX + PRON + SEM 70.16 70.98

Table 6.9: Experimental results of training Factored Language Models on the subset of

the Hansard corpus. The first column details the features used in each model, the second

column shows the perplexity values obtained by each model when trained on cognate-based

features from a list of English-French cognates. The third column shows the perplexity

values obtained by each model when trained on cognate-based features from a list of English-

Spanish cognates.

To assign English-Spanish cognate-features to English or French words we just follow the

list of cognate truples. For example, given the word “mathmatiques” in a sentence of the

Hansard corpus, there is an entry in the list of cognate truples for (mathmatiques, matemti-

cas, mathematics), such that fCL(mathematiques) = fEN+ES(matematicas,mathematics).

The Hansard models trained on EN+FR cognate features show similar results to the

Bangor models which we analysed in Section 6.6. The model trained on word tri-grams and

crowd-sourced language tags (W + L) achieved a 16% relative gain in perplexity. Unlike

for the Bangor models, this gain was never matched by any of the cognate-based features.

When adding the best performing Lexical (W + LEX), Pronunciation (W + PRON) and

Semantic (W + SEM) features, we managed to reduce the perplexity down to 76.72, 76.87

and 77.37 perplexity, for an average relative gain of 6% with respect to the baseline model

(W). Finally, when using a combination of cognate-based features we see much better gains
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than those we observed on Bangor, achieving as much as 13.7% perplexity gain with the

W + LEX + SEM model and 14.54% relative gain with the tri-gram model that includes

every cognate-based feature.

When training Hansard models on EN+ES features, we see the same relative gains

overall, although in terms of absolute gains, the EN+ES features always trail behind the

EN+FR features. This seems to confirm the idea that cognate words, understood as a set

of words across languages with the same etymological origin, can improve code-switched

language modeling performance across language pairs precisely due to their multilingual

nature.

6.8 Conclusions

In this Chapter, we proposed a new set of features extracted from lists of cognate words to

improve code-switching detection. This set of features describes the semantic, orthographic

and phonetic similarities across pairs of cognate words in English and Spanish. We first

showed that there is a very high statistical relationship between these features and code-

switching, which signals their potential usefulness for code-switched language modeling.

We then showed that FLMs trained on these features achieve similar performance as FLMs

trained on manually labeled features like LID and part-of-speech tags separately. The three

feature sets (semantic, orthographic and phonetic) do not appear to be very complementary

and underperform when compared to the joint use of LID and part-of-speech tags, however

they are much simpler and less expensive to obtain.

Furthermore, we showed that cognate features can be used across language pairs. We

used EN+ES cognate features on EN+FR Factored Language Models and showed that they

help obtain perplexity improvements similar to those obtained by EN+FR features.
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Chapter 7

Cross-Lingual Language Modeling

Pre-Training for Code-Switching

7.1 Introduction

In the two previous chapters, we addressed the problem of modeling code-switched language

by avoiding the use of black-box machine learning models. Instead, we proposed a set

of interpretable features based on cognate words for code-switching and trained factored

language models, which explicitly represent a hierarchy of features on their back-off graphs.

In the last chapter of this thesis, we explore the opposite methodology: to use transfer

learning to leverage large amounts of available monolingual data and parallel data to obtain

pre-trained cross-lingual language models, and then expand and fine-tune these models on

code-switched data to gauge the extent to which monolingual and parallel data can help in

a code-switched context.

Intra-sentential code-switching is a relatively sparse phenomenon even in fully multilin-

gual communities. For example the Miami Bangor corpus, one of the few conversational

speech corpora with natural code-switching in it, only contains 7% of code-switched utter-

ances. While collecting more code-switching data can be a successful strategy, as we have

shown in Chapter 2, we should not ignore the vast amounts of monolingual data potentially

available, both in- and out-of-domain. It is of key importance, therefore, to learn to leverage

monolingual corpora as much as possible when developing code-switched models.
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The main challenge when using monolingual data along with code-switched data to train

statistical models is making sure that the monolingual examples do not overshadow the

code-switched examples, and the model is able to identify code-switching information and

learn from it. Because of the small ratio of intra-sentential code-switching to monolingual

data, this is even harder when adding out-of-domain or out-of-genre monolingual corpora to

the training recipe. Fortunately, the advent of deep learning has facilitated learning in this

kind of setting by following a learning scheme called transfer learning. In transfer learning

a (usually deep) model, or part of a model, is first pre-trained using a large collection of

out-of-domain data, and then the pre-trained model is used as an unsupervised feature

extractor and fine-tuned on in-domain data.

In this Chapter, we propose to use Transformer models to pre-train cross-lingual lan-

guage models and fine-tune them on code-switched data for the downstream tasks of word-

level language tagging and code-switched language modeling. The work presented in this

chapter is ongoing, and we are planning to keep doing research on it. The rest of this

chapter is organized as follows: Section 7.2 provdes a short background on the topics of re-

cent sequence-to-sequence models and language modeling pre-training. Section 7.3 gives an

overview of the data used in this chapter. Section 7.4 shows how our cross-lingual language

models are pre-trained. Section 7.5 shows the results of fine-tuning the pre-trained models

on code-switched language. Section 7.6 shows the experiments and results of fine-tuning

our models on the task of word-level language identification.

7.2 Background

7.2.1 Sequence-to-Sequence Models and Transformers

Sequence-to-sequence (Seq2Seq) models [Sutskever et al., 2014] are machine learning models

that take an input in the form of a sequence of elements {xi}n1 and output another sequence

of elements {yj}m1 . Some recent Seq2Seq models like LSTM neural nets have been very

successful at modeling long-term dependencies but are expensive to train and are only

adept at tasks where the length of both input and output sequences are the same. The

encoder-decoder architecture solved this problem by proposing a model with two parts: an
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encoder that maps a sequence of elements into a sequence of source hidden states {hs}n1 and

a decoder that transforms the last source hidden state into an output sequence of variable

length {yj}m1 . In an encoder-decoder model the encoder can be, for example, an LSTM or

bi-LSTM, and the decoder can be another unidirectional LSTM also. The encoder takes an

input element from the input sequence at every step along with its own hidden state and

outputs a source hidden state. Similarly, the decoder takes the last source hidden state and

a start-of-sequence element in the first decoding step and then takes its own hidden state

and last prediction for the next steps until it predicts an end-of-sequence element.

Despite the enormous improvements achieved by Seq2Seq models and the Encoder-

Decoder architecture, most of these models struggled with long sequences. The attention

mechanism [Bahdanau et al., 2015] was designed to model which elements of a sequence are

more relevant at each step of the sequential task. Attention takes the sequence of all source

hidden state hs and a target hidden state ht and computes an alignment vector as long

as the sequence of source hidden states. This alignment vector at indicates how relevant

each source hidden state hs is to the current target hidden state ht. A context vector ct

is then computed as a weighted average of the source hidden states and the weights in the

attention vector. The context vector ct and the hidden state ht are then used as input for

the decoder at time step t. The attention mechanism has obtained great improvements in

sequence-to-sequence tasks like Machine Translation [Luong et al., 2015], Summarization

[Rush et al., 2015] and Speech Recognition [Chorowski et al., 2015].

Transformers [Vaswani et al., 2017] are the latest evolution of encoder-decoder models

with attention mechanisms. A Transformer is an encoder-decoder model that process every

element in a sequence in relation to each other, instead of one by one. Transformers eliminate

the need for convolutional or sequential (LSTM) layers by stacking Transformer modules on

top of each other. Each Transformer module is formed by a self-attention layer followed by a

fully-connected feed-forward layer, where each one of these layers has a residual connection

to its output followed by an addition and normalization layer. The self-attention layer is

most commonly a multi-head attention, which is a linear projection of the concatenation

of several scaled dot-product attention modules. A scaled dot-product attention module is
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defined by the following equation:

Attention(Q,K, V ) = SoftMax(QKT /
√
dk)V (7.1)

where Q, K and V are the query (vector representation of one element in the sequence),

keys (matrix containing the vector representation of every element in the sequence) and

values (matrix representation of every element in the sequence).

Because Transformers do not process elements one by one sequentially, word embeddings

are modified before being input into the Transformer layers by a process called positional

embedding. This encoding process adds a position-dependent signal to each word embed-

ding. A complete illustration of a Transformer architecture can be found in Figure 1 from

the initial Transformer paper [Vaswani et al., 2017].

7.2.2 Language Modeling Pre-training

Word embeddings, like word2vec [Mikolov et al., 2013] or GloVe [Pennington et al., 2014],

have been critical to many of the improvements in NLP tasks in the past few years. De-

spite their critical success, word vectors have important weaknesses: they are shallow (a

single vector of weights per word), and furthermore, they are context-free representations

(they do not take into account the lexical and semantic context of the current word in

the sentence). For embeddings to be able to better capture long-term dependencies and

hierarchical relations they need to be more contextualized.

In the past few years, the trend in creating better and more contextualized word embed-

dings has been to pre-train deep language models on large language corpora, similar to the

way Computer Vision has been using deep neural networks trained on ImageNet as feature

extractors [Krizhevsky et al., 2012]. These deep language models have been shown to create

pre-trained models that work quite well once they are fine-tuned on a smaller datasets for

downstream tasks like Machine Translation, Summarization, Sentence Similarity and other

NLU tasks.

Below we give a short description of the five pre-trained language models that have

made the biggest impact in the past two years:
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7.2.2.1 ELMo: Embeddings from Language Models

ELMo [Peters et al., 2018] proposes a deep model of L stacks of bi-LSTM layers. The

unsupervised bi-directinal language model (biLM) is trained to minimize the negative log-

likelihood in both directions. Once trained, ELMo embeddings are obtained by stacking

all the hidden states across layers together and learning a task-specific linear combination

of them. Similar to what is observed across the layers of deep models for computer vision,

ELMo models show that deep layers better capture semantic information, while the first

layers are better suited for syntactic tasks like POS tagging and word sense disambiguation.

7.2.2.2 ULMFit: Universal Language Model Fine-tuning

ULMFit [Howard and Ruder, 2018] proposes a multi-layer bi-LSTM network without at-

tention. This was the first model to introduce the scheme of fine-tuning a pre-trained LM

for a downstream task. It follows three steps to perform transfer learning:

• LM pre-training: on large language corpora.

• Target task LM fine-tuning: on target language corpora following two fine-tuning

techniques: discriminative tuning (where each layer is applied using a different learning

rate) or slanted triangular learning rates (a learning rate scheduling that first increases

the learning rate for a short number of epochs and then slowly reduces the learning

rate in a long stretch of epochs).

• Target task classification fine-tuning: the pre-trained LM is expanded with feed-

forward layers and a softmax layer on top; concat pooling and gradual unfreezing

are used to obtain the embedding representations and to avoid overriding all the

information gained during pre-training.

7.2.2.3 OpenAI GPT: Generative Pre-Training Transformer

GPT [Radford et al., 2018] innovates with respect to the previous models in several ways:

a) it trains an unsupervised language model from large corpora and uses a Transformer

decoder as a base model; b) it uses Byte Pair Encoding (BPE) subword units instead of
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words; and c) it removes task-specific model architectures for the downstream tasks and

instead proposes to fine-tune the Transformer model directly, for example, by adding a

linear layer on top of the Transformer for a classification task.

7.2.2.4 BERT: Bidirectional Embedding Representations from Transformers

BERT [Devlin et al., 2019] is similar to GPT with the novelty that the model trained is

bidirectional: taking into account both left and right context. BERT achieves this bidi-

rectionality by reformulating the language modeling task. Instead of training a model to

predict the next word given the past context of words, BERT proposes the Masked Lan-

guage Modeling task (MLM). During training, MLM masks 15% of each token in the corpus

and: a) keeps the word the same with 0.1 probability; b) substitutes the word for another

randomly chosen word with 0.1 probability or c) substitutes the word for a MASK token

with 0.8 probability.

7.2.2.5 XLM: Cross-Lingual Language Modeling Pre-training

XLM [Conneau and Lample, 2019] expands the process from BERT by training models

on the MLM task and a new cross-lingual task. This new cross-lingual language modeling

task, called Translation Language Model (TLM) acts similarly to MLM and consists of

concatenating two parallel sentences and randomly masking one element from each, asking

the model to effectively guess each of the masked words from the two different languages.

TLM encourages the Transformer model to learn alignments between both sentences, by

re-setting the positional embeddings across the two sentences.

In this chapter, we explore the effects of using pre-trained language models and Trans-

formers for code-switched language modeling and word-level language tagging. We choose

to use the XLM library to perform pre-training and fine-tuning given their state-of-the-art

capabilities on cross-lingual tasks, which should serve as a good starting point for code-

switched language tasks.
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Language EN ES FR

Num. Sentences 43.8M 11.5M 15.8M

Num. Tokens 2.5B 640.9M 765.2M

Table 7.1: Wikipedia distribution of latest articles in English, Spanish and French. The

table shows the amount of sentences and tokens.

Language Pair EN-ES EN-FR ES-FR

Num. Sentence Pairs 11.4M 13.2M 11.4M

Num. Total Tokens 702.1M 799.2M 759.3M

Table 7.2: OPUS UN distribution of parallel sentences from UN transcripts in English-

Spanish, English-French and Spanish-French. The table shows the amount of parallel sen-

tence pairs and number of tokens.

7.3 Datasets & Pre-Processing

In this chapter we use the following sources of data. For code-switched data we use the

Miami Bangor corpus of English and Spanish code-switching, and the subset of collected

English and French utterances from the Hansard corpus from Section 6.7. For monolingual

data we use the latest Wikipedia dumps in English, Spanish and French from https:

//dumps.wikimedia.org/. Table 7.1 shows the amount of data in each of the data dumps

used in this study.

For parallel data, we use the English-French, English-Spanish and Spanish-French par-

allel documents from the OPUS MultiUN corpus [Eisele and Chen, 2010; Tiedemann, 2012].

Table 7.2 shows the amount of parallel data for each language pair.

The wikipedia, parallel, and code-switched text was cleaned of mark-up text, tokenized,

and the accents in Spanish and English were removed. Each language dump from the

Wikipedia dataset was split in validation, test and train partitions of 5,000 sentences, 5,000

sentences and the remainder of the dump respectively. The OPUS UN datasets were simi-

larly split into test and validation sets of 5,000 sentence pairs and the rest of the sentence

pairs were used for training.

https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
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Each model was first pre-trained on a joint dataset of Wikipedia and Parallel UN sen-

tences. In total there were three different training dataset configurations (EN,ES,EN-ES,

EN,FR,EN-FR, and EN,ES,FR,EN-ES,EN-FR) and therefore we learnt three different BPE

code configurations for English-Spanish, English-French and English-Spanish-French. In

each of the three cases the maximum amount of BPE codes was set to 15,000 codes, which

means that the vocabulary size is effectively 15K. The BPE tokenization was then applied

to the validation and test sets of the Wikipedia and UN corpora and also to the whole

Miami Bangor and subset of Hansard corpora.

7.4 Pre-Training Cross-lingual Language Models

We followed the methodology from [Conneau and Lample, 2019] and pre-trained three XLM

models EN-ES, EN-FR and EN-ES-FR with the following training data configurations: the

EN-ES model was trained on English and Spanish Wikipedia and English-Spanish UN

parallel transcripts; the EN-FR model was trained on English and French Wikipedia and

English-French UN parallel transcripts; and the EN-ES-FR model was trained on English,

French and Spanish Wikipedia and English-Spanish and English-French UN parallel tran-

scripts.

Our pre-trained models were composed of a Transformer encoder with an embedding

layer of 512 units and 12 stacked Transformer layers, where each layer has 8 self-attention

multi-heads and 512 units. We used sinusoidal positional embeddings, but did not use

language embeddings since one of the downstream tasks is language identification. The

Transformer layer was pre-trained with a dropout value set to 0.1 on both the fully connected

layers and the self-attention layers. All the models here were pre-trained using the MLM

objective on monolingual data and the TLM objective on parallel data.

Table 7.3 shows the MLM and TLM perplexity of the pre-trained cross-lingual language

models. All our models here are close to achieving the state of the art performance reported

by [Conneau and Lample, 2019] by a small margin, but due to computational limitations

we were not able to imitate their architecture with fully connected layers and self attention

layers with 1,024 units due to the memory limitations in our GPUs.



CHAPTER 7. CROSS-LINGUAL LANGUAGE MODELING PRE-TRAINING FOR
CODE-SWITCHING 95

Model
Validation Test

MLM TLM MLM TLM

EN-ES 22.70 4.20 23.17 4.26

EN-FR 21.84 4.88 21.52 4.99

EN-ES-FR 25.03 2.90 25.16 2.957

Table 7.3: Test perplexity by the pre-trained cross-lingual language models (XLM).

7.5 Fine-Tuning: Language Modeling

In this section, we study whether a pre-trained cross-lingual language model can be fine-

tuned on code-switched language successfully. We first observe that the pre-trained language

models from Table 7.3 perform very poorly on the subset of code-switched sentences from

the Hansard and Miami Bangor corpora. The best performance by the pre-trained models

is achieved on Bangor by the EN-ES model (190.57 MLM perplexity) and on Hansard

by the EN-FR model (105.85 MLM perplexity). This performance is far from the MLM

performance by the same models on their own validation and test sets, which ranged between

21 and 25 perplexity (Table 7.3).

We fine-tune the EN-ES, EN-FR and EN-ES-FR XLM pre-trained models on the Hansard

corpus, the Miami Bangor corpus, and the combination of both, respectively. The fine-

tuning process is performed until there is no MLM perplexity improvements on their re-

spective validation sets. The fine-tuning does not implicate any change in the architecture of

the XLM model: no additional layers are added to the model. Only the top two Transformer

layers are fine-tuned and the rest of the layers are kept static.

Table 7.4 presents the MLM perplexity on the Miami Bangor corpus and Hansard corpus

test sets. These are the same tests used for Language Modeling experiments in Chapter 6.

However, the results reported here cannot be compared to the performance from the Fac-

tored Language Models, given that these perplexity values are from the Masked Language

Modeling task, and not the standard task.

All three fine-tuned XLM models improve their perplexity numbers by more than 50%,

which proves that fine-tuning is both needed and possible to adapt multilingual models to
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Model
Before Fine-Tuning After Fine-Tuning

Bangor Hansard Bangor Hansard

EN-ES 190.57 291.80 70.28 109.86

EN-FR 483.76 105.85 120.23 72.65

EN-ES-FR 196.71 110.39 74.32 75.22

Table 7.4: Fine-tuned XLM code-switched language models performance. Performance is

reported as MLM perplexity.

code-switched models. Specifically, the EN-ES model achieves the best perplexity result on

Miami Bangor (70.28) and the EN-FR model achieves the best perplexity result on Hansard

(72.65). The EN-ES-FR model comes close to both results but does not improve on them

(74.32 and 75.22) respectively.

When testing the EN-ES and EN-FR model on a different language pair (Hansard and

Bangor respectively), we observe very large relative perplexity improvements although the

absolute performance (109.86 and 120.23) does not come close to the one achieved by their

in-target counterparts (70.28 and 72.65).

Even though fine-tuning XLM models does obtain perplexity improvements over pre-

trained models, these improvements do not seem to compare favorably with the performance

of the Factored Language Models, which were simpler (in terms of number of parameters)

and cheaper to train. We hypothesize that the reason for this is that we only performed fine-

tuning on the top two layers, whereas [Peters et al., 2018] showed that syntactic information,

which is critical for code-switching is usually represented in the lower layers. For future

work, we plan to experiment with more complex types of fine-tuning to obtain better code-

switched language modeling performance.

7.6 Fine-Tuning: Word-Level Language Identification

We fine-tune the XLM models on the task of tagging each word with a language identifier.

Since language tagging is a relatively simple task, there is no need to add a decoder on top

of the pre-trained XLM model. Instead we just add a linear projector layer with softmax
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Model Corpora Dev CS Hansard CS Bangor

Char2Vec
EN-ES 92.12 - 89.42

EN-FR 88.54 85.43 -

XLM

EN-ES 98.42 82.30 97.11

EN-FR 93.62 91.88 69.99

EN-ES-FR 97.79 92.44 97.18

Table 7.5: Fine-tuned XLM language taggers performance. Results are reported as word-

level language accuracy.

activations for the classification task. The language tagging task is explained in detail in

2.6.2. In this case though there are three main language tags EN, ES and FR for all three

models.

Since we are interested in testing the EN-ES model on Hansard and the EN-FR model

on Bangor, we add 1,000 sentences of monolingual French Wikipedia and 1,000 sentences of

monolingual Spanish Wikipedia during the fine-tuning of those models so they can recognize

French and Spanish words respectively.

Table 7.5 shows the results of fine-tuning the XLM models on their respective fine-tuning

sets: Miami Bangor for EN-ES, Hansard for EN-FR and the combination of both for EN-

ES-FR. The train, dev and split sets are the same used for language modeling in Chapter 6.

We also report the baseline performance by the Char2Vec model from Section 2.6.2 [Jaech

et al., 2016b]. Unsurprisingly, the performance of the XLM models is much superior to the

char2vec model. From the XLM models, the EN-ES model is able to better fine-tune on

the Miami Bangor corpus (98.42% on its validation set) than the EN-FR model on Hansard

(93.62%).

Table 7.5 also reports the word-level accuracy on the subset of code-switched sentences

from both corpora. The EN-ES model shows a small drop on accuracy on the subset of

code-switched sentences (1.33% relative to validation performance) and so does the EN-

FR model (1.86% relative drop) on their respective data sets. Both of them underperform

severely on the other language pair sets of code-switched sentences: the EN-ES model only

achieves 82.30% word-level accuracy on the Hansard subset and the EN-FR model does not
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even reach 70% accuracy on the Bangor subset. These results heavily imply that the XLM

models, even when trained multilingually on sub-word units that favor cross-lingual word

representations, are not able to capture switching across language pairs when one of the

languages is not seen during pre-training.

Finally, we observe that the EN-ES-FR model obtains the best performance on the sub-

set of code-switched sentences of both Hansard and Bangor, although these improvements

are not significant with respect to the performance from the EN-ES and EN-FR models.

7.7 Conclusions

In this Chapter, we have presented preliminary results on the task of fine-tuning pre-trained

multilingual models for code-switching language. We pre-trained three XLM models on

EN-ES, EN-FR and EN-ES-FR monolingual Wikipedia data and parallel data from UN

transcripts. When fine-tuning these models on the tasks of word-level language tagging

we observed that they reached much better performance than our baseline models. When

fine-tuning the pre-trained models on the task of language modeling using code-switched

data we observed improvements on MLM perplexity, but overall the performance of the

fine-tuned models is not desirable.

For future work, we plan to explore different venues to fine-tune the pre-trained XLM

models for code-switched language modeling. We hypothesized that the fine-tuning did not

work well because we only allowed the top two layers of the Transformer to be re-weighted.

We plan to perform more sophisticated fine-tuning, like discriminative tuning and slanted

triangular learning rates from [Howard and Ruder, 2018], to fine-tune the whole model.
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Chapter 8

Conclusions

We live in a very multilingual world and as globalization keeps expanding, languages will

keep interacting, changing and mixing as a direct consequence of such contact. Similarly,

our already linguistically diverse communities will only keep getting more diverse. In a

world where almost everyone has access to a cell phone or an internet connection, it is

soon going to become imperative that Natural Language Processing and Speech Processing

software are able to cope with code-switching.

In the first chapter of this thesis, we identified four main challenges towards adapting

or developing code-switching enabled technologies: 1) absence of a large collection of code-

switched data; 2) lack of high-quality annotations for models trained on supervised learning

algorithms; 3) insufficient understanding of why and when code-switching happens, and

useful ways of incorporating that information into our language models; and 4) efficient

learning schemes that allow us to use existing monolingual and parallel resources to build

code-switching technologies. In this thesis, I have addressed several aspects of each one of

these four points. These are the main contributions presented in this thesis:

• Code-switched data collection scheme: we introduced a set of code-switched sen-

tence detection methods based on the concept of anchor words and language identifi-

cation. Anchor words can be easily computed for any language from online resources.

We showed that data collected with our anchor methods returned examples with a

very high degree of bilingualism and code-switching.
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• A corpus of English-Spanish code-switched tweets: using our anchor-based

collection scheme we retrieved a set of 43,245 tweets in Spanish-English. We obtained

word-level language annotations for a subset of 8,285 of them.

• Part-of-speech tag annotation scheme for English-Spanish: we started from

a crowdsourcing annotation scheme initially developed for English and adapted it to

the Universal part-of-speech tagset, then extended it to a code-switching setting. We

also created the resources necessary to apply the annotation scheme to Spanish.

• A collection of part-of-speech tags for the Miami Bangor corpus: using the

annotation scheme, we crowdsourced part-of-speech tags for the whole Miami Bangor

corpus. The crowdsourced labels show high agreement with gold standard labels

(0.95-0.96) and high average recall across part-of-speech tags (0.87-0.99).

• Joint part-of-speech and language tagging for code-switching: we proposed

a bi-LSTM model for part-of-speech tagging and another one for joint part-of-speech

and language tagging. We showed that our model obtains better tagging accuracy

than previous state-of-the-art models. We also showed that the joint model obtained

better tagging accuracy.

• Analysis of the relationship between cognate words and code-switching: we

proved and disproved aspects of the Clyne hypothesis by running statistical analyses

on the largest corpus of English-Spanish code-switching that had ever been used for

this purposes until now. We confirmed that there is a strong statistical relationship

between code-switching and cognate words at the utterance level, when the cognate

precedes a switch, but not otherwise.

• Cognate-based feature set for code-switching: we proposed a set of cognate-

based features and used them for the task of language modeling. We observed that

this new set of features can improve language modeling performance with gains as

large as the ones provided by gold features like language identifiers or part-of-speech

tags. Furthermore, we showed that these features can be used across language pairs

and still help obtain better performance.



CHAPTER 8. CONCLUSIONS 102

• Pre-training cross-lingual language models and fine-tuning for downstream

tasks: we showed preliminary work on using pre-trained XLM models for downstream

code-switching tasks. The pre-trained models were trained on large monolingual cor-

pora. We fine-tuned these models for the language modeling on code-switched data

and the downstream task of word language tagging.

8.1 Future Work

These are the two main directions that the author of this thesis is planning to pursue to

continue work on code-switching:

• Fine-tuning pre-trained models for downstream code-switching tasks: our

preliminary results on fine-tuning XLM models for code-switched language modeling

seems to suggest that more aggressive fine-tuning strategies are needed in order to

adapt multilingual language models to code-switching.

• Automatic Speech Recognition: the great success seen in the field of speech recog-

nition from new state-of-the-art end-to-end systems opens up exciting possibilities to

build code-switch-enabled ASRs. Future work in this direction should tackle cross-

lingual training, and include attention mechanisms that focus on the probability of

switching languages.
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Jörg Tiedemann and Nikola Ljubešić. Efficient discrimination between closely related lan-

guages. In Proceedings of COLING 2012, pages 2619–2634, Mumbai, India, December

2012. The COLING 2012 Organizing Committee.

Jörg Tiedemann. Parallel data, tools and interfaces in OPUS. In Proceedings of LREC,

volume 2012, pages 2214–2218, 2012.

US Census Bureau. Annual estimates of the resident population by sex, age,

race, and Hispanic origin for the United States: April 1, 2010 to July 1,



BIBLIOGRAPHY 119

2014. https://factfinder.census.gov/bkmk/table/1.0/en/PEP/2014/PEPASR6H?

slice=hisp~hisp!year~est72014, 7 2014.

US Census Bureau. American community survey 1-year estimates: S1601 - language spoken

at home. https://factfinder.census.gov/bkmk/table/1.0/en/ACS/15_1YR/S1601,

11 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez,  L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-

itors, Advances in Neural Information Processing Systems 30, pages 5998–6008. Curran

Associates, Inc., 2017.

David Vilares, Miguel A Alonso, and Carlos Gómez-Rodrıguez. Sentiment analysis on
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Appendix A

Disambiguation Task for Specific

Tokens

A.1 List of Disambiguation Questions for English Tokens

About:

In the context of the sentence, is ‘about’ used to mean ‘approximately’?

ADV Yes.

ADP No.

All:

In the context of the sentence, ‘all’... ?

ADV appears before an adjective or an adverb. For example: ‘You got it all wrong’,

‘He traveled all around the city.’

DET appears before a noun or noun phrase. For example: ‘We hang out all day.’, ‘He

had all the right reasons.’

NOUN None of the above. For example: ‘I gave my all.’
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Around:

In the context of the sentence, could ‘around’ be replaced with ‘approximately’?

ADV Yes. For example: ‘He will arrive at around 3PM.’

ADP No. For example: ‘He lives around the block.’

As:

In the context of the sentence, does ‘as’... ?

ADV ...have a meaning similar to ‘so’. For example: ‘This one is not AS good.’

ADV ...appears first in a sequence like ‘...AS soon as...’, ‘...AS tall as...’, ‘...AS long

as....’

ADP ...introduces a comparison. For example: ‘You are not as tall AS me’

ADP ...specifies a role. For example: ‘What is your opinion AS a parent?’

SCONJ None of the above. For example: ‘She flew AS I came in’, ‘As soon AS I told

him’.

Back:

In the context of the sentence, is ‘back’ an adjective, a noun or a verb?

ADJ Adjective. For example: in ‘The back door.’, ‘back’ modifies the noun ‘door’.)

NOUN Noun. For example: ‘My back hurts.’

VERB Verb. For example: ‘I need you to back me up on this.’

ADV None of the above. For example: ‘Step back from the curb’.

Both:

In the context of the sentence, is ‘both’ being used with ‘and’?



APPENDIX A. DISAMBIGUATION TASK FOR SPECIFIC TOKENS 124

CONJ Yes. For example: ‘BOTH girls AND boys can do it’

DET No. For example: ‘Both of you are grounded!’

Bottom:

In the context of the sentence, is ‘bottom’ an adjective, a noun or a verb?

ADJ Adjective (‘The bottom drawer’)

NOUN Noun (‘The bottom of the ocean is still a mistery.’)

VERB Verb (‘The stocks bottomed out this morning.’)

But:

In the context of the sentence, ‘but’ is more closely translated into Spanish as...?

CONJ ‘PERO’. For example: ‘You can go but don’t tell him’ would be translated as

‘Puedes ir pero no se lo digas.’

ADP ‘EXCEPTO’. For example:‘Everybody but me’ would be translated as ‘Todo el

mundo excepto yo.’

ADV ‘SOLO’ or ‘NO ... MAS QUE’. For example: ‘She is but a child’ would be

translated as ‘No es mas que una nia.’

Can:

In the context of the sentence, is ‘can’ a verb that takes the meaning of ‘being able to’ or

‘know’?

AUX Yes. For example: ‘I can speak Spanish.’

NOUN No, it refers to a cylindrical container. For example: ‘Pass me a can of beer.’

Coming:

In the context of the sentence, is ‘coming’ being used like ‘upcoming’?
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ADJ Yes. For example: ‘Any plans this coming week?’

VERB No. For example: ‘She’s coming for the 8pm show.

Dear:

In the context of the sentence, is ‘dear’ being used like:

NOUN Yes, dear.

ADJ Dear Bob.

INTJ Dear!

Down:

In the context of the sentence, is ‘down’ being used as ...?

ADJ ...an Adjective. For example: ‘Prices are down.’, ‘They are down 3-0.’, ‘Are you

down to hang out?’, ‘The system is down.’

VERB ...a Verb. For example: ‘He downed two beers already.’, ‘The storm downed

several trees.’

ADP ...being used to refer ‘from the higher end to the lower end’ or ‘from one end to

the other’. For example: ‘The ball rolled down the hill’, ‘The bus went down the

street’

ADV None of the above. For example: ‘The cat jumped down from the table.’, ‘I went

down to Miami for a conference.’, ‘The computer has been shut down.’

Either:

In the context of the sentence, ‘either’:

CONJ Means ‘o’ in Spanish. For example: ‘EITHER the girls OR the boys can do it.’

ADV Means ‘as well’. For example: ‘I don’t like her either.’
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DET Means ‘cualquier’ o ‘cualquiera’ in Spanish and appears before a noun or noun

phrase. For example: ‘Either option is ok.’

PRON Means ‘cualquiera’ in Spanish and DOES NOT appear before a noun or noun

phrase. For example: ‘Either is fine.’

Far:

In the context of the sentence, is ‘far’ used like:

ADV an Adverb? For example: ‘She lives far away’.

ADJ an Adjective? For example: ‘The far end of the field’.

Front:

In the context of the sentence, is ‘front’:

ADJ an Adjective? For example: in ‘The front door.’, ‘front’ modifies the noun ‘door’.

NOUN a Noun? For example: ‘He always sits in the front of the class.’.

VERB a Verb? For example: ‘My apartment fronts West 119th Street.’.

Her:

In the context of the sentence, would ‘her’ be replaced by ‘his’ or ‘him’?

DET HIS. For example: ‘Her bag is right there.’

PRON HIM. For example: ‘I told her to come asap.’

His:

In the context of the sentence, would ‘his’ be replaced by ‘her’ or ‘hers’?

DET HER. For example: ‘His bag is right there.’

PRON HERS. For example: ‘Is that plate his or mine?’
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Less:

In the context of the sentence, is ‘less’ referring to:

ADJ Less of an amount. For example: ‘You should eat less food’

ADV Less of an action. For example: ‘You should eat less (frequently)’

CONJ The substraction operator. For example: ‘Five less than three is two.’

Over:

In the context of the sentence, is ‘over’...

CONJ ...being used as a mathematical operator? For example: Eight over two is four.

INTJ ...being used as way to end communication? For example: ‘Received? Over!’

ADP ...appearing before a noun, a pronoun or a phrase? For example: ‘There is a

bridge over THE RIVER.’, ‘I would choose him over YOU.’, ‘She is finally over

LOSING HER JOB’?

ADV None of the above. (‘Let me think that over.’, ‘The building just fell over.’,

‘Come over and play!’)

May:

In the context of the sentence, is ‘may’ a noun?

PROPN Yes. For example: ‘I was born in May.’?

AUX No. For example: ‘May I use the toilet, please?’

More:

In the context of the sentence, is ‘more’:

ADJ Referring to more of an amount or object. For example: ‘You should eat more

food’, ‘It grows to five feet or more’, or ‘more of the same’.
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ADV Replaceable by an adverb (such as ‘almost’), referring to more of an action (e.g.

‘You should run more’) or modifies an adverb (e.g. ‘more carefully’)

Much:

In the context of the sentence, is ‘much’ and adjective, adverb or pronoun?

ADJ Adjective. For example: ‘That is too much food.’.

ADV Adverb. For example: ‘That is much better!’

PRON Pronoun. For example: ‘Much has been said about the financial crisis.’

Near:

In the context of the sentence, is ‘near’ a preposition, adjective or adverb?

ADP Preposition. For example: ‘We were near the station.’

ADJ Adjective. For example: ‘The near side of the moon.’

ADV Adverb. For example: ‘Her record is near perfect’, ‘They had gotten quite near.’

Neither:

In the context of the sentence, is ‘neither’ being used with ‘nor’?

CONJ Yes. For example: ‘Neither the girls nor the boys can do it.’

DET No. For example: ‘Neither option is great.’

Next:

In the context of the sentence, ‘next’

ADJ Is an adjective modifying or describing a noun. For example: ‘The next train.’

ADV Is an adverb. For example: ‘They live next to me.’
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No:

In the context of the sentence, is ‘no’:

SPA In Spanish.

ENG In English.

In the context of the sentence, in which ‘no’ is in Spanish:

INTJ Being used as opposite of yes. For example: ‘NO!’, ‘NO?’, ‘NO, yo no lo hice.’

ADV It is used for verb negation. For example: ‘Yo NO lo HICE.’

In the context of the sentence, in which ‘no’ is in English:

INTJ Being used as opposite of yes. For example: ‘No!’, ‘No?’, ‘No, I don’t want to

talk to them.’

DET Appears before a noun or phrase. For example: ‘There is NO answer yet.’, ‘NO

spoiled child will tell me what to do.’, ‘Last time I asked, they had NO idea.’

ADV None of the above. For example: ‘This is no longer an issue.’

One:

In the context of the sentence, can ‘one’:

PRON Be replaced by ‘he’, ‘she’ or ‘it’? For example: ‘One shouldn’t smoke in public

parks.’

NOUN Be replaced by ‘person’, ‘thing’, ‘object’....? It might be preceded by an article

like ‘the’. For example: ‘The one who cares’, ‘The person who cares.’

NUM None of the above. For example: ‘One of the reasons’, ‘One dollar.’

Only:

In the context of the sentence, can ‘only’ be replaced by ‘sole’?
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ADJ Yes. For example: ‘The only solution’, ‘The sole solution.’

ADV No. For example:‘’I only brought bread and milk.’

Other:

In the context of the sentence, ‘other’...

ADV Means ‘apart from’ in the sentence ‘other than...’. For example: ‘Other than

that, I’m fine.’

ADJ Means ‘second’ or ‘different’. For example: ‘I get paid every other week.’

PRON Means ‘other person’, ‘other people’, or other subject in general. For example:

‘The other is bad.’

DET None of the above, always goes before a noun. For example: ‘Other people are

coming later.’

Please:

In the context of the sentence, is ‘please’ used to make a polite request?

INTJ Yes. Example: ‘Please, pass me the bread.’

VERB No. Example: ‘You can do what you please.’

Plus:

In the context of the sentence, is ‘plus’...

CONJ ...being used as mathematical operator? For example: ‘Two plus two is four.’

NOUN ...being used as a synonym of ‘asset’ or positive quantity? For example: ‘He is a

real asset to the team’

ADJ None of the above. For example: ‘A battery has a plus pole and a minus pole.’
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Side:

In the context of the sentence, is ‘side’...

ADJ ...modifying a noun? For example: ‘the side door.’

VERB ...acting like a verb? For example: ‘I need you to side with me.’

NOUN None of the above. For example: ‘A square has four sides.’

So:

In the context of the sentence, ‘so’...

SCONJ Is used like ‘so that’ or ‘therefore’? (eg. ‘I opened the door so (that) he could

leave’, ‘He ate too much cake, so he fell ill.’)

INTJ Is used after a pause for thought to introduce a new topic, question or story (eg.

‘So, who’s coming with me?) or short for ‘so what?’ (eg. ‘So???’)

ADV None of the above. (eg. ‘It was so hot’, ‘so far as’, ‘so long as’, ‘so much as’,

‘Just say so!’)

That:

In the context of the sentence, could ‘that’ be replaced by:

PRON ‘WHICH’ and does not precede a noun phrase as in ‘The car that can’t start.’

PRON ‘IT’ as in ‘That is crazy.’

DET ‘THE’ and precedes a noun phrase as in ‘I want that car.’

SCONJ None of the above. Select this option ONLY if the first three options are defi-

nitely wrong. In this case, ‘that’ can be removed from the sentence without any

consequence. For example: ‘I was surprised that he didn’t come.’, ‘Have you

heard that she got fired?’
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This:

In the context of the sentence, could ‘this’ be replaced by:

PRON ‘it’ as in ‘This is crazy.’

DET ‘the’ as in ‘I want this car.’

Those:

In the context of the sentence, could ‘those’ be replaced by:

PRON ‘they’ as in ‘They are crazy.’

DET ‘the’ as in ‘I want those cars.’

These:

In the context of the sentence, could ‘these’ be replaced by:

PRON ‘they’ as in ‘These are crazy.’

DET ‘the’ as in ‘I want these cars.’

Then:

In the context of the sentence, is ‘then’ being used like ‘former’?

ADJ Yes. For example: ‘The then president traveled to Finland.’

ADV No. For example: ‘What’s the plan then.?

There:

In the context of the sentence, does ‘there’ refer to a location and can be replaced by an

adverb?

ADV Yes. For example: ‘I want to go there.’
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PRON No. For example: ‘There was a loud noise.’

Times:

In the context of the sentence, ‘times’ translation in Spanish would be...

CONJ POR. For example: ‘Seven times five is thirty-five.’ would be translated as ‘Siete

por cinco es treinta y cinco.’

NOUN TIEMPOS. For example: ‘Modern times are so very different from the past.’

would be translated as ‘Estos tiempos modernos son tan distintos a los pasados.’

VERB MEDIR o CRONOMETRAR. For example: ‘Every day he times how long it

takes his ride home.’ would be translated as ‘Cada d́ıa cronometra lo que tarda

en llegar a casa.’

To:

In the context of the sentence, is ‘to’ a particle for the infinitive form of a verb?

PART Yes. For example: ‘to be’, ‘to have’, ‘to move.’

ADP No, it’s a preposition. For example: ‘He is moving to Arizona next week.’

Top:

In the context of the sentence, is ‘top’...

ADJ ...modifying a noun? For example: ‘top drawer’

NOUN ...a noun? For example: ‘The kite got caught at the top of a tree.’

VERB ...a verb? For example: ‘Top my ice cream with chocolate sauce.’

ADV ...taking the meaning of ‘first’? For example: ‘She came top in her French exam.’

Up:

Is ’up’...
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ADJ ...an adjective? For example: ‘Time is up!’, ‘I am up for a tree.’, ‘It’s 1AM and

I am still up.’

VERB ...a verb? For example: ‘If we up the volume, maybe we’ll be able to hear.

NOUN ...a noun? For example: ‘Up is the correct way to go.’, ‘There are always ups

and downs.’

ADP ...used to refer to ‘towards the top of, towards a point of reference, or further

along’? For example: ‘The cat went up the tree.’, ‘They took a boat up the

river.’, ‘Go up the street.’

ADV ...modifying a verb? For example: ‘Look it up in the dictionary.’, ‘Tear up

the contract.’, ‘Cheer up man!’, ‘Drink up, the pub is closing.’, ‘Put up your

weapons.’

Very:

In the context of the sentence, is ‘very’ being used like ‘mere’, ‘sheer’, or ‘real’?

ADJ Yes. For example: ‘The very thought.’

ADV No. For example: ‘I am very grateful for the present.’

Vice:

In the context of the sentence, is ‘vice’ being in the same context as ‘vice president’ or ‘vice

principal’?

ADJ Yes.

NOUN No. For example: ‘The drugs and vice department is underfunded.’

Well:

In the context of the sentence, is ‘well’:

NOUN Being used as a noun (‘The well was full of water.’)



APPENDIX A. DISAMBIGUATION TASK FOR SPECIFIC TOKENS 135

ADJ Being used as the opposite of sick (‘He is feeling well.’)

INTJ Being used to start a sentence: to acknowledge a statement or situation (‘Well, I

thought it was good.’), as an exclamation of surprise (‘Well, well, well, look who’s

here!), used to fill gaps ‘Well...we went for a picnic.’, or to express reluctance (‘It

was a bit...well...loud.’)

ADV None of the above. Examples: ‘He does his job well’, ‘A well done steak’, ‘The

author is well known.’

What:

In the context of the sentence, does ‘what’ appear immediately before a noun (not a pro-

noun) and any adjectives it may have?

DET Yes. For example: ‘What KIND do you want?’, ‘Tell me what BOOK to buy.’

PRON No. For example: ‘What is your problem?, ‘What was that about?’, ‘You know

what I mean?’

Whatever:

In the context of the sentence, does ‘whatever’ appear immediately before a noun and any

adjectives it may have?

DET Yes. For example: ‘Whatever EVENTS happen, we will be alright.’, ‘Sell what-

ever BOOKS you own.’

PRON No. For example: ‘Whatever happens, we will be all right.’

When:

In the context of the sentence, can ‘when’ be substituted by ‘at what time’, ‘what time’,

‘how soon’, ‘in what circumstances’ or ‘on which’?
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ADV YES. For example: ‘when did you last see him?’, ‘since when have you been

interested?’, ‘when can I see you?’, ‘when would such a rule be justifiable?’,

‘Saturday is the day when I get my hair done.’

SCONJ NO. For example: ‘I loved math when I was in school’, ‘He had just drifted off to

sleep when the phone rang’, ‘Why bother to paint it when you can photograph

it with the same effect?’

Will:

In the context of the sentence, is ‘will’ a noun, a verb, or a modal verb?

NOUN Noun. For example: ‘He has no will.’

VERB Verb meaning ‘wish something to happen’ or ‘bequath something to someone’.

For example: ‘Tom willed him to leave.’

AUX Modal verb for future tense. For example: ‘Sarah will visit her relatives.’

Worth:

In the context of the sentence, does ‘worth’ appear before a value or quantity? (e.g. ‘worth

ten dollars’, ‘worth a lot’, ‘worth your attention’, ‘worth the effort’, etc.)

ADP Yes. For example: ‘He’s not worth the pain.’

NOUN No. For example: ‘His net worth is really impressive.’

Yes:

In the context of the sentence, ‘yes’...

INTJ Is used to give an affirmative response. For example: ‘Yes, I will do it.’, ‘Yes?’

NOUN Is an affirmative answer or decision, especially in voting. For example: ‘He voted

yes in the referendum’, ‘Is that a yes?’, ‘They are still counting the yeses and the

noes.’



APPENDIX A. DISAMBIGUATION TASK FOR SPECIFIC TOKENS 137

Yet:

In the context of the sentence, could ‘yet’ be replaced by ‘but’?

CONJ Yes. For example: ‘I like this, yet I wouldn’t eat it again.’

ADV No. For example: ‘I’m not there yet.’

A.2 List of Disambiguation Questions for Spanish Tokens

Algo:

In the context of the sentence, is the word ‘algo’...

PRON Used to refer to an unknown identity (‘Hay algo para mi?’) or a small or unknown

quantity (‘Apostemos algo.’)

ADV Used to refer to ‘un poco, no del todo’ (‘Está algo sucio.’), ’con poca intensidad’

(‘Llov́ıa algo cuando saĺı’) or a short period of time (‘Durmió algo.’)

Bien:

In the context of the sentence, the word ‘bien’:

NOUN Means ‘opposite of evil’. For example: ‘El bien y el mal.’

NOUN Means ‘property’ or ‘resources’. For example: ‘Los bienes familiares.’

ADV Means ‘well’, ’nice’ or ‘fine’. For example: ‘Hiciste bien.’

ADV Means ‘very’. For example: ‘Está bien sucio.’

Bueno:

In the context of the sentence, word ‘bueno’ used to start a conversation or to refer to the

speaker’s discontent or partial agreement?
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INTJ Yes. For example: ‘Bueno? Quien llama?’, ‘Bueno, lo que me faltaba!’, ‘Bueno,

mira, haz lo que quieras.’

ADJ No. For example: ‘El salmón estaba muy bueno.’

Como:

In the context of the sentence, choose the option that is most correct about the word ‘como’:

VERB It is a form of the verb ‘comer’. For example: ‘Como fruta todos los d́ıas’.

ADP It can be replaced by ‘en calidad de’, ‘en concepto de’ or ‘a modo de’ without

changing the meaning and structure of the sentence.

ADV It is equivalent to ‘más o menos’, ‘aproximadamente’ (eg. ‘Debe hacer como tres

aos que no nos véıamos.’), ‘tan pronto como’ (‘Como recib́ı su carta, me alegre

mucho.’), ‘según’ (‘Como me dećıa mi padre, de los politicos no te creas nada.’),

‘de la forma que’ (‘Te lo contaré todo como ha ocurrido.’).

SCONJ It is used to indicate a comparison of equality. For example: ‘Julia es tan alta

como su madre.’, ‘Invitaron a la reunion tanto a Carla como a Pilar.’, ‘No hay

como ponerse a trabajar para terminar pronto.’

SCONJ It links a condition to a consequence in causal and conditional sentences. For

example: ‘Como no estudié, suspend́ı.’, ‘Como no estudies, suspenderás’.

ADV Appears followed by ‘si’ or ‘que’. For example: ‘Se comportó como si estuviera

solo.’, ‘Hizo como que no me vio.’)

Cómo:

In the context of the sentence, the word ‘cómo’...

NOUN Appears right after an article, as ‘el’. For example: ‘El problema no era el cómo

sino el donde.’

INTJ Is used to refer to anger. For example: ‘Cómo?! Yo jamas haŕıa eso.’
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ADV None of the above. For example: ‘Cómo te encuentras?’, ‘Cómo te gustan los

huevos?’

Cuando:

In the context of the sentence, can the word ‘cuando’ be replaced by...

SCONJ ...‘en caso de que’, ‘a pesar de que’, ‘puesto que’ without changing the meaning

or structure of the sentence.

ADP ...‘en el tiempo de’ or ‘el tiempo de’ without changing the meaning or structure

of the sentence.

ADV None of the above.

Donde:

In the context of the sentence, can the word ‘donde’ be replaced by ‘cerca de’, ‘en casa

de’, ‘el lugar de’, ‘la casa de’, ‘al lugar de’ or ‘a casa de’ without changing the meaning or

structure of the sentence?

ADP Yes. For example: ‘Fuimos donde Antonio’ becomes ‘Fuimos a casa de Antonio’.

‘Merodeaba por donde Antonio’ becomes ‘Merodeaba por la casa de Antonio’.

‘El banco está donde la fuente’ becomes ‘El banco está cerca de la fuente’.

ADV No. For example: ‘Está donde lo dejaste’, ‘La tienda donde te llevo está cerca’,

‘Esa es la calle donde naćı’.

Entonces:

In the context of the sentence, the word ‘entonces’...

SCONJ Can be replaced by ‘por lo tanto’? (Example: ‘Lo dice el periódico, entonces no

puede ser mentira.’)

NOUN Appears after ‘aquel’ and is used to refer to the past? (example: ‘En aquel

entonces....’)
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ADV None of the others. (Example: ‘Se casará con él y entonces se irán a vivir a

Francia.’, ‘La juventud de entonces era más responsable.’, ‘Si llegó ayer, entonces

tendŕıamos que haberlo visto ya.’)

Esa:

In the context of the sentence, can ‘esa’ be replaced by ‘la’ without changing the structure

of the sentence?

DET Yes (‘Esa silla está rota’ becomes ‘La silla está rota’)

PRON No (‘Esa no me gusta tanto’ becomes ‘La no me gusta tanto’)

Esas:

In the context of the sentence, can ‘esas’ be replaced by ‘las’ without changing the structure

of the sentence?

DET Yes (‘Esas sillas están rotas’ becomes ‘Las sillas están rotas.’)

PRON No (‘Esas no me gustan tanto’ becomes ‘Las no me gustan tanto.’)

Esos:

In the context of the sentence, can ‘esos’ be replaced by ‘los’ without changing the structure

of the sentence?

DET Yes (‘Esos folios están rotos’ becomes ‘Los folios están rotos.’)

PRON No (‘Esos no me gustan tanto’ becomes ‘Los no me gustan tanto.’)

Ese:

In the context of the sentence, which of the following is true for ‘ese’?

DET It precedes a noun and any adjectives it may have. For example: ‘Ese CHICO

es muy guapo’, where chico is the noun.
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PRON It is the subject or object of the sentence, and DOES NOT precede a noun

phrase, for example: ‘Ese es mi favorito.’ or ‘Me compras ese?’)

Esta:

In the context of the sentence, can ‘esta’ be replaced by ‘la’ without changing the structure

of the sentence?

DET Yes (‘Esta silla está rota’ becomes ‘La silla está rota.’)

PRON No (‘Esta no me gusta tanto’ becomes ‘La no me gusta tanto.’)

Estas:

In the context of the sentence, can ‘estas’ be replaced by ‘las’ without changing the structure

of the sentence?

DET Yes (‘Estas sillas están rotas’ becomes ‘Las sillas están rotas.’)

PRON No (‘Estas no me gustan tanto’ becomes ‘Las no me gustan tanto.’)

Estos:

In the context of the sentence, can ’estos’ be replaced by ‘los’ without changing the structure

of the sentence?

DET Yes (‘Estos folios están rotos’ becomes ‘Los folios están rotos.’)

PRON No (‘Estos no me gustan tanto’ becomes ‘Los no me gustan tanto.’)

Este:

In the context of the sentence, which of the following is true for ‘este’?

NOUN It refers to a cardinal point (norte, sur, este, oeste).

PRON It can be replaced by ‘El chico’ without changing the sentence’s structure (‘Este

me gusta’ becomes ‘El chico me gusta.’)
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DET It cannot be replaced by ‘El chico’ without changing the sentence’s structure

(‘Este computador es caro’ becomes ‘El chico computador es caro.’)

La:

In the context of the sentence, would ‘la’ be translated in English as ‘her’ or ‘the’?

DET THE (‘La nia está corriendo’ becomes ‘The girl is running.’)

PRON HER (‘La dije que parase’ becomes ‘I told her to stop.’)

Las:

In the context of the sentence, would ‘las’ be translated in English as ‘them’ or ‘the’?

DET THE (‘Las tarjetas se cayeron al suelo’ becomes ‘The cards spilled all over the

ground.’)

PRON THEM (‘Las tomé ayer a las 5.’ becomes ‘I took them yesterday at 5.’)

Los:

In the context of the sentence, would ‘los’ be translated in English as ‘them’ or ‘the’?

DET THE (‘Los śıntomas empezaron inmediatamente.’ becomes ‘The symptons started

immediately.’)

PRON THEM (‘Los vi yendo a coger el metro.’ becomes ‘I saw them going to the

subway.’)

Lo:

In the context of the sentence, what is the best translation of ‘lo’ in English?

PRON IT (‘Lo vi’ becomes ‘I saw it.’)

DET THE (‘Lo mejor de todo...’ becomes ‘The best part...’)
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Menos:

In the context of the sentence, is ‘menos’:

NOUN ...used simply to refer to the math symbol of subtraction, and it appears after

‘un’. For example ‘Hay un menos delante del paréntesis’.

CONJ ...used as a math operator? For example ‘Three minus two.’

ADP ...used to indicate an exception and ‘menos’ can be replaced by ‘salvo’ or ‘ex-

cepto’?

ADJ ...used to mean less quantity of a noun. For example: ‘Tiene menos interés’.

‘Trajo cuatro tornillos menos.’

ADV None of the above.

Mucho:

In the context of the sentence, ‘mucho’...

DET Can be replaced by ‘un’ without changing the sentence structure?

PRON Can be replaced by ‘esto’ without changing the sentence structure?

ADV Can be replaced by ‘con intensidad’, ‘con frecuencia’, ‘demasiado tiempo’, ‘en

gran cantidad’? Or it is followed by ‘más’ as in ‘Eso es mucho más bonito’.

ADJ None of the above.

Nada:

In the context of the sentence, ‘nada’...

VERB ...means ‘to swim’.

PRON ...can be substituted for ‘ninguna cosa’, ‘cualquier cosa’, ‘ninguna cantidad’ or

‘poco tiempo’.
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ADV ...modifies an adjective or an adverb, e.g. ‘Los ejercicios no eran nada fáciles’.

‘Ese tren no va nada despacio.’

NOUN None of the above.

Otro:

In the context of the sentence, what would be the best translation for ‘otro’ in English?

DET ‘Other’ or ‘Another’. For example: ‘Otro chico me dijo lo mismo.’ would trans-

late as ‘Another boy told me the same.’

PRON ‘Another one’. For example: ‘Otro no diŕıa lo mismo’ would translate as ‘Another

one would not say the same.’

Otros:

In the context of the sentence, what would be the best translation for ‘otros’ in English?

DET ‘Other’ or ‘Another’. For example: ‘Otros chicos me dijeron lo mismo.’ would

translate as ‘Other kids told me the same.’

PRON ‘Other people’. For example: ‘Otros no diŕıan lo mismo’ would translate as

‘Other people would not say the same.’

Otra:

In the context of the sentence, what would be the best translation for ‘otra’ in English?

DET ‘Other’ or ‘Another’. For example: ‘Otra chica me dijo lo mismo.’ would trans-

late as ‘Another girl told me the same.’

PRON ‘Another one’. For example: ‘Otra no diŕıa lo mismo’ would translate as ‘Another

one would not say the same.’

Otros:

In the context of the sentence, what would be the best translation for ‘otros’ in English?
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DET ‘Other’ or ‘Another’. For example: ‘Otras chicas me dijeron lo mismo.’ would

translate as ‘Other kids told me the same.’

PRON ‘Other people’. For example: ‘Otras no diŕıan lo mismo’ would translate as

‘Other people would not say the same.’

Para:

In the context of the sentence, is the word ‘para’ a form of the verb ‘parar’ (to stop)?

VERB Yes.

ADP No.

Que:

In the context of the sentence, ‘que’:

PRON Appears after ‘uno’, ‘una’, ‘la’, ‘el’, ‘las’, ‘los’ or ‘lo’. For example: the sentence

‘La que está en la peĺıcula....’, ‘Lo que yo quiero’, ‘Busco una que me haga feliz.’

PRON What ‘que’ refers to can be replaced by ‘el que’, ‘la que’, ‘los que’, ‘las que’ or

‘lo que’. For example: the sentence ‘La estrella que está en la peĺıcula....’ can be

modified by substituting the antecedent ‘La estrella que’ by ‘La que’, obtaining

‘La que está en la peĺıcula...’. Same with ‘La mujer con que yo hablé’ to ‘Con la

que yo hablé’ and ‘La casa que yo quiero’ to ‘La que yo quiero...’

SCONJ None of the above. For example: ‘Mira que te lo dije.’

Qué:

In the context of the sentence, ‘qué’...

DET Appears before a noun. For example: ‘A qué AMIGO hay que llamar?’, ‘Qué

VINO te gusta?’, ‘Me pregunto qué EDAD tendŕıa su hijo.’
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ADV It appears before an adjective or an adverb in an question context. For example:

‘Qué DIF́ıCIL es!’, ‘Qué DESPACIO va!’

PRON None of the others. For example: ‘Qué te gusta más?’, ‘Qué dices que es tan

dif́ıcil? ’

Śı:

In the context of the sentence, ‘śı’...

INTJ ...means ‘Yes’. Examples: ‘Śı, traelo.’, ‘Te dijo que śı.’

PRON ...has the meaning of itself, himself, herself. For example: ‘Se lo aplicó a śı

mismo.’

NOUN ...means ‘permission’ or ‘approval’. For example: ‘Ya tengo el śı de mi padre.’

Toda:

Select the first correct option following the given order. In the context of the sentence,

‘toda’:

DET Appears before a noun or a noun phrase that matches in gender and number

(‘Toda la vida he estado esperando este momento.’)

ADJ Can be substituted by ‘entera’ (‘Se la comió toda.’)

PRON None of the above. (‘Toda es caŕısima.’)

Todas:

Select the first correct option following the given order. In the context of the sentence,

‘todas’:

DET Appears before a noun or a noun phrase that matches in gender and number

(‘Todas las veces que me llamaste estaba fuera!’)

ADJ Can be subsituted by ‘enteras’ (‘Se las comió todas.’)
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PRON None of the above (‘Todas son más rápidas que yo.’)

Todos:

Select the first correct option following the given order. In the context of the sentence,

‘todos’:

DET Appears before a noun or a noun phrase that matches in gender and number

(‘Todos los d́ıas me acuerdo de ti.’)

ADJ Can be substituted by ‘enteros’ (‘Se los comió todos’)

PRON None of the above. (‘Todos son más rápidos que yo.’)

Todo:

Select the first correct option following the given order. In the context of the sentence

‘todo’:

DET Appears before a noun or a noun phrase that matches in gender and number.

For example: ‘Todo el tiempo me lo pasé pensando en ti.’

ADJ Can be substitued by ‘entero’. For example: ‘Se lo comió todo.’

PRON None of the above. For example: ‘Todo es caŕısimo.’

Una:

In the context of the sentence, ‘una’:

DET Appears before a noun that matches in gender and number. For example: ‘Una

nia’, ‘unos nios’...

PRON Is the subject or the object of the verb. For example: ‘Una me dijo que me fuese

cuanto antes’, ‘Dı́selo a una solo.’

NUM Refers to the number one. For example: ‘Son la una y media.’
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Uno:

In the context of the sentence, ‘uno’:

NUM Means the number one. For example: ‘Uno, dos, tres....’, ‘Solo tengo uno.’

PRON Is the subject or object of the sentence. For example: ‘Uno me dijo que me fuese

cuanto antes’, ‘Dı́selo a uno solo.’

Unos:

In the context of the sentence, ‘unos’:

DET Appears before a noun that matches it in gender and number. For example:

‘Unos perros’, ‘unos nios’...

PRON Is the subject or object of the sentence. For example: ‘Unos dijeron de quedar

mas tarde.’, ‘Les di comida a unos y bebida a otros.’

NOUN Is the plural of the number one. For example: ‘Los unos de cada mes va al

médico.’

Hay:

In the context of the sentence, ‘hay’ is used as an auxiliary verb as in ‘hay que + verb’:

AUX Yes. For example: ‘Hay que hacerlo cuanto antes.’, ‘Hay que encontrar una

solución.’

VERB No. For example: ‘Hay dos opciones.’

Ni:

In the context of the sentence, ‘ni’:

CONJ Would be translated as ‘neither’ ‘nor’ or ‘or’ as in ‘Ni Juan, ni Pedro ni Felipe

te darán la razón.’ (here ‘ni’ can be translated as ‘Neither Juan, nor Pedro, nor
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Felipe will admit you’re right.’), or ‘No descansa ni de d́ıa ni de noche.’ (here

the best translation would be ‘He doesn’t rest at day or at night.’)

ADV It’s more closely translated as ‘even’ or ‘not even’. For example: ‘No descansé ni

un minuto’ – ‘I didn’t rest even for a minute.’

Más:

In the context of the sentence, ‘más’:

CONJ ...being used as mathematical operator? For example: ‘Dos más dos son cuatro.’

NOUN ...means symbol of the sum operation? For example: ‘En esta suma falta el más.’

ADV ...denotes superiority and appears before adjectives and adverbs. For example:

‘Ve más rápido’, ‘l está más gordo.’

ADJ ...denotes more quantity of something and appears before nouns. For example:

‘Pon más pan en la mesa.’

PRON None of the above. In general means more of a quantity or quality but it does

not appear before a noun, adjective or adverb. For example: ‘He comprado más.’

Any:

In the context of the sentence, ‘any’:

DET Means ‘cualquier’, ‘cualquiera’, ‘algún’, ‘alguna’, ‘ningún’ or ‘ninguna’ in Span-

ish, and is ALWAYS followed by a noun. For example: ‘Do you have any bread?’,

‘I’ll watch any film’, ‘I’ll take any leftovers.’, ‘I didn’t watch any film.’

ADV Means ‘at all’. For example:‘’He wasn’t any good at soccer.’

PRON None of the above. For example: ‘Have you met any of my friends?’, ‘Any will

do.’
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Anything:

In the context of the sentence, ‘anything’ means ‘nada’.

ADV Yes. For example: ‘She is not anything like him.’

PRON No. For example: ‘Anything will do.’, ‘I’ll do anything to prove it.’

Away:

In the context of the sentence, ‘away’ is used as ‘estar fuera’ or ‘estar de viaje’.

ADJ Yes. For example: ‘My father is away in Chicago.’

ADV No. For example: ‘He walked away after seeing the price.’, ‘It’s two miles away.’

Enough:

In the context of the sentence, ‘enough’ would be best translated as:

ADV ‘Lo suficiente’ or ‘Lo suficientemente’. For example: ‘He worked enough to pay

for his college bills’ or ‘He is fast enough to arrive here on time.’

INTJ ‘Basta!’. For example: ‘Enough! I don’t want to listen to you anymore!’

ADJ ‘Suficiente’ or ‘bastante’ AND appears before a noun. For example: ‘Do we have

enough money?’

PRON ‘Suficiente’ or ‘bastante’ AND DOES NOT appear before a noun. For example:

‘Do we have enough?’

Even:

In the context of the sentence, ‘even’ would be best translated as:

ADV ‘Aún’, ‘hasta’ or ‘ni siquiera’. For example: ‘I feel even worse than you.’, ‘Even

a child could do it.’
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VERB ‘Nivelar’, ‘aplanar’ or ‘allanar’ algo. For example: ‘They used a roller to even

the lawn.’

ADJ None of the above. For example: ‘The first half of the match was fairly even’,

‘Any number doubled is even.’

Here:

In the context of the sentence, ‘here’:

ADV Is best translated as ‘aqúı’, ‘ahora’. For example: ‘He’s still here with us’, ‘What

we need to do here is this.’

INTJ Is used to attract someone’s attention. For example: ‘Here, let me hold it.’

Inside:

In the context of the sentence, ‘inside’:

ADV Means ‘indoors’. For example: ‘I stay inside when it rains.’

ADP Means ‘in the interior of’. For example: ‘He stayed inside the plane’, ‘He felt it

deep inside himself.’

NOUN Means ‘interior’. For example: ‘The inside of the house is beautiful.’

ADJ Means ‘positioned on the inside’. For example: ‘Those jeans have an inside

pocket.’

Like:

In the context of the sentence, ‘like’:

VERB Corresponds to the verb ‘to like’. For example: ‘I like hamburgers.’

ADV Is used to quote someone, usually preceded by the verb to be. For example: ‘And

he was like, I don’t know what to say!’
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ADV Is used as filler and can be deleted from the sentence without changing its mean-

ing. For example: ‘And I am there LIKE totally lost LIKE waiting for someone

to help me out.’

NEXT None of the above.

In that case, maybe ‘like’:

ADP Can be substituted for ‘similar to’. For example: ‘He used to have a car like

mine.’

SCONJ Can be substitued for ‘as if’, ‘in the same way that’. For example: ‘I felt like I’d

been kicked by a camel’, ‘People that change partners like they change clothes.’

NEXT None of the above.

In that case, maybe ‘like’

ADP Can be substituted for ‘for example’ or ‘such as’. For example: ‘There are lots

of birds, like ducks and gulls.’

ADJ Can be substituted for ‘similar’. For example: ‘My partner and I have like

minds.’

NOUN None of the above. For example: ‘Tell me your likes and dislikes.’, ‘It was

something the likes of which I had never seen before.’

Not:

In the context of the sentence, ‘not’:

PART Is used for verb negation. For example: ‘I did not go to Paris.’, ‘I am not going

to study for tomorrow’s final.’

ADV None of the above. For example: ‘Not a single attempt was made to fix it.’

Nothing:

In the context of the sentence, ‘nothing’:
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ADV Means ‘not at all’. For example: ‘He looks nothing like his father.’

NOUN Means ‘a person or thing of no importance’. For example: ‘He is nothing to me

now.’

PRON None of the above. For example: ‘Theres nothing you can do.’

Down:

In the context of the sentence, ‘on’ means ‘encendido’, ‘en pie’ or ‘abierto’ in Spanish?

ADJ Yes. For example: ‘The computer is on.’, ‘The party is still on’, ‘The festival is

on all week long.’

NEXT No. For example: ‘The apple is on the table,’ ‘Put it on!’

Does an object immediately follow the word ‘on’?

ADP Yes, there is an object right after ‘on’. For example: ‘I put it on THE TABLE.’

– the object ‘the table’ immediately follows ‘on’.

NEXT No, the object is not right after ‘on’, or there is no object. For example: in ‘The

table he put it on was green.’ the object is not right after ‘on’; in ‘What is going

on?’ ‘on’ has no object.

Is the object of the preposition ‘on’ located earlier in the sentence? For example, in ‘The

table he put it on was green.’, the preposition ‘on’ refers to the object ‘the table’ earlier in

the sentence.

ADP Yes.

NEXT No.

Can you place an adverb describing how something is done (such as ‘calmly’, ‘quietly’,

‘easily’, ‘quickly’, etc.) between ‘on’ and its associated verb? For example, introducing the

adverb ‘steadily’ in the sentence ‘She burbled (steadily) on.’

ADV Yes.
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ADP No.

Off:

In the context of the sentence, ‘off’ means ‘apagado’, ‘distinto’, ‘raro’ or ‘erroneo’.

ADJ Yes. For example: ‘The computer is off.’, ‘Something feels off.’, ‘Calculations

were off by a hundred.’

NEXT No. For example: ‘That’s off limits.’, ‘Switch it off now!’

Does the object of the preposition ‘off’ immediately follow the word ‘off’?

ADP Yes, there is an object right after the preposition. For example: ‘He took off the

shirt’ – the object ‘the shirt’ immediately follows the preposition ‘off’.

NEXT No, the object is not right after the prepostion, or there is no object. For example:

‘When did he log off?’ – ‘off’ has no object.

Is the object of the preposition ‘off’ located earlier in the sentence? For example, in ‘The

shirt he took off was yellow.’, the preposition ‘off’ refers to the object ‘the shirt’ earlier in

the sentence.

ADP Yes.

NEXT No.

Can you place an adverb describing how something is done (such as ‘calmly’, ‘quietly’,

‘easily’, ‘quickly’, etc.) between ‘off’ and its associated verb? For example, introducing the

adverb ‘quickly’ in the sentence ‘The man ran (quickly) off’

ADV Yes.

ADP No.

Once:

In the context of the sentence, ‘once’ can be substituted by ‘as soon as’ or ‘when’:
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SCONJ Yes. For example: ‘We’ll get a move on once we find the keys!’

ADV No. For example: ‘They deliver once a week.’, ‘She was once the best opera

singer alive.’

Out:

In the context of the sentence, ‘out’:

ADJ Means ‘not at home’, ‘revealed’ or ‘made public’. For example: ‘He’s out since

this morning.’, ‘The secret was soon out.’

VERB Is a verb. For example: ‘There is not reason to out a closeted politician.’

NOUN Is a noun. For example: ‘They gave me an out.’

NEXT None of the above.

Does the object of the preposition ‘out’ immediately follow the word ‘out’

ADP Yes, there is an object right after the preposition. For example: ‘I walked out the

building.’ – the object ‘the building’ immediately follows the preposition ‘out’.

NEXT No, the object is not right after the prepostion, or there is no object. For example:

‘Why don’t you get out?’ – ‘out’ has no object.

Is the object of the preposition ‘out’ located earlier in the sentence? For example, in ‘The

fire the firemen put out was reported by a neighbor.’, the preposition ‘out’ refers to the

object ‘the fire’ earlier in the sentence.

ADV Yes.

NEXT No.

Can you place an adverb describing how something is done (such as ‘calmly’, ‘quietly’,

‘easily’, ‘quickly’, etc.) between ‘out’ and its associated verb? For example, introducing the

adverb ‘quickly’ in the sentence ‘I walked (quickly) out’

ADV Yes.



APPENDIX A. DISAMBIGUATION TASK FOR SPECIFIC TOKENS 156

ADP No.

Outside:

In the context of the sentence, ‘outside’:

ADV Means ‘outdoors’. For example: ‘I slept outside last night.’, ‘The dog is barking

outside.’

ADJ Means ‘exterior’ (noun). For example: ‘The outside lights are turned off.’

NOUN Means ‘external side’. For example: ‘The outside of the house needs to be

painted.’

ADP None of the above. For example: ‘There was a boy outside the door.’

Something:

In the context of the sentence, ‘something’ means ‘somewhat’ or ‘to a degree’:

ADV Yes. For example: ‘My back hurts something terrible’, ‘The baby looks something

like his father’, ‘There was something close to a million dollars.’

PRON No. For example: ‘Something that I like...’, ‘He whispered something that I

could not hear.’

Somewhere:

In the context of the sentence, ‘somewhere’ would be best translated in Spanish as:

ADV ‘En alguna parte’. Notice the inclusion of the word ‘EN’. For example: ‘I’ve seen

you somewhere before’ would be best translated as ‘Te he visto antes en alguna

parte.’

PRON ‘Algún sitio.’ For example: ‘In search of somewhere to live.’ would be best

translated as ‘En busca de algún sitio para vivir.’
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Though:

In the context of the sentence, ‘though’ would be best translated in Spanish as:

ADV ‘Sin embargo’. For example: ‘I was hunting for work. Jobs were scarce though’

would be translated as ‘Estaba buscando trabajo. Sin embargo hab́ıa poco.’

SCONJ ‘Aunque’. For example: ‘Though they were whispering, I could hear them’ would

be translated as ‘Aunque estaban susurrando, les pod́ıa óır.’
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Appendix B

Question Tree for Part-of-Speech

Tagging Disambiguation

B.1 Question Tree for Spanish Tokens

Node PRE-START: In the context of the sentence, is the word ‘token’...?

PROPN A proper noun or part of a proper noun. Proper nouns can be names for

people (‘Juan’, ‘Jessica’), places (‘Francia’, ‘Nueva York’, ‘Everest’, ‘Hudson’),

objects (‘Páginas Amarillas’) brands or companies (‘Naciones Unidas’, ‘Apple’,

‘Google’, ‘Coke’), days of the week (‘Lunes’, ‘Martes’), months of the year (‘En-

ero’, ‘Febrero’,...)

INTJ A single-word used as an exclamation that expresses an emotional reaction (‘Śı!’,

‘Qué?!’, ‘Mierda!’, ‘Wow’, ‘Gracias!’) and may include a combination of sounds

not found in the language (eg. ‘mmhm’, ‘huh’, ‘psst’, etc)

start None of the above.

Node START: In this context, ‘token’ is a(n):

NOUN Noun, because it names a thing (‘mesa’), animal (‘perro’), places (‘tienda’),

events (‘verano’) or ideas (‘amor’).
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ADJ Adjective, because it says something about the quality (‘la mesa AZUL’), quan-

tity (‘MS mesas’) or the kind of the noun or pronoun it refers to.

verb-inf Verb, because it is used to demonstrate an action or a state of being.

ADV Adverb, because it describes the how, where, when, or the degree at which some-

thing is done. It modifies a verb (e.g. ‘ven rápidamente’), adjective (e.g. ‘com-

pletamente quieto’), clause (e.g. ‘Sorprendentemente, śı qui lo hizo.’), or another

adverb (e.g. ‘muy bien’).

Node VERB-INF: Does the word ‘token’ end in -ar, -er or -ir?

aux-start Doesn’t end in -ar, -er or -ir. For example: ‘estoy’, ‘eres’, ‘venimos.’

verb-noun Ends in -ar, -er or -ir. For example: ‘estar’, ‘ser’, ‘venir.’

Node VERB-NOUN Disambiguation: In the context of this sentence, can the verb

‘token’ be preceded by an article like ‘el’?

NOUN Yes. As in: ‘El deber me llama.’, ‘El querer ir no es suficiente.’

aux-start No.

Node AUX-START Auxiliary Verb Detection The verb ‘token’...?

VERB ...appears isolated from another verb. For example: ‘VENGO en son de paz.’

periph ...appears alongside another verb, separated by a word particle like ‘de’, ‘a’,

‘que’, etc. For example: ‘HE de DECIR que no me gusta la idea.’, ‘VINIERON

a APAGAR las luces.’, ‘TENGO que DECIR algo importante.’

aux-final ...appears directly attached to another verb. For example: ‘HE VISTO de todo.’,

‘ESTOY VINIENDO tan deprisa como puedo.’
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Node PERIPHRASIS (Periphrasis Detection): Does the verb ‘token’ appear before the

preposition or conjunction?

AUX It appears before. For example: ‘HE de decir que no me gusta la idea.’, ‘VINIERON

a apagar las luces.’, ‘TENGO que decir algo importante.’

VERB It appears afterwards. For example: ‘He de DECIR que no me gusta la idea.’,

‘Vinieron a APAGAR las luces.’, ‘Tengo que DECIR algo importante.’

Node AUX-FINAL Auxiliary Verb Disambiguation: Is the verb ‘token’...

VERB ...the second of the two verbs as in ‘Ya he ESTADO ah́ı.’, ‘Sabes si está LLOVIENDO?’

AUX ...the first of the two verbs as in ‘Ya HE estado ah́ı.’, ‘Sabes si EST lloviendo?’

B.2 Question Tree for English Tokens

Node PRESTART:

In the context of the sentence, is the word ‘token’...?

PROPN A proper noun or part of a proper noun. Proper nouns can be names for peo-

ple (‘John’, ‘Jessica’), places (‘France’, ‘New York’, ‘Everest’, ‘Hudson’), ob-

jects (‘Yellow Pages’) brands or companies (‘United Nations’, ‘Apple’, ‘Google’,

‘Coke’), days of the week (‘Monday’, ‘Tuesday’), months of the year (‘January’,

‘February’,...)

INTJ A single-word used as an exclamation that expresses acknowledgement or an

emotional reaction (‘Yes!!!’, ‘What?!’, ‘F*ck!’, ‘Wow’, ‘Please’) and may include

a combination of sounds not found in the language (eg. ‘mmhm’, ‘huh’, ‘psst’,

etc)

start None of the above.
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Node START:

In this context, ‘token’ is a(n):

NOUN Noun, because it names a thing (‘table’), animal (‘dog’), places (‘shop’), events

(‘summer’) or ideas (‘love’).

ADJ Adjective, because it says something about the quality (‘the BLUE table’), quan-

tity (‘MORE tables’) or the kind of the noun or pronoun it refers to.

verb-ing Verb, because it is used to demonstrate an action or a state of being.

ADV Adverb, because it tells the how, where, when, or the degree at which something

is done. It modifies a verb (e.g. ‘come QUICKLY’, ‘go HOME’), adjective (e.g.

‘COMPLETELY lifeless’), clause (e.g. ‘SURPRISINGLY, he did it.’), or another

adverb (e.g. ‘VERY nicely’).

Node VERB-ING :

Does the verb ‘token’ end in -ing? If it does, is this -ing a suffix (e.g. ‘walk-ing’, ‘travel-ing’)

and not only a verb like ‘bring’ or ‘sing’?

aux-start Doesn’t end in -ing.

verb-start Ends in -ing but it’s not a suffix like in ‘bring’ or ‘sing’.

verb-noun-adj Ends in -ing and it’s a suffix like in ‘walk-ing’ and ‘travel-ing’.

Node VERB-NOUN-ADJ:

Could the verb ‘token’ actually be a Noun or Adjective?

verb-noun It could be a Noun. For example, ‘running’ and ‘reading’ can be verbs or nouns

depending on the context.
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verb-adj It could be an Adjective. For example: ‘stunning’ and ‘crushing’ can be verbs or

adjectives depending on the context.

VERB No, it’s definitely a verb.

Node VERB-NOUN:

In the context of this sentence, can the word ’‘token’...?

VERB be modified by an adverb and cannot be pluralized?

NOUN be pluralized? For example: ‘reading’ and ‘readings.’

NOUN be modified by an adjective like ‘good’ or ‘first’? For example: ‘first reading.’

NOUN be preceded by one or more nouns? For example: ‘road running.’

Node VERB-ADJ:

In the context of this sentence, can the word ‘token’ either be preceded by a degree adverb,

such as ‘very’ or ‘extremely’, or can it take the prefix ‘un-’ and have the opposite meaning?

ADJ YES.

VERB NO.

Node ADJ-START:

Could ‘token’ be a noun or a verb?

ADJ-NOUN It could be a noun. For example: ‘fun’ can be a noun, as in ‘That was a lot of

fun’, or an adjective, as in ‘That was a fun trip!’.

ADJ-VERB It could be a verb. For example: ‘surprised’ can be a verb, as in ‘He surprised

me’, or an adjective, as in ‘I am very surprised’.

ADJ No, it’s definitely an adjective.
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Node ADJ-NOUN:

In the context of the sentence, the word ‘token’...

PROPN Is a proper noun that serves the role of an adjective. For example: ‘Chinese’ in

‘I bought Chinese food.’

ADJ CAN be modified by the adverbs ‘very’ or ‘really’. For example: ‘A fun trip.’ to

‘A very fun trip.’

NOUN CANNOT be modified by the adverbs ‘very’ or ‘really’. For example: ‘A dark

brilliant.’ to ‘A dark very brilliant.’

ADJ-VERB:

In the sentence, can ‘token’...

ADJ be modified by the adverbs ‘really’ or ‘very’. For example: ‘I am surprised’ to ‘I

am very surprised.’

ADJ reference a state as opposed to an event. For example: ‘At that time, I was

married.’

VERB a reference to an event or action. For example: ‘I was married on a Sunday.’

AUX START:

Is ‘token’ a form of the verbs ‘to be’, ‘to have’, ‘to do’ and ‘to get’?

VERB It is a form of ‘to be’, ‘to have’, ‘to do’ or ‘to get’ and it appears isolated from

another verb. For example: ‘I was happy,’ ‘I have so much to study,’ ‘I do it all

the time,’ ‘I got it!’

aux-final It is a form of to be, to have, to do or to get and it appears alongside another

verbal form, acting either as auxiliary or main verb. For example: ‘I WAS told
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to come.’, ‘I HAVE gone there many times!’, ‘I HAVE DONE it already.’, ‘DO

you think so?’, ‘DID you DO it?’, ‘I DIDn’t DO it.’, ‘DOn’t push it!’, ‘I GOT to

go.’

verb-start No.

AUX-FINAL :

Does the form ‘token’...

VERB ...act as the main verb of the compound verb as in ‘I have BEEN there.’, ‘I have

HAD that feeling before’, ‘I was DONE when you arrived.’, ‘I’ve GOT so much

to do.’

AUX ...act as an auxiliary verb to the main verb as in ‘I WAS told to come.’, ‘I HAVE

loved you since the first day.’, ‘DO you think so?’, ‘DOn’t push it!’, ‘I GOT to

go.’

Node VERB-START :

In the context of the sentence, ‘token’ is in some form of the past tense.

participle Yes.

VERB No.

Node PARTICIPLE:

If you replaced ‘token’ with a form of ‘to see’, ‘to give’, or ‘to know’, would that form be:

(ignore the change in meaning)

VERB Saw, gave or knew.

ADJ-VERB Seen, given or known.
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Appendix C

List of Automatically Tagged

Words

C.1 List of Automatically Tagged Words in English

ADJ: due, for, many, most, non, such.

ADP: despite, during, outta, per, regarding.

ADV: ahead, anyhow, anymore, aside, eventually, ever, everytime. forwards, how, however,

later, meanwhile, rather, sooner, therefore, whence, where, whereby, wherein, whereupon,

why.

AUX: ca (from can’t), could, ’d, ’ll, must, ought, shall, should, would.

CONJ: and, nor, or.

DET: another, each, every, its, my, our, some, the, their, your.

NOUN: data, maximum, minimum, people, plenty.

NUM: gazillion, sixteen.

PART: n’t, ’.

PRON: anybody, anyone, everyone, he, herself, hers, him, himself, I, it, itself, mine, myself,

ones, ourselves, ours, she, somebody, someone, theirs, them, themselves, they, us, we, whom,

who, whose, you, yourself, yourselves, yours.

SCONJ: although, cuz, whereas, whether.
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C.2 List of Automatically Tagged Words in Spanish

ADJ: buenos, ciertas, cierto, distintas, juntos, misma, mismas, mismito, mismo, mismos,

primer, quinto, segunda, sexto, tercera, tercer, tercero, varia.

ADP: a, a+ (from al), con, de, durante, en, entre, hasta, in, pa, per, por, según, sin.

ADV: abajo, adónde, ahorita, alla, alĺı, alrededor, apenas, arriba, aśı, aun, casi, dentro,

después, detrás, siquiera, sólo, todav́ıa, ya.

CONJ: e, o, pero, sino, u, y.

DET: aquella, cualquier, cuanta, cuánta, +el (from ‘del’ and ‘al’), el, mi, mis, mucha, su,

sus, tanta, tantas, tantos, tu, tus, unas, un.

INTJ: aló.

NOUN: contras, d́ıa, ele, gente, ochos, repente, súper, través, vez.

NUM: cero, ciento, cientos, cuatrocientos, doscientos, ochocientos, quinientos, seiscientos,

trescientas, trescientos.

PRON: alguien, bastantes, cuáles, cuantos, ella, ellas, ello, ellos, él, ésa, ésas, ése, ésta,

éstas, éste, esto, +la, +las, +le, le, +les, les, +lo, +los, +me, nosotros, nosotras, +nos,

+os, os, quién, +se, se, +te, t́ı, tú, vosotras, vosotros, yo.

SCONJ: aunque, porque, pues, si.

VERB: creo, dice, hacer, ir, sabes, sé.
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Appendix D

List of Manually Tagged Words

D.1 List of Manually Tagged Words in English

• above ADP ADV

• across: ADP ADV

• after: ADP ADV SCONJ

• against: ADP ADV

• alike: ADJ ADV

• along: ADP ADV

• anytime: ADV INTJ

• anyway: ADV INTJ

• anyways: ADV INTJ

• anywhere: ADV PRON

• away: ADV INTJ ADJ

• before: ADP ADV SCONJ

• behind: ADP ADV NOUN

• below: ADP ADV

• besides: ADP ADV

• between: ADP ADV

• beyond: ADP ADV NOUN

• by: ADP ADV

• considering: ADP SCONJ ADV

• else: ADJ ADV

• enough: INTJ ADJ ADV PRON

• everyday: ADJ ADV NOUN

• except: ADP SCONJ

• in: ADP ADV
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• including: ADP VERB

• inside: NOUN ADP ADV ADJ

• nobody: PRON NOUN

• none: PRON ADV

• once: ADV SCONJ

• opposite: ADP ADV NOUN ADJ

• otherwise: ADV ADJ

• outside: NOUN ADJ ADV ADP

• p.m.: PART

• self: ADJ NOUN PRON

• since: ADP ADV SCONJ

• somewhere: ADV PRON

• than: ADP SCONJ

• though: SCONJ ADV

• through: ADP ADV ADJ

• till: ADP SCONJ

• under: ADP ADV

• underneath: ADV ADP ADJ NOUN

• unlike: ADJ ADP

• until: ADP SCONJ

• upon: ADP ADV

• upside: NOUN ADP

• whenever: ADV SCONJ

• while: NOUN SCONJ

• without: ADP ADV

D.2 List of Manually Tagged Words in Spanish

• alguna: DET PRON

• algunas: DET PRON

• alguno: ADJ DET PRON

• algunos: DET PRON

• alto: ADJ ADV

• antes: ADV ADJ

• aparte: ADV ADJ

• aquel: PRON DET

• bajo: ADP ADJ NOUN ADV

• bastante: PRON DET ADV ADJ

• cerca: ADV NOUN

• contra: ADP NOUN

• cual: PRON ADV

• cuál: PRON DET



APPENDIX D. LIST OF MANUALLY TAGGED WORDS 169

• cualquiera: ADJ PRON NOUN

• cuantas: DET PRON

• cuántas: PRON DET

• cuanto: DET ADV PRON

• cuánto: PRON DET ADV

• cuántos: PRON DET

• demás: ADJ PRON

• demasiado: ADJ ADV PRON

• demasiados: ADJ PRON

• inclusive: ADV ADJ

• incluso: ADV ADJ

• junto: ADV ADJ

• mı́a: PRON ADJ

• mı́as: PRON ADJ

• millones: NUM NOUN

• millón: NUM NOUN

• mı́o: PRON ADJ

• mı́os: PRON ADJ

• muchas: DET PRON

• much́ısimo: ADJ ADV

• muchos: DET PRON

• nuestra: DET ADJ PRON

• nuestro: DET ADJ PRON

• nuestros: DET ADJ PRON

• poca: DET PRON

• pocas: DET PRON

• poco: DET ADV NOUN PRON

• pocos: DET PRON

• primera: ADJ NOUN

• primeras: ADJ NOUN

• primero: ADJ ADV NOUN

• primeros: ADJ NOUN

• solo: ADJ ADV

• tal: ADJ/DET

• tanto: DET ADV NOUN PRON

• tuya: ADJ PRON

• tuyas: ADJ PRON

• tuyo: ADJ PRON

• tuyos: ADJ PRON

• varias: DET PRON

• varios: DET PRON
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