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ABSTRACT

Deception in Spoken Dialogue: Classification and
Individual Differences

Sarah Ita Levitan

Automatic deception detection is an important problem with far-reaching implications in

many areas, including law enforcement, military and intelligence agencies, social services,

and politics. Despite extensive efforts to develop automated deception detection technolo-

gies, there have been few objective successes. This is likely due to the many challenges

involved, including the lack of large, cleanly recorded corpora; the difficulty of acquiring

ground truth labels; and major differences in incentives for lying in the laboratory vs. lying

in real life. Another well-recognized issue is that there are individual and cultural differences

in deception production and detection, although little has been done to identify them. Hu-

man performance at deception detection is at the level of chance, making it an uncommon

problem where machines can potentially outperform humans.

This thesis addresses these challenges associated with research of deceptive speech. We

created the Columbia X-Cultural Deception (CXD) Corpus, a large-scale collection of de-

ceptive and non-deceptive dialogues between native speakers of Standard American English

and Mandarin Chinese. This corpus enabled a comprehensive study of deceptive speech on

a large scale. In the first part of the thesis, we introduce the CXD corpus and present an

empirical analysis of acoustic-prosodic and linguistic cues to deception. We also describe

machine learning classification experiments to automatically identify deceptive speech using

those features. Our best classifier achieves classification accuracy of almost 70%, well above

human performance.

The second part of this thesis addresses individual differences in deceptive speech. We

present a comprehensive analysis of individual differences in verbal cues to deception, and

several methods for leveraging these speaker differences to improve automatic deception



classification. We identify many differences in cues to deception across gender, native lan-

guage, and personality. Our comparison of approaches for leveraging these differences shows

that speaker-dependent features that capture a speaker’s deviation from their natural speak-

ing style can improve deception classification performance. We also develop neural network

models that accurately model speaker-specific patterns of deceptive speech.

The contributions of this work add substantially to our scientific understanding of de-

ceptive speech, and have practical implications for human practitioners and automatic de-

ception detection.
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Chapter 1

Introduction

Detecting deception from different dimensions of human behavior is a major goal of law

enforcement, military, and intelligence agencies, as well as commercial organizations. Stud-

ies show that humans are poor at detecting deception, performing at about chance level

[Bond Jr and DePaulo, 2006]; therefore the development of automated methods for decep-

tion detection is of great importance. Researchers of psychology, criminology, and com-

putational linguistics have explored the use of several modalities for deception detection,

including biometric indicators (measured by the polygraph), facial expressions, gestures

and postures, brain imaging, and linguistic information. Despite extensive effort to develop

automated deception detection technologies, there have been few objective successes. The

lack of large, cleanly recorded corpora; the difficulty of acquiring ground truth labels; and

major differences in incentives for lying in the laboratory vs. lying in real life situations are

all obstacles to this work. Another well-recognized issue is that there are individual and

cultural differences in deception production and detection, although little has been done to

identify them.

This thesis addresses these challenges for deception research. An important contribu-

tion of this thesis is the creation of the Columbia X-Cultural Deception (CXD) Corpus,

a large corpus of within-subject deceptive and non-deceptive speech from native speakers

of Standard American English (SAE) and Mandarin Chinese (MC). The corpus was cre-

ated using an original experimental paradigm to collect cleanly-recorded sessions, where

participants provided ground truth annotations in real-time, and were motivated by an ef-
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fective monetary incentive for both detecting and producing successful deceptive behavior.

This corpus enabled a comprehensive study of deceptive speech on a large scale. Using the

CXD corpus, we identified acoustic-prosodic, lexical, and syntactic cues to deception, and

trained machine learning classifiers to automatically identify deceptive speech using those

cues. The development of strong performing deception classifiers, as well as the identified

acoustic-prosodic and linguistic cues to deception, are key contributions of this thesis.

The second part of the thesis addresses individual differences in deceptive speech. We

present a comprehensive analysis of differences in cues to deception across gender, native

language (Standard American English and Mandarin Chinese), and personality traits (mea-

sured by the Five Factor model of personality). This work is the first large-scale analysis

of gender, native language, and personality differences in acoustic-prosodic and linguistic

cues to deception. We trained classification models to identify gender, native language, and

personality traits from short samples of speech. These experiments were conducted for the

purpose of providing speaker trait information for deception detection, but this work has

implications beyond deception detection. For example, speaker trait identification can be

very useful for speech analytics and personalization of human-machine interactions. Finally,

we developed methods to leverage differences across speaker groups to improve deception

classification performance. The methods introduced in this thesis for leveraging speaker

differences in deception classification can be applied to other speech classification problems

with variation across speakers.

This thesis is organized as follows. Part I introduces the Columbia X-Cultural Decep-

tion Corpus and presents an empirical analysis of acoustic-prosodic and linguistic cues to

deception, as well as a series of deception classification experiments. Part II describes an

empirical analysis of differences in cues to deception across gender, native language, and

personality, and presents methods for leveraging these differences in deception classification.

Part III discusses the conclusions and implications of this work.
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Part I

Deception Detection from Text

and Speech
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Chapter 2

Motivation and Research Goals

Deception is the act of intentionally misleading others, in order to gain some advantage or

avoid some penalty [Bok, 1999; Ford et al., 1988; DePaulo et al., 2003].

This definition of deception excludes falsehoods that result from of self-deception, patho-

logical behavior, theater, or lies that are due to ignorance or error. When determining if a

statement is deceptive, it is critical to consider the intention of the speaker. For example,

the statement “it is raining outside” is not inherently truthful or deceptive. Suppose the

speaker was outside a few minutes earlier when it was raining, and it has since stopped

raining. If the speaker believes that it is still raining, we do not consider the statement

to be deceptive. However, if the speaker is aware that it is sunny outside, and intends on

misleading their interlocutor, the statement is deceptive.

Studies show that people lie frequently in daily life, with estimates as high as 2 lies

per day [DePaulo et al., 1996; Serota et al., 2010]. These lies take place across various

modalities in emails, phone calls, and face to face communication [Hancock, 2007]. Most of

these daily lies fall under the category of low-stakes deception. These lies have little or no

consequences for the deceiver, and are very difficult to detect. People often lie about their

feelings, preferences, attitudes, and opinions, for various reasons. Sometimes people lie in

order to make themselves seem better to others (e.g. “I was always a top student”), and

other times they lie to avoid hurting others’ feelings (e.g. “Great tie!”). These lies often go

undetected, and there are minimal or no consequences if they are detected. Further, those

that are lied to often want to believe the lie.
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On the other hand, high-stakes deception takes place when there are serious conse-

quences for the deceiver. In this less common category, there is a greater risk involved for

the deceiver. Lying on a job resume, or calling in sick to work when you feel fine, has

higher stakes – one may risk job termination if they are discovered. Lying to a judge about

committing a crime or to a TSA agent about your travel plans, has even higher stakes, and

can result in jail time for the deceiver.

We are interested in high-stakes deception. Automatic detection of high-stakes deception

is a major goal of law enforcement, military, and intelligence agencies as well as commercial

organizations. Theoretical models of deception state that there is greater cognitive load

for the deceiver under high-stakes deception [Ekman and Friesen, 1969; Zuckerman et al.,

1981; Vrij et al., 2008]. Creating a lie is a more difficult task than recalling the truth, and

it requires great effort to keep all of the details of a lie consistent, while simultaneously

sounding credible [Zuckerman et al., 1981]. Ekman and Friesen [1969] proposed that there

are leakage cues during high-stakes deception that betray a deceiver’s true thoughts. Leak-

age cues can be expressed in several modalities, such as facial expressions, body posture,

and hand gestures. In this work we focus on verbal cues to deception.

In Part I of this thesis, we present our work on deception detection from text and speech.

The overarching goal of this work is two-fold: firstly, we aim to develop automated meth-

ods to detect deceptive language. But perhaps more importantly, we aim to increase our

understanding of deceptive language, by carefully studying the characteristics of deceptive

and truthful language.

In order to accomplish these goals, we first created a large-scale corpus of deceptive

and non-deceptive speech – the Columbia X-Cultural (CXD) Corpus, described in detail in

Chapter 4. We created this corpus in order to conduct cross-cultural research of deceptive

speech using a cleanly recorded and well-annotated dataset, on a scale that had not been

previously possible. The corpus uses a fake-resume paradigm with a monetary incentive in

order to mimic high-stakes deception in a laboratory setting. In addition to the findings of

the studies that are presented in this section, the creation of this corpus is an important

contribution of this thesis.

Using this new corpus, we aimed to answer the following main research questions:
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What are the acoustic-prosodic and linguistic characteristics of truthful and deceptive

speech? We used statistical methods to analyze the features of deceptive and truthful

speech, highlighting significant differences and placing our findings in the context of prior

work. We also analyzed novel features that had not been previously considered in deception

research. Chapter 5 presents the results of this analysis.

Can we use machine learning classification techniques to automatically distinguish be-

tween truthful and deceptive speech? In Chapter 6, we present multiple deception classi-

fication experiments using a variety of acoustic-prosodic and linguistic features. We also

provide insights into best practices for deception classification based on our experimental

results. In Chapter 7 we present a detailed error analysis to understand what kinds of

speech segments are easier and more difficult for our trained classifiers, and how classifier

judgments compared with human judgments of deception.

Finally, we explored entrainment in deception for the first time. Chapter 8 presents

a detailed analysis of entrainment in the CXD corpus, and its relationship with deceptive

speech.
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Chapter 3

Related Work

Efforts to develop methods to detect deception date back to ancient times. As documented

by Ford [2006], people suspected of lying in China (1000 B.C.) were given raw rice to put in

their mouths and then spit out. Based on the theory that decreased salivation is associated

with anxiety, they were found guilty of deception if the rice was still dry. Modern technology

has produced more sophisticated deception detection techniques. These methods are based

on the observation that there are discernible physiological characteristics present when one

is lying. There are a range of methods that aim to measure these characteristics using a

variety of modalities: facial expressions, biometric indicators, body posture and gestures,

brain imaging, body odor, as well as linguistic information. Each of these methods has

advanced our knowledge of deceptive behaviors, but most of these approaches have not

resulted in robust deception detection technologies.

There are challenges associated with several of these approaches. Analysis of facial

expressions is difficult to automate, requiring expensive video capture technology, labor-

intensive human annotation, and subsequent alignment with transcribed and semantically

interpreted language to identify mismatches between “micro-expressions” and language.

Biometric indicators such as heart rate and respiratory patterns have been commonly mea-

sured by the polygraph, which has been shown to perform no better than chance [Eriksson

and Lacerda, 2007]. The signals captured by polygraphs are also correlated with anxiety

and fear, which can be experienced by an innocent person who is hooked up to a polygraph

and interrogated, leading to false positives. Additionally, there are known countermeasure
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techniques to avoid detection by a polygraph. More recent attempts to measure biometric

indicators involve the use of thermal imaging technology [Rajoub and Zwiggelaar, 2014].

This is promising, but the cost can be prohibitive for common use.

There have been promising results using automatic capture of body gestures, such as

head and hand movements, as cues to deception [Lu et al., 2005; Meservy et al., 2005;

Tsechpenakis et al., 2005]. Again, these methods require multiple, high-caliber cameras

to capture movements reliably and align them with speech. The use of brain imaging

techniques for deception detection is still in its infancy [Meijer and Verschuere, 2017] and

requires the use of MRI techniques not practical for general use. Body odor as an indicator

of deception is in early stages and it is too early to say whether this area of research will

prove useful [Li, 2014].

Previous work on language cues to deception include text-based and speech-based stud-

ies. Language cues have the advantage of being inexpensive, non-invasive, and easy to

collect. And importantly, prior studies examining linguistic cues to deception have yielded

promising results. This thesis focuses on language-based cues to deception. In this chapter

we begin by reviewing theoretical models of deception. We then review previous deception

detection studies from text and speech. We conclude by discussing the gaps in the literature

that this thesis aims to fill.

3.1 Deception Theory

The first influential theoretical paper on deception was published by Ekman and Friesen

[1969]. They proposed two categories of cues: leakage cues and deception cues. Leakage cues

betray a deceiver’s true feelings, while deception cues indicate that deception is occurring,

but do not convey the nature of the lie. For example, a micro-expression (a facial expression

lasting for a fraction of a second) can be a leakage cue if a person attempts deceive someone

that they are feeling happy and a flash of sadness appears on their face. A deception cue

can be an inconsistency in one’s story that alerts the listener that something is not right,

but it does not explicitly convey the truth.

They hypothesize that leakage occurs because the deceiver feels guilty about their de-



CHAPTER 3. RELATED WORK 9

ception, and subconsciously wants to be caught lying. They also describe factors that affect

the presence of cues to deception as well as the success of the deceiver. For example, they

emphasize the role that stakes play in cues to deception. Cues to deception are not salient

in situations where stakes are low, such as when telling a white lie, or playing a game

without reward. The success of the deceiver is affected by the psychology of the deceiver

and their target. For example, they hypothesize that asymmetric deception, where the

deceiver is highly motivated to deceive but the target is not focused on detecting decep-

tion, is more likely to succeed than symmetric deception, where the deceiver and target are

focused on deception and deception detection, respectively. Ekman’s work has been influ-

ential in practiced law enforcement, particularly in the area of identifying deception from

facial expressions. He has created training courses to teach practitioners how to identify

micro-expressions. More broadly, the idea that deception and leakage cues exist is the basis

for much of the deception detection research, where the goal is to identify and interpret

these cues.

Ekman’s theoretical work is supported by the theory of cognitive deception, proposed

by Zuckerman et al. [1981] and extended by Vrij et al. [2008]. Zuckerman et al. [1981]

proposed that deceiving is a more cognitively complex task than truth-telling. Creating a

lie is more difficult than simply recalling the truth. The liar must construct a story with

details that are consistent with each other and also consistent with the knowledge of the

listener. Based on this theory, an increase in cognitive load when lying can result in cues

to deception such as increased response latencies, more speech disfluencies and hesitations,

and a reduction in complexity of language. Another hypothesis is that increased cognitive

load when lying results in a decrease in hand and leg movements.

Vrij et al. [2008] extended this theory. Instead of assuming that the act of deception in-

creases cognitive load enough to have an observable effect on deception cues, they proposed

that imposing cognitive load on a potential deceiver is a method to highlight cognitive dif-

ferences between lying and truth-telling. For example, an interviewer can ask an interviewee

to tell a story in reverse order. Because a deceiver is using more cognitive resources to create

and maintain a lie, he will have fewer resources remaining to perform a cognitively complex

task than a truth-teller. They validate this theory with laboratory experiments, showing
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that interviewers performed better at deception detection when they imposed cognitive load

on interviewees.

One of the most widely known theories of deception is Interpersonal Deception Theory

(IDT), developed by Buller and Burgoon [1996] from the perspective of communication the-

ory. IDT highlights the role of interactivity in deceptive behavior, and states that interactive

deception is fundamentally different from noninteractive: in an interactive communication

the deceiver is constantly updating strategy to reflect feedback from the receiver, while

noninteractive communication is static and has no explicit receiver of the deception. They

hypothesize that the degree of interaction in a given communication interface will affect the

communication process and outcomes such as trust, honesty, and credibility. In general, the

more interactivity in a communication, the greater the trust and perceived honesty. Accord-

ing to IDT, the deceiver’s motivation for deception is an important moderator of deception

cues. They differentiate between three forms of motivation for deception: instrumental,

relational, and identity. They hypothesize that deceivers who are motivated instrumentally

would have the greatest fear of getting caught, and would therefore exhibit more cues to

deception (which they term arousal cues) than someone motivated by relational or identity

goals.

DePaulo et al. [2003] describe a self-presentational perspective for understanding decep-

tion. They argue that the vast majority of lies are told, not for material gain or escape from

punishment, but for psychological benefits. People lie to make themselves appear more so-

phisticated or more virtuous, or to protect themselves or others from disapproval. Although

truth-tellers often have these motivations, they attempt to achieve these goals within the

framework of honesty, while liars use deception to achieve these goals. Cues to deception in

everyday life tend to be weak, and this self-presentational theory proposes that the strength

of these cues is moderated by the self-presentational processes involved in communicating

truths and lies. Because of the discrepancy between a liar’s story and their true beliefs,

deceptive self-presentations will be less convincing than truthful ones, and they will have a

greater sense of deliberateness. Deceivers will also appear less forthcoming, because they

fear being questioned on details, and also because they are less familiar with their stories

than truth-tellers. Because of moral misgivings and discomfort from lying, deceivers will be
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less pleasant and more tense. They argue that a meta-analysis of many deception studies

provides evidence for this self-presentational theory of deception.

3.2 Deception Detection from Language

Language has been a fruitful area of deception research. Language, both oral and written,

is the primary way that humans communicate, and it is a natural modality to study de-

ceptive communication. Many of the deception theories outlined above have implications

for deceptive and truthful language. Compared to other modalities for examining cues to

deception, there are several advantages to exploring language: it is relatively easy, inexpen-

sive, and non-invasive to collect, and several studies have found that there are salient cues

to deception in language. Here we review some prominent studies on cues to deception from

text and from speech.

3.2.1 Text-based Deception Detection

Several practitioners and researchers have examined text-based cues to deception. Deceptive

texts can have many different forms. It can be transcribed speech (e.g. from a witness

testimony in court), formal writing (e.g. a letter, newspaper article), or informal writing

(e.g. a social media message). Deceptive texts can be found in multiple domains on various

topics, and researchers have studied many different kinds of texts.

Early text-based deception detection methods include Statement Analysis [Adams, 1996]

and SCAN (Scientific Content Aalysis) [Smith, 2001]. These are text-analysis techniques

that combine lexical and syntactic features, such as word tense and part of speech distri-

butions to determine whether a text is deceptive or truthful. The intuition behind these

approaches is that there are often many ways to phrase a particular message, and the spe-

cific choices that a speaker makes can contain deception cues. This is rooted in the theory

of “leakage cues” proposed by Ekman and Friesen [1969]. These two approaches, along with

other text-based signals identified by Reid and associates [Buckley, 2000], have been popular

efforts among law enforcement and military personnel, despite the lack of rigorous valida-

tion for these approaches. The methods have been developed based on case-studies and
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intuition rather than empirical evidence. Although these methods were developed without

scientific validation, they have been foundational in providing a set of features to be tested

empirically by others. For example, Bachenko et al. [2008] partially automated some fea-

tures used in Statement Analysis, and demonstrated successful evaluation of this approach

on small amounts of written text, including criminal narratives and police interrogations.

An especially useful resource for text-based deception detection is the Linguistic Inquiry

and Word Count (LIWC), developed by Pennebaker and King [1999]. LIWC groups words

into psychologically motivated categories, and this tool has been used in a wide range of

deception studies. Newman et al. [2003] showed that LIWC dimensions were useful for

distinguishing between truthful and deceptive accounts in multiple domains: opinions on

abortion, feelings about friends, and a mock crime scenario. Ott et al. [2011] used LIWC

features as well as other linguistic features to detect deception in a crowd-sourced dataset of

fake hotel reviews. Linguistic features such as n-grams and language complexity have been

analyzed as cues to deception [Yancheva and Rudzicz, 2013; Pérez-Rosas and Mihalcea,

2015]. Syntactic features, such as part of speech tags, have also been found to be useful for

structured data [Ott et al., 2011; Feng et al., 2012]. An important domain for text-based

deception detection is online communication. Hancock [2007] researched deceptive text in

online forums and online dating profiles [Hancock et al., 2007b]. Zhou et al. [2004] used a

variety of linguistic cues to identify deception in online text messages. Recently, there have

been efforts to identify deception [Shu et al., 2017] and satire [Rubin et al., 2016] in the

news media.

3.2.2 Speech-based Deception Detection

Relatively little work has been done on spoken cues to deception, although speech tech-

nologies have the advantage of being cheap and easily portable. Early methods to detect

deception from speech centered around Voice Stress Analysis (VSA). This technology has

been marketed in the past as a “lie-detector” but is now viewed as psuedo-science. The

premise underlying the technology is that speech production is different when a person is

experiencing stress. During normal speech, an inaudible low-frequency micro-tremor is pro-

duced, and during a stressful, condition the natural micro-tremor production is suppressed.
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This hypothesis has been discredited – the existence of micro-tremors has not been vali-

dated, the connection between stress and deception is not clear, and VSA technology has

not been effective at detecting deception [Horvath, 1982].

A few studies of deception have included audio analysis. Ekman et al. [1991] found a

significant increase in pitch for deceptive speech over truthful speech. Streeter et al. [1977]

reported similar results, with stronger findings for more highly motivated subjects. A meta-

analysis DePaulo et al. [2003] identified cues to deception that were significant across many

studies. Some of these cues were acoustic-prosodic, including duration, vocal tension, and

pitch.

There have been few large scale computational approaches developed for detection of

deception from speech. This is likely due to the lack of large, cleanly recorded corpora for

deception. Hirschberg et al. [2005] created the first large scale corpus of deceptive speech, the

Columbia-SRI-Colorado (CSC) corpus, comprising about 7 hours of subject speech. They

empirically studied more sophisticated acoustic, prosodic, and lexico-syntactic features and

found that acoustic-prosodic features are promising indicators of deception. More recently,

Amiriparian et al. [2016] used emotion labels inferred from speech to detect deception, with

some success.

3.3 Conclusions

Although there have been many studies of deception in text and some in speech, there is

much that remains to be done. This thesis presents novel work on deception that helps

fill gaps in prior deception research. Several of the previous studies were done on a very

small scale, with only a handful of speakers analyzed. In this work we created a new

corpus of deceptive and non-deceptive speech, comprised of over 120 hours of speech from

340 subjects. For comparison, the previously largest corpus of cleanly recorded deceptive

speech – the CSC corpus – contained about 7 hours of subject speech from 32 speakers.

This new corpus enabled research on a much larger scale. In addition, our corpus uniquely

contains speech from both the deceiver and the target of the deception, playing the roles

of an interviewee and interviewer respectively. This enabled a study of entrainment and
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deception. Finally, many of the previous methods to detect deception used simple rule-

based algorithms. Our large dataset allowed us to explore more sophisticated modeling

approaches.
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Chapter 4

Data and Features

This chapter describes the corpus, features, and units of analysis used in this thesis. Some

of this work was published in Levitan et al. [2015a,b].

4.1 Columbia X-Cultural Deception Corpus

The Columbia X-Cultural Deception (CXD) Corpus is a collection of within-subject decep-

tive and non-deceptive speech from native speakers of Standard American English (SAE)

and Mandarin Chinese (MC), all speaking in English. The corpus contains dialogues be-

tween 340 subjects, comprising 122 hours of subject speech. A variant of a fake resume

paradigm was used to create the corpus. Previously unacquainted pairs of subjects played

a lying game with each other. Each subject filled out a 24-item biographical question-

naire, where they were instructed to create false answers for a random half of the questions,

following guidelines to ensure that their false answers differed significantly from the truth.

Each subject also completed the NEO-FFI personality inventory [Costa and McCrae, 1989],

and provided a 3-4 minute baseline sample of speech by answering open-ended questions

truthfully. During the baseline session, an experimenter asked the subject open-ended ques-

tions (e.g.“What do you like best/worst about living in New York City?”). Subjects were

instructed to be truthful in answering.

The lying game took place in a sound-proof booth, with the two subjects seated across

from each other, separated by a curtain to ensure no visual contact. For the first half of
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the game, one subject assumed the role of the interviewer, while the other answered the

biographical questions, lying for one half and being truthful for the other half (based on

their questionnaire’s configuration). For the second half of the game, everything was the

same except the subjects’ roles were reversed.

As interviewers, their goal was to try to identify when the interviewee was lying and

when they were telling the truth. As interviewees, their goal was to try to convince their

interviewer that everything they said was true. For motivation, they were told that their

compensation depended on their ability to deceive while being interviewed, and to judge

truth and lie correctly while interviewing. As interviewer, they received $1 each time they

correctly identified an interviewee’s answer as either lie or truth and lost $1 for each incorrect

judgment. As interviewee, they earned $1 each time their lie was judged to be true, and

lost $1 each time their lie was correctly judged to be a lie by the interviewer.

Figure 4.1: Setup of experiment in sound-proof booth.

During the game, the interviewer was allowed to ask the 24 questions in any order

he or she chose; the interviewer was also encouraged to ask follow-up questions to aid

them in determining the truth of the interviewee’s answers. The speech from the game

was recorded to digital audiotape, on separate channels for each speaker, using a Crown

head-mounted close-talking microphone. For each question, the interviewer recorded their

true/false judgment, along with a confidence score from 1-5. While answering the questions,

the interviewee pressed the T or F key, providing a local veracity label for each utterance.

After the game was completed, both subjects completed a brief questionnaire, reporting
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on how well they thought they performed at deceiving their partner and at judging their

partner’s lies.

The advantages of this paradigm over other possible choices are:

• It allows subjects to choose the content of their own lies so the lies will be more

genuine.

• It collects data on deception perception as well as production.

• It provides financial motivation for the interviewer and the interviewee, tailored to

the interests of each role.

• It provides additional self-presentational motivation by pairing subjects with other

subjects in indirect competition.

As explored later in Part II of this thesis, the CXD corpus is also ideal for the study

of individual differences because of the cross-cultural nature of the data, as well as the

demographic information and personality scores that were collected for each subject.

The entire corpus was orthographically transcribed using the Amazon Mechanical Turk

(AMT)1 crowd-sourcing platform, and the transcripts were force-aligned with the audio

recordings using the Kaldi Speech Recognition Toolkit [Povey et al., 2011]. Our collabo-

rators at CUNY organized the transcription task and did the alignment. After the crowd-

sourced transcription and automatic alignment were completed, there was substantial hand-

correction done by Columbia and CUNY students. For example, we obtained three tran-

scripts for each audio segment from three different crowd workers, and the three transcripts

were combined using Rover techniques [Fiscus, 1997]. The rover combination produced a

rover output score, measuring the agreement between the initial three transcripts. For clips

with a score lower than 70%, transcripts were manually corrected. The transcripts of 9.7%

of the clips need to be hand-corrected.

4.2 Units of Analysis

Throughout the thesis, we refer to the following units of analysis:

1https://www.mturk.com/mturk/
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An inter-pausal unit (IPU) is defined as a pause-free segment of speech from a

single speaker, with a pause length threshold of 50 ms. This threshold has been used in

other speech research, derived from average stopgap length in speech corpora. Automatic

IPU segmentation was done using Praat [Boersma and others, 2002] and was subsequently

hand-corrected.

A turn is defined as a maximal sequence of IPUs from a single speaker without any

interlocutor speech that is not a backchannel (a simple acknowledgment that is not an

attempt to take the turn). Turn boundaries were identified by processing the IPUs of both

the interviewer and interviewee. Non-backchannel overlaps between speakers were resolved

by computing the average distance between IPUs within turns for each speaker. Using that

metric, we determine whether the overlapped IPU should be concatenated with the previous

IPU, the next IPU, or become an independent turn.

We also defined topical units of analysis, considering the 24 biographical questions as

conversational topics. Consider the following dialogue:

Interviewer: What is the most you have ever spent on a pair of shoes?

Interviewee: It was a little more than five hundred dollars.

Interviewer: What did they look like and where did you wear them?

Interviewee: They were very nice Jimmy Choo shoes, blue with a three and a half inch heel,

and I wore them to my sister’s wedding.

A question response is an interviewee turn that is a direct answer to an interviewer

question from the list of 24 biographical questions. In the above example, the question

response is, “It was a little more than five hundred dollars.”

A question chunk is a set of interviewee turns that are answers to an interviewer

biographical question and its related follow-up questions. In the above example, the question

chunk is, “It was a little more than five hundred dollars. They were very nice Jimmy Choo

shoes, blue with a three and a half inch heel, and I wore them to my sister’s wedding.”

We developed a question identification system in order to annotate these topical seg-

ments. The details of the system are described in Maredia et al. [2017]. It uses word

embeddings to match semantically similar variations of questions to the target list of bio-

graphical questions. This was necessary because interviewers asked those questions using
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different wording from the original list of questions. The question identification system

obtained an F1-score of 95 on a set of hand-labeled turns. After identifying the inter-

viewer turns that corresponded to biographical questions, we annotated question responses

as the first interviewee turn following each biographical question. We annotated the set of

interviewee turns between two interviewer questions, q1 and q2, as a question chunk corre-

sponding to q1. We evaluated this segmentation method on a hand-annotated test set of

17 interview dialogues (about 10% of the corpus) consisting of 2,671 interviewee turns, 408

interviewer biographical questions, and 977 follow up questions. This approach resulted in

77.8% accuracy, with errors mostly due to turns that were unrelated to any question.

A summary of the total number of each unit of analysis is shown in Table 4.1.

Unit Interviewer Interviewee Total

IPU 81,536 111,428 192,964

Turn 41,768 43,673 85,459

Question Response 8,092 8,092 16,184

Question Chunk 8,092 8,092 16,184

Table 4.1: Number of interviewer and interviewee segmentation units: IPUs, turns, and

question segments.

4.3 Ground Truth Annotation

One of the greatest challenges in researching deceptive speech is obtaining high-quality

ground truth annotations of deception. Unlike other paralinguistic information that can

be labeled by human annotators (e.g. emotion), deception labels must be provided by

the deceiver. Following Enos et al. [2007], we distinguish between two forms of deception

annotation: global and local. Global deception refers to the veracity of a salient discourse

topic, while local deception refers to the veracity of utterances that are spoken in support

of a topic. In the CXD corpus, the discourse topics are the 24 biographical questions

that are used during interviews, and each interviewee response to a question is globally

true or false. Interviewees often provided additional information to support their global
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response, sometimes at the prompting of the interviewer in the form of follow-up questions,

and sometimes voluntarily without prompting. The distinction between local and global

deception is important because speakers do not always lie at a local level in support of a

global lie.

Consider the following dialogue:

Interviewer: What is your mother’s job?

Interviewee: My mother is a doctor (F). She has always worked very late hours and I felt

neglected as a child (T).

Is the interviewee response true or false? Globally, the response to the question is

deceptive. However, it contains local instances of both truth and deception. Participants

were instructed to only tell the truth while answering a question truthfully – even in response

to follow up questions. However, when answering a question deceptively, they were allowed

to answer follow up questions with truthful responses.

4.3.1 Global Deception

Each participant filled out a biographical questionnaire at the beginning of the session,

and the form indicated which questions should be answered truthfully and which should be

answered deceptively. This was automatically generated to ensure that a random half of

the questions would be answered deceptively. A sample biographical questionnaire is shown

in Appendix A.4. After the game, the questionnaires were logged in a spreadsheet, allowing

for easy retrieval of the global deception label of each interviewee response.

4.3.2 Local Deception

During the game, interviewees labeled their responses with local deception annotations by

pressing a “T” or “F” key for each utterance as they spoke. A script running during the

game captured the keypresses, which were then automatically aligned with the recording

from the game. This approach allowed for automatic annotation of local deception on a

large scale. However, there are several challenges involved when relying on participants

to self-label their utterances. Some subjects neglected to label every utterance, resulting

in speech segments without an associated local deception label. There were also several
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instances of speech segments that contained both “T” and “F” keypresses. We developed

three approaches for resolving these issues and evaluated the performance of the approaches

on a subset of manually annotated data.

1. High precision This approach labels each segment with the keypresses that fall

between the start and end time of the segment, and discards any segments that are

either missing any labels or contain conflicting labels.

2. High recall This approach uses every segment in the corpus. It does this by resolving

ambiguous segments in possibly noisy ways. If a segment is missing labels, it finds

the keypress that appears closest to the segment, either before or after the segment.

Segments that contain both true and false segments are labeled as deceptive.

3. Mixed This approach proposes a middle ground. It attempts to resolve ambiguity,

but limits the distance of adjacent labels that can be used. This approach labels

almost 90% of the segments.

Table 4.2 shows the percentage of data labeled and the accuracy of labels, for each

labeling approach. The numbers shown are for turn segmentation units, but the trends are

comparable for IPUs.

Approach Accuracy % labeled

High precision 98.4 58.9

High recall 92.4 100

Mixed 97.2 89.1

Table 4.2: Results of three veracity labeling approaches, evaluated using turn segmentation

units.

We computed accuracy using a subset of turns from 20 sessions that were hand-labeled

with TF labels. We hand-labeled the sessions by listening to the audio recording and using

the adjacent keypresses and context along with the biographical questionnaire form to

resolve ambiguous turns. Using the high precision approach results in the smallest amount

of data, but the labels are clean. The high recall approach allows us to use all of the data,
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albeit with noisy labels. And the mixed approach gives us most of the data, with somewhat

noisy labels.

To determine which labeling approach was optimal for deception classification, we

trained deception classifiers using each of the three labeling approaches, and then eval-

uated them on a gold standard test set with hand annotated veracity labels. The classifiers

were trained using a combination of acoustic-prosodic and lexical features. We found that

the classifier trained using the labels from the mixed approach yielded the best deception

classification performance. The high precision approach was the second best performing,

and the high recall approach was the worst, despite having the most training data. Thus, we

used the mixed labeling approach for all turn and IPU classification experiments presented

in this thesis.

In order to maximize the amount of data, we manually inspected the remaining approxi-

mately 10% unlabeled segments from the mixed approach and determined the veracity label

using a combination of the global deception label and the context from the dialogue.

4.4 Features

Here we describe the features used for analysis and classification of deception as discussed

in this thesis.

4.4.1 Acoustic-Prosodic Features

We examined two sets of acoustic-prosodic features.

• Interspeech 2009 Emotion Challenge feature set (IS09)

• Praat acoustic-prosodic features set (Praat-15)

The IS09 feature set [Schuller et al., 2009] contains 384 features extracted using openS-

MILE [Eyben et al., 2010], designed for the task of emotion recognition. Because emotion

and deception are related (e.g. emotion features can predict deception [Amiriparian et al.,

2016]), we hypothesized that the IS09 emotion feature set will be useful for deception detec-

tion. The features were computed from various functionals over low-level descriptor (LLD)
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contours, including prosodic, spectral, and voice quality features. The LLDs and functionals

used are shown in Table 4.3. There are 16 LLDs: (1) zero-crossing-rate (ZCR) from the

time signal, (2) root mean square (RMS) frame energy, (3) pitch frequency (F0), (4) Noise-

to-Harmonics ratio (NHR), and (5-16) 12 mel-frequency cepstral coefficients (MFCC). In

addition, delta coefficients for each LLD were computed, for a total of 32 LLDs. A set of

12 functionals are applied to each of the LLDs, for a total of 32 · 12 = 284 features.

LLD (16 · 2) Functionals (12)

(∆) ZCR mean

(∆) RMS energy standard deviation

(∆) F0 kurtusis, skewness

(∆) NHR extremes: value, relative position, range

(∆) MFCC 1-12 linear regression: offset, slope, MSE

Table 4.3: IS09 features: low level descriptors and functionals.

Praat-15 is a set of 15 acoustic-prosodic features commonly used in speech analysis.

Some are included in IS09, but these were extracted using Praat [Boersma and others, 2002],

an open-source speech processing toolkit, and we focus on them for some of the analysis in

this thesis. The 15 features are: (1-6) pitch {minimum, maximum, mean, median, standard

deviation, mean absolute slope}, (7-10) intensity {minimum, maximum, mean, standard

deviation}, (11) jitter, (12) shimmer, (13) noise-to-harmonics ratio (NHR), (14) speaking

rate, and (15) duration. Several of these features have been proposed in the literature on

deception as possible indicators of deception [DePaulo et al., 2003].

Pitch refers to the fundamental frequency (f0) of the speech signal, or the frequency of

vocal fold vibrations. It measures how high or low the frequency of a person’s voice sounds.

We computed the minimum, maximum, mean, median, and standard deviation of pitch

values over a speech segment. We also computed the mean absolute slope for pitch, which

is the average absolute slope across all turning points in a pitch contour.

Intensity (or energy) refers to the perceived loudness of a sound, and is measured by the

amplitude of vocal fold vibrations. The greater the amplitude, the more energy is carried
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by the wave, and the sound will have increased intensity. We computed the minimum,

maximum, mean and standard deviation of intensity values over a speech segment.

Jitter, shimmer, and NHR are three measures of voice quality, variation in vocal fold

behavior which affect listeners’ perception of the harshness, creakiness, or breathiness of

the voice. Jitter and shimmer are measures of f0 disturbance: jitter describes variation in

frequency across cycles, and shimmer describes variation in amplitude. NHR measures the

ratio between periodic and non-periodic components in a segment of voiced speech.

There are several ways to calculate speaking rate; in this work we estimated speaking

rate by calculating the ratio of voiced to total frames.

Duration is calculated as endtime− starttime for each segment, measured in seconds.

All acoustic-prosodic features were z-score normalized by speaker (z = (x-µ)/σ; x =

value, µ = speaker mean, σ = speaker standard deviation).

4.4.2 Lexical Features

We examined four sets of lexical features from the crowd-sourced transcriptions of the CXD

corpus.

• Linguistic Inquiry and Word Count (LIWC)

• N-grams

• Word embeddings

• Linguistic Deception Indicators (LDI)

LIWC 2015[Pennebaker et al., 2015b] is a text analysis program that computes word

counts for 93 semantic classes. LIWC relies on an internal dictionary that maps words to

psychologically motivated categories. When analyzing a target text, the program looks up

the target words in the dictionary and computes frequencies for each of the 93 dimensions.

The categories include standard linguistic dimensions (e.g. percentage of words that are

pronouns, articles), markers of psychological processes (e.g. affect, social, cognitive words),

punctuation categories (e.g. periods, commas), and formality measures (e.g. fillers, swear
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words). LIWC dimensions have been used in many studies to predict outcomes includ-

ing personality [Pennebaker and King, 1999], deception [Newman et al., 2003], and health

[Pennebaker et al., 1997]. We extracted a total of 93 features using LIWC 2015. A full

description of these features is found in [Pennebaker et al., 2015a].

N-grams are contiguous sequences of n tokens from text, and are commonly used in

NLP applications to represent text. We extracted unigrams, bigrams, and trigrams from

each speech segment, in order to examine differences in word usage between deceptive and

truthful speech. Although it is standard practice for other applications, we did not remove

stopwords from the corpus because we were interested in studying function word usage in

deceptive and truthful speech. We extracted unigram, bigram, and trigram features, and

used TF-IDF to weight the terms. Terms that appeared fewer than three times in the

corpus were excluded.

Word embeddings are a distributed representation of words, where words are mapped

to vectors of real numbers. We used GloVe [Pennington et al., 2014] pre-trained word

embeddings. GloVe is an unsupervised learning algorithm that uses a log-bilinear regression

model based on global word co-occurrence counts in a training corpus. We used a model

trained on 2 billion tweets to produce 200 dimension word vectors. Unlike n-gram features,

word embeddings have been shown to capture semantic relationships between words, and

are therefore very useful features for downstream NLP tasks.

Linguistic Deception Indicators (LDI) are a set of 28 linguistic features which we adopted

from previous deception studies such as [Enos, 2009; Bachenko et al., 2008; DePaulo et al.,

2003]. Included in this list are binary and numeric features capturing hedge words, filled

pauses, laughter, complexity, contractions, and denials. We include Dictionary of Affect

Language (DAL) [Whissell et al., 1986] scores that measure the emotional meaning of texts,

and a specificity score which measures level of detail [Li and Nenkova, 2015]. The full list

of LDI features is shown in Table 4.4. Some of the features were computed using lexicons

of hedge words and cue phrases. The lists of these word categories are found in Appendix

C. The hedge lexicon was developed by Ulinski et al. [2018]. Laughter labels were manually

annotated during IPU segmentation correction.
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Name Description

hasAbsolutelyReally Contains either the word absolutely or the word really

hasContraction Has an apostraphe

hasI Contains I

hasWe Contains the word we

hasYes Contains the word yes

hasNAposT contains n’t

hasNo Contains the word no

hasNot contains the word not

isJustYes Only contains the word yes and no other words

isJustNo Only contains the word no and no other words

noYesOrNo Does not contain the word yes or no

specificDenial Contains “I didn’t” or “I did not”

thirdPersonPronouns Contains third person pronouns

hasFalseStart Contains a word that is cut off in middle

hasFilledPause Contains a filled pause

numFilledPauses Number of filled pauses

hasCuePhrase Contains a cue phrase

numCuePhrases Number of cue phrases

hasHedgePhrase Contains a hedge phrase

numHedgePhrases Number of hedge phrases

hasLaugh Contains laughter

numLaugh Number of laughter instances

complexity # syllables / # words

DAL-wc # words that appear in the DAL dictionary

DAL-pleasant DAL pleasantness score

DAL-activate DAL activation score

DAL-imagery DAL imagery score

specScores Specificity score

Table 4.4: LDI features: linguistic deception indicators.
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4.4.3 Syntactic Features

Syntactic features are a set of features that we developed based on previous studies of syntax

in deceptive speech. They include the following feature sets:

• Complexity

• Part-of-speech tags (POS)

• Part-of-speech tags and words (POS+word)

• Production rules, unlexicalized (PR-unlex)

• Production rules, lexicalized (PR-lex)

• Grandparent annotated production rules, unlexicalized (Grand-PR-unlex)

• Grandparent annotated production rules, lexicalized (Grand-PR-lex)

Complexity features were extracted using a system for automatic syntactic complexity

analysis, described in [Lu, 2010]. There are 23 complexity features in total. These include

nine features representing the number of words (W), sentences (S), verb phrases (VP), cla-

sues (C), t-units (T), dependency clauses (DC), complex t-units (CT), coordinate phrases

(CP), and complex nominals (CN). In addition, there are 14 measures of syntactic com-

plexity shown in Table 4.5. These features are based on measures that are used to evaluate

second language proficiency.
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Measure Code Definition

Mean length of clause MLC # words / # clauses

Mean length of sentence MLS # words / # sentences

Mean length of T-unit MLT # words / # T-units

Sentence complexity ratio C/S # clauses / # sentences

T-unit complexity ratio C/T # clauses / # T-units

Complex T-unit ratio CT/T # complex T-units / # T-units

Dependency clause ratio DC/C # dep. clauses / # clauses

Dependency clauses per T-unit DC/T # dep. clauses / # T-units

Coordinate phrases per clause CP/C # coordinate phrases / # clauses

Coordinate phrases per T-unit CP/T # coordinate phrases / # T-units

Sentence coordination ratio T/S # T-units / # sentences

Complex nominals per clause CN/C # complex nominals / # clauses

Complex nominals per T-unit CN/T # complex nominals / # T-units

Verb phrases per T-unit VP/T # verb phrases / # T-units

Table 4.5: Syntactic complexity features.

The remaining six syntactic feature sets were obtained using the Stanford parser [Chen

and Manning, 2014].

The part-of-speech tags (POS) feature set consists of n-grams that use POS tags as

tokens instead of words. The part-of-speech and word (POS+word) feature set is n-grams

where the tokens are POS tags concatenated with their corresponding words. The POS tag

set used is the Penn Treebank tag set. A list of the tags and their descriptions is found in

Appendix B.

We also extracted four sets of deep syntactic features derived from the dependency parse

trees. These features were adapted from Feng et al. [2012]. Unlexicalized production rules

(PR-unlex) are all production rules in the parse tree, except for those with terminal nodes.

Lexicalized production rules (PR-lex) are all production rules, including those with terminal

nodes. Grandparent annotated unlexicalized production rules (Grand-PR-unlex) are unlex-
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icalized production rules combined with the grandparent node, and grandparent annotated

lexicalized production rules (Grand-PR-lex) are lexicalized production rules combined with

the grandparent node. All of these features are represented as n-grams, where each token

is a production rule.
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Chapter 5

Feature Analysis

The CXD corpus allowed us to analyze deceptive speech on a scale that had not been

previously possible. This chapter takes a close look at the features that are representative

of truthful and deceptive speech. This work aims to answer the following question: What

are the differences in acoustic-prosodic and linguistic features between truthful and deceptive

interviewee responses?

Many previous studies have reported classification performance with particular feature

sets, and some include ablation studies or feature ranking experiments to highlight which

features contribute the most to deception classification, but few studies include a careful

analysis of the characteristics of truthful and deceptive speech. Such analysis is critical for

furthering our scientific understanding of deceptive language.

5.1 Method

In order to analyze the differences between deceptive and truthful speech, we considered

features extracted from two segmentation units: 1) question responses; and 2) question

chunks. We chose these segmentations because they allow us to study some linguistic

properties that require contextual information (unlike the shorter IPU and turn segmen-

tations). All features were z-normalized by speaker, so that features represent distance

from a speaker’s mean, measured in standard deviations. We then calculated a series of

paired t-tests comparing the mean feature values of two groups of segments: truthful and
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deceptive.

All tests for significance correct for family-wise Type I error by controlling the false

discovery rate (FDR) at α = 0.05. The kth smallest p value is considered significant if it is

less than k∗α
n .

In all the tables in this chapter, D indicates that a feature was significantly increased in

deceptive speech, and T indicates a significant indicator of truth. We consider a result to

approach significance if its uncorrected p value is <= 0.05 and indicate this with parentheses

(e.g. “(D)”) in the tables.

Some of this work was published in Levitan et al. [2018a,b] and was done in collaboration

with my co-authors.

5.2 Acoustic-Prosodic Analysis

In this section we present the results of our analysis of acoustic-prosodic characteristics of

truthful and deceptive interviewee responses. The following 8 acoustic-prosodic features

were examined: pitch max, pitch mean, intensity max, intensity mean, speaking rate, jitter,

shimmer, and noise-to-harmonics ratio (NHR). These features are described in detail in

Chapter 4, Section 4.4.1.

Table 5.1 shows the t-test results for the question response segmentation analysis. Ques-

tion responses consist of the set of first interviewee turns in response to the 24 biographical

questions.
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Feature t df p Sig.

Pitch Max 5.32 8053 1.10E-07 D

Pitch Mean 0.62 8048 0.53

Intensity Max 7.58 8066 3.90E-14 D

Intensity Mean 1.52 8070 0.13

Speaking Rate -1.87 8082 0.062

Jitter -1.08 7691 0.28

Shimmer -2.16 7659 0.031 (T)

NHR 0.46 8022 0.64

Table 5.1: Differences in mean acoustic-prosodic features in truthful and deceptive intervie-

wee question responses. D=increased in deceptive speech, T=increased in truthful speech.

This table shows that on average, deceptive interviewee responses were characterized by

an increase in pitch max, as well as an increase in intensity max, compared with truthful

responses. This suggests that speakers on average tended to speak with a higher pitch and

louder volume when lying than when telling the truth. There was also a trend of increased

shimmer in truthful speech, but this was not statistically significant after correcting for

multiple comparisons.

Table 5.2 shows the same analysis comparing acoustic-prosodic features in truthful and

deceptive speech, but this time for the question chunk segmentation. A question chunk

is a set of interviewee turns that are answers to an interviewer biographical question and

its related follow-up questions. The acoustic-prosodic features for question chunks were

computed by averaging the turn-level features within the question chunk.
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Feature t df p Sig.

Pitch Max 6.88 8064 6.40E-12 D

Pitch Mean -1.75 8071 0.081

Intensity Max 9.33 8076 1.40E-20 D

Intensity Mean 3.56 8064 0.00037 D

Speaking Rate -0.77 8017 0.44

Jitter -1.73 8013 0.083

Shimmer -1.84 7982 0.066

NHR -0.07 8038 0.94

Table 5.2: Differences in mean acoustic-prosodic features in truthful and deceptive inter-

viewee question chunks. D=increased in deceptive speech, T=increased in truthful speech.

This table shows that the difference in truthful and deceptive speech were consistent

in both the initial interviewee response and in the entire question chunk (which includes

responses to follow up questions). In both segmentations, deceptive responses are charac-

terized by an increase in pitch max and intensity max. There was also increased intensity

mean in deceptive question chunks.

These results align well with previous studies of the acoustic-prosodic characteristics of

deceptive speech. Several studies of deceptive speech reported an increase in voice pitch

during deception [Ekman et al., 1976; Streeter et al., 1977]. In their meta-analysis of

deceptive speech research, DePaulo et al. [2003] reported a significant effect of increased

pitch in deceptive speech. Fewer studies have included an analysis of speech intensity.

Chittaranjan and Hung [2010] found that the distribution of both pitch and energy values

were higher for deceivers. However, DePaulo et al. [2003] reported no significant effect of

energy in deceptive speech. They also note that cues to deception across multiple studies

are generally quite weak. This is due to several factors, including differences in experiment

design, and importantly, inter-speaker variability. Although we observe some significant

findings when analyzing the aggregated behavior of all speakers, it is important to note that

these trends are not true for all speakers. There has been little work done to understand

this variability – e.g. why do some speakers raise their pitch while lying and some lower
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their pitch? We explore these differences across speakers in detail in Part II of this thesis.

5.3 Linguistic Analysis

This section summarizes the results of our analysis of linguistic characteristics of truthful

and deceptive interviewee responses. The following feature sets were examined: Linguistic

Deception Indicators (LDI), Linguistic Inquiry and Word Count (LIWC), and syntactic

complexity. These features are described in detail in Chapter 4, Section 4.4.2.

5.3.1 Linguistic Deception Indicators

We analyzed the set of 28 LDI features. The features were z-score normalized per speaker, so

that each feature represented the speaker’s distance from their mean feature value, measured

in standard deviations. Paired t-tests were computed between the feature values in truthful

and deceptive segments. This approach was applied to features extracted from both question

response segments and question chunk segments. Table 5.3 shows the t-test results for the

LDI features extracted from the question response segmentation.
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Feature t df p Sig.

hasAbsolutelyReally 3.38 7660 0.00072 D

hasContraction -0.46 8069 0.65

hasI 3.54 8036 0.0004 D

hasWe 3.54 7236 0.0004 D

hasYes 5.69 7857 1.30E-08 D

hasNAposT 0.2 8057 0.84

hasNo -12.04 7938 4.20E-33 T

hasNot -3.01 8012 0.0027 T

isJustYes 1.05 8016 0.29

isJustNo -9.73 7522 3.00E-22 T

noYesOrNo 5.88 8082 4.20E-09 D

specificDenial -0.8 8053 0.42

thirdPersonPronouns 4.34 7661 0.000014 D

hasFalseStart 2.75 7800 0.006 D

hasFilledPause 6.76 8051 1.50E-11 D

numFilledPauses 7.4 7430 1.50E-13 D

hasCuePhrase -2.91 8060 0.0036 T

numCuePhrases 3.63 7269 0.00029 D

hasHedgePhrase 3.38 7972 0.00074 D

numHedgePhrases 4.33 7253 0.000015 D

hasLaugh 1.79 7960 0.073

complexity -0.73 8072 0.47

numLaugh 1.37 7968 0.17

DAL.wc -3.06 8056 0.0022 T

DAL.pleasant 7.42 8051 1.30E-13 D

DAL.activate -3.54 8062 0.0004 T

DAL.imagery 3.93 8011 0.000087 D

specScores 5.73 7897 1.00E-08 D

Table 5.3: Differences in mean LDI numeric features in truthful and deceptive interviewee

question responses. D=increased in deceptive speech, T=increased in truthful speech.
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Of the 28 LDI features, 21 were significantly different in truthful and deceptive inter-

viewee responses. Deceptive interviewee responses had higher DAL imagery scores (DAL−

imagery), which indicate words that are used to create vivid descriptions. They also had

higher specificity scores (specScores), indicating that deceptive responses contained more

detailed language than truthful responses. This is somewhat counterintuitive – deceptive

responses describe events that did not occur, so one might assume that the language would

be less descriptive and detailed. However, Malone et al. [1997] asked liars about the origins

of their lies, and found that most said that they used their own experiences but altered

critical details. Thus, they were able to create vivid and detailed stories that were very

similar to truthful events that occurred. Additionally, it is conceivable that deceivers would

attempt to conceal their deception by overcompensating with very detailed descriptions.

Consistent with DePaulo et al. [2003], deceptive responses had significantly more filled

pauses (hasF illedPause, numFilledPauses) than truthful responses. Deceivers are hy-

pothesized to experience an increase in cognitive load [Vrij et al., 1996], and this can result

in difficulties in speech planning, which can be signaled by filled pauses. Although Benus

et al. [2006] found that, in general, the use of pauses correlates more with truthful than

with deceptive speech, filled pauses such as “um” were increased in deceptive speech in

the CXD corpus. Deceptive responses also had more false starts than truthful responses

(hasFalseStart), which supports the theory that deceptive responses contain more disflu-

encies.

Hedge words and phrases (hasHedgePhrase, numHedgePhrases), which speakers use

to distance themselves from a proposition, were more frequent in deceptive speech. This is

consistent with Statement Analysis Adams [1996], which posits that hedge words are used

in deceptive statements to intentionally create vagueness that obscures facts.

Deceivers used more cue phrases (numCuePhrases) when lying than when telling

the truth. This feature captures 34 discourse markers such as “ok,” “also,” and “basi-

cally,” and this is consistent with previous work that suggest that deceptive speech should

contain more cue phrases [Adams, 1996; Enos, 2009]. Consistent with DePaulo et al.

[2003] and Hancock et al. [2004], deceptive responses had a higher rate of third person

pronouns (thirdPersonPronouns). However, the binary feature hasCuePhrase was in-
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creased in truthful responses. This is interesting because deceptive responses had on aver-

age more cue phrases per response than truthful responses. Although hasCuePhrase and

numCuePhrases are strongly related, it seems that truthful responses are more likely to

contain a cue phrase, and that deceptive responses contain on average more cue phrases

than truthful responses. Examining binary as well as numeric features can add additional

insight into the linguistic characteristics of deception.

DAL pleasantness scores (DAL−pleasant), which rate words on a scale from unpleasant

to pleasant, were higher in deceptive responses. Previous studies have produced mixed

results regarding emotional content of deceptive speech. Consistent with our findings, Enos

[2009] report an increase of positive emotion words in deceptive speech. Burgoon et al.

[2003] report an increase in all emotion words, both positive and negative, in deceptive

speech. However, Newman et al. [2003] found that negative emotion words were increased

in deceptive speech. Ott et al. [2011] point out that the goal of the deceiver affects the

emotional content of his lies. In the context of fake hotel reviews, they found that positive

emotion words were more frequent in deceptive reviews, where the goal is clearly to create

a fake positive review.

Deceptive responses had higher values for the feature hasAbsolutelyReally, which is

true if a response contains the word “absolutely” or “really.” These words typically convey

certainty, so this finding seemingly contradicts the increase in hedge words in deceptive

speech. However, upon closer analysis, we found that many of these responses included

negations such as “not really,” which is a hedge phrase and does not convey certainty.

Although there was an increase in third person pronouns in deceptive speech, there

were also greater frequencies of first person pronouns in deceptive speech, including “I” and

“we” (hasI, hasWe). Ott et al. [2011] found that deceptive text had more pronouns overall,

similar to imaginative writing (rather than informative writing).

Truthful responses had higher DAL activation scores (DAL− activate) than deceptive

responses, and also included more words per response than were found in the DAL dictionary

(DAL−wc). This suggests that truth-tellers used language that was more active, and also

more commonly found in the DAL dictionary, so the DAL scores are more reliable for

truthful responses than deceptive responses.
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Three features capturing negation, hasNo, hasNot, and isJustNo all had greater fre-

quencies in truthful responses. Other studies have reported the opposite: deceptive re-

sponses tend to contain more negation [Newman et al., 2003]. As with emotion, this is

likely a domain dependent phenomenon. For example, Fornaciari and Poesio [2013] studied

criminal testimony in Italian court cases, and found an increase in negative adverbs such

as “no” and “not” in deceptive statements. In that domain, deceptive statements involve

denial of committing crimes and require heavy use of negation. In the CXD corpus, subjects

are asked a variety of biographical questions, and some questions are more likely to be true

when negation is used. For example, “Have you ever watched a person or a pet die?” “Have

your parents divorced?” and “Have you ever gotten into trouble with the police?” were

all more likely to be true in the negative in the CXD corpus. Thus, this trend of negation

words in truthful responses might be an effect of the domain rather than a reliable indicator

of truthful speech.

The same analysis was applied to features extracted from question chunks. Table 5.4

shows the t-test results for the LDI features extracted from the question response chunks.
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Feature t df p Sig.

hasAbsolutelyReally 8.24 7838 2.00E-16 D

hasContraction 6.26 8074 4.00E-10 D

hasI 8.01 8064 1.30E-15 D

hasWe 7.89 7688 3.60E-15 D

hasYes 4.43 7991 9.40E-06 D

hasNAposT 4.7 8027 2.70E-06 D

hasNo -7.86 8075 4.50E-15 T

hasNot 2.75 8018 0.0061 D

isJustYes -0.36 8077 0.72

isJustNo -6.99 7234 3.00E-12 T

noYesOrNo 4.8 8041 1.60E-06 D

specificDenial 1.92 7935 0.055

thirdPersonPronouns 9.72 7911 3.20E-22 D

hasFalseStart 6.27 7946 3.70E-10 D

hasFilledPause 8.55 8041 1.50E-17 D

numFilledPauses 8.28 7730 1.40E-16 D

hasCuePhrase 1.6 8077 0.11

numCuePhrases 9.26 7776 2.70E-20 D

hasHedgePhrase 8.17 8077 3.40E-16 D

numHedgePhrases 8.21 7871 2.60E-16 D

hasLaugh 1.39 8039 0.16

complexity -0.36 8019 0.72

numLaugh -0.63 7847 0.53

DAL.wc 0.53 8069 0.6

DAL.pleasant 7.66 7986 2.10E-14 D

DAL.activate -8.73 8071 3.10E-18 T

DAL.imagery 6.72 8077 2.00E-11 D

specScores 12.77 8075 5.50E-37 D

Table 5.4: Differences in mean LDI features in truthful and deceptive interviewee question

chunks. D=increased in deceptive speech, T=increased in truthful speech.
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The results for features extracted from question chunks were almost identical to the

results from the question responses. However, there were some notable differences. The

DAL.wc feature was not significantly higher in truthful chunks than deceptive chunks. It

seems that this effect is only found in the first turn of each interviewee responses, but not

in the full set of interviewee turns.

The use of contractions was not an indicator of deception or truth in question responses,

but hasContraction and hasNAposT were increased in deceptive chunks. In their training

course on interrogation and interviewing techniques, Inbau et al. [2011] posit that contrac-

tions are a sign of truthful speech, since it is assumed to be more natural to say something

like “I didn’t do it” than “I did not do it.” The opposite trend was found for the CXD

corpus. Perhaps in an effort to sound casual during deception, people used contractions

more frequently. We note that contractions are largely used by native English speakers

and not L2 speakers, and we explore differences in cues to deception between native and

non-native speakers in Section II of this thesis.

Another difference between the analysis of question responses and question chunks is

that for question responses, the hasNot feature was increased in truthful responses. For

question chunks, this feature was increased in deceptive chunks. Using this form of nega-

tion was associated with deception in an interviewee’s initial response, but this effect was

not seen when analyzing the question chunk segmentation. Similarly, hasCuePhrase was

increased in truthful question responses, but this feature was not significantly different be-

tween truthful and deceptive question chunks. Use of a cue phrase in one’s first response

was associated with truth, but there was no such effect in the full chunk of interviewee

responses.

These findings suggest that when studying deceptive responses, there is a difference

between a speaker’s initial response (i.e. their first turn) and how they respond to follow up

question. Using the word “not” in one’s first response was an indicator of truth, while in

a follow up question it was an indicator of deception. It is important to keep this in mind

when analyzing cues to deception.
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5.3.2 LIWC

We analyzed the set of LIWC features. To avoid noise, LIWC features that did not appear

in at least 10% of question response segments were eliminated. This reduced the analysis to

42 of the 93 LIWC dimensions for question responses, and 77 LIWC dimensions for question

chunks. For example, seven punctuation categories (parentheses, exclamation mark, colon,

semi colon, quotation mark, period, and comma) were excluded from this analysis because

they do not appear in the corpus. This is due to the orthographic transcription scheme

used, which did not include punctuation transcription. The features represent normalized

frequencies of words in each semantic category in a given text segment. Paired t-tests were

used to compare the mean frequencies of these semantic categories in truthful and deceptive

samples.

Table 5.5 shows the t-test results for the LIWC features extracted from the question

response segmentation.

Feature t df p Sig.

adj -0.17 7181 0.87

adverb 1.03 7352 0.3

affect 1.75 7416 0.08

affiliation 1.52 7261 0.13

allPunc -1.09 7770 0.27

analytic 7.72 8077 1.30E-14 D

apostro -1.54 7612 0.12

article 1.33 7844 0.18

assent 5.59 7933 2.30E-08 D

authentic 1.53 8071 0.13

auxverb 0.84 8046 0.4

bio 1.72 6405 0.086

clout 9.2 8067 4.60E-20 D

cogproc -3.59 7655 0.00034 T

compare 1.45 6148 0.15
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conj 3.2 6984 0.0014 D

dic -1.8 8015 0.071

differ -1.68 6905 0.094

drives 2.5 7988 0.013 D

family 4.85 7341 1.20E-06 D

focuspast 4.27 7466 2.00E-05 D

focuspresent -1.26 8059 0.21

function. -9.72 8068 3.20E-22 T

i 1.72 8060 0.085

informal 6.31 8024 3.00E-10 D

insight -0.83 5928 0.4

ipron 0.13 7087 0.9

negate -15.2 7694 1.90E-51 T

netspeak 2.19 6500 0.029 (D)

nonflu 3.48 7794 0.00051 D

number 1.88 7971 0.06

posemo 2.27 6928 0.023 (D)

ppron 3.71 8078 0.00021 D

prep 3.49 7580 0.00049 D

pronoun 3.36 8083 0.00077 D

relativ 1.04 8037 0.3

sixltr 2.05 8073 0.04 (D)

social 4.26 7993 0.000021 D

space 2.84 7469 0.0045 D

tentat -0.66 6164 0.51

time -0.31 7740 0.76

Tone 2.3 7320 0.022 (D)

verb 1.86 8045 0.063

WC 6.58 7960 4.90E-11 D

work 2.04 7548 0.041 (D)
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WPS 6.52 7963 7.20E-11 D

Table 5.5: Differences in mean LIWC features in truthful and deceptive interviewee question

responses. D=increased in deceptive speech, T=increased in truthful speech.

16 LIWC features were significantly higher on average in deceptive speech and three

were significantly higher in truthful responses. There were also five features that approach

significance and were increased in deceptive responses. Here we highlight some interesting

findings.

Some of the LIWC results align well with the LDI results reported above. nonflue,

which captures nonfluencies (e.g. “er,” “hm,” “um”) was higher in deceptive responses,

as was informal, which captures a range of informal language (e.g. swear words,“ok,”

nonfluencies, and fillers like “I mean”). Total pronoun use was higher in deceptive responses,

and so was the use of ppron or personal pronouns such as “I,” “we,” and “her.” Emotional

tone trended towards more positive in deceptive responses, which complements our previous

finding that DAL pleasantness scores were higher in deceptive speech. Words that signal

assent, such as “agree,” “yes,” “okay” were more frequently used in deceptive responses.

This is consistent with the above finding that hasY es was associated with deceptive answers.

Frequencies of clout words, which show confidence and expertise were higher on average

in deceptive speech. This is somewhat counter to the previous finding that hedge words were

more frequent in deceptive speech. However, these findings are not mutually exclusive it is

possible to express confidence while also using hedge words. For example, many deceptive

responses contained the phrase “you know,” and the word “know” is in our hedge phrase

lexicon, but use of the word “you” appears in the LIWC lexicon for clout.

It is interesting that the focuspast category, which includes words in the past tense,

was more frequently used in deceptive speech. Verb tense is very important in statement

analysis, and changes in verb tense are studied carefully. Statement analysis does not have

general rules about verb tense and deception, rather it considers the verb tense in the

context of the situation [Adams, 1996]. For example, use of past tense when referring to a

missing person is suspicious, and in fact helped lead to the conviction of Susan Smith in the

murder of her own children, when the FBI observed her say about them that they needed
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her. Enos [2009] did not find a significant difference in use of past tense between deceptive

and truthful responses in the CSC corpus.

Social words, which include references to family and friends, were increased in deceptive

responses. Prepositions and conjunctions were more frequently used in deceptive responses,

Deceptive responses had increased word count (WC) and words per sentence (WPS) on

average. They also used more analytic language, or words that convey analytical thinking.

Consistent with the analysis of LDI features, truthful responses used more words from

the negate dimension, which express negation. They also used more function words, as

well as more words from the cogproc category, which are associated with cognitive processes

such as “cause” and “know.”

This LIWC analysis was also conducted for the question chunk segmentation. Table 5.6

shows the t-test results for the LIWC features extracted from the question chunk segmen-

tation.

Feature t df p Sig.

achieve 3.82 7555 0.00013 D

adj 3.72 8081 0.0002 D

adverb 5.37 8034 8.10E-08 D

affect -0.52 7952 0.6

affiliation 3.65 8022 0.00026 D

allPunc -1.57 8053 0.12

analytic 3.49 8084 0.00048 D

anger 2.46 7253 0.014 D

apostro -2.03 8046 0.042 (T)

article 5.21 8061 2.00E-07 D

assent -1.13 8052 0.26

authentic 2.05 8084 0.04 (D)

auxverb 0.56 8042 0.58

bio 2.84 7983 0.0045 D

body 3.5 7575 0.00046 D

cause 4.95 7725 7.50E-07 D
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certain -2.18 7794 0.03 T

clout 8.4 8062 5.20E-17 D

cogproc -0.7 7989 0.49

compare 5.1 7989 3.50E-07 D

conj 11.86 8010 3.60E-32 D

dash 3.61 7227 0.00031 D

dic -3.09 8075 0.002 T

differ -0.17 7929 0.86

discrep 3.42 7504 0.00062 D

drives 6.61 8083 4.20E-11 D

family 3.62 7936 0.0003 D

feel 5.91 6593 3.60E-09 D

female 2.75 7970 0.006 D

focusfuture 3.93 7125 0.000086 D

focuspast 8.05 8006 9.40E-16 D

focuspresent -0.32 8046 0.75

friend 5 7267 5.80E-07 D

function. -2.5 7924 0.012 T

health 2.29 7765 0.022 D

hear 1.34 7036 0.18

home 0.97 7583 0.33

i 1.73 8047 0.084

informal -3.21 7998 0.0014 T

insight 2.35 7957 0.019 D

interrog 5.63 7646 1.90E-08 D

ipron 6.8 8055 1.10E-11 D

leisure 2.08 7966 0.038 (D)

male 6.7 7744 2.30E-11 D

money 1.34 8024 0.18

motion 7.92 7789 2.70E-15 D
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negate -15.49 7421 2.80E-53 T

negemo 1.71 7941 0.088

netspeak -2.8 7762 0.0052 T

nonflu 0.35 8001 0.73

number 1.02 8083 0.31

percept 5.09 7916 3.70E-07 D

posemo -0.43 7945 0.67

power 6.06 8014 1.40E-09 D

ppron 5.95 8032 2.80E-09 D

prep 9.46 8048 3.80E-21 D

pronoun 8.35 7969 7.70E-17 D

quant 2.26 7945 0.024 D

relativ 4.33 8072 0.000015 D

reward 6.97 7515 3.40E-12 D

risk 2.42 6482 0.016 D

sad 3.85 6585 0.00012 D

see 4.13 7270 0.000036 D

shehe 6.26 7827 4.10E-10 D

sixltr 1.25 7999 0.21

social 6.8 8083 1.10E-11 D

space 4.59 8084 4.60E-06 D

tentat 1.27 7944 0.2

they 3.66 7457 0.00025 D

time 0.64 8023 0.52

tone 1.67 8050 0.095

verb 5.54 8010 3.20E-08 D

WC 16.26 7932 1.70E-58 D

we 5.63 7180 1.80E-08 D

work 3.1 8072 0.0019 D

WPS 16.08 7928 2.60E-57 D
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you 6.15 7043 8.40E-10 D

Table 5.6: Differences in mean LIWC features in truthful and deceptive interviewee question

chunks.D=increased in deceptive speech, T=increased in truthful speech.

49 LIWC features were significantly higher on average in deceptive speech and six were

significantly higher in truthful responses. There were also two features that approached

significance and were increased in deceptive responses, and one that approached significance

and was increased in truthful responses.

Overall, there were several additional significant differences in question chunks than in

question responses. This is likely due to the fact that some LIWC categories did not appear

often enough in the first turn, but when we aggregated all responses to follow up questions

into question chunks and analyzed LIWC features with greater context, certain patterns

were able to emerge.

For example, in question chunks, frequencies of adjectives, adverbs, and articles were

increased in deceptive chunks. Frequencies of verbs, we and you frequencies were also in-

creased in deceptive chunks, but this trend was not apparent in question responses. The

LIWC language summary variables of authenticity and adjectives were indicators of decep-

tion: in an effort to sound more truthful and authentic, interviewees may have provided a

level of detail that is uncharacteristic of truthful speech. This is consistent with the previous

finding that deceptive responses had higher specificity scores, or more detailed language,

than truthful responses.

Another trend seen only in chunks is that deceptive chunks had higher frequencies of

dash, which are used in this corpus to indicate false starts. This form of disfluencies was only

significantly increased in deceptive chunks, but not in responses. Interrogatives were also

increased in deceptive chunks. In the context of the interviewer-interviewee paradigm, these

are interviewee questions to the interviewer. Perhaps this was a technique used to stall so

that interviewees had more time to develop an answer (e.g. “Can you repeat the question?”)

or to deflect the interviewer’s attention from their deception and put the interviewer on the

spot.

In addition to an increase in focuspast words in deceptive chunks, there was an increase
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in focusfuture words, or verbs in future tense. This again signals the important role

that verb tense plays in deception; however it is probably a phenomenon that is context

dependent.

As with LDI features, it seems that there are some differences in indicators of truth

and deception depending on whether we consider the initial interviewee response, or the

full context of responses to follow up questions. These differences are important to keep in

mind when applying these findings to new situations.

This LIWC analysis provides some insight into the characteristics of deceptive and

truthful language. However, we note that there are areas to improve. LIWC relies on a

dictionary that maps words to semantic categories, and there are many words in our corpus

that do not appear in the dictionary. For example, our corpus includes many named entities,

some misspelled words (due to transcription errors), and instances of laughter that are not

represented in the LIWC dictionary. In addition, the dictionary uses regular expressions

to match words, and we found some mistakes in these regular expressions. For example,

one of the dictionary entries for the religion category is “monk*,” which matched the word

“monkey” in our corpus. A turn containing the term “Saint Louis” was given a high religion

score because “Saint” is a religious word. Therefore, it is important to be careful about

taking LIWC results at face value, and to carefully analyze the text to ensure that the LIWC

scores are capturing what they should. (See Franklin [2015] for a more detailed discussion

of LIWC concerns.)

In this work we compared average LIWC scores in truthful and deceptive speech, and

reported which categories had significant differences. We did not state that certain LIWC

categories imply deception, rather, we noted these differences and used them to hypothesize

about the characteristics of deceptive speech in this domain. Further analysis of LIWC

variables in multiple domains is necessary to make strong claims about the general nature

of deceptive speech.

5.3.3 Syntactic Complexity

This section summarizes the results of the analysis of syntactic complexity features in truth-

ful and deceptive interviewee responses. 23 syntactic complexity features were examined.



CHAPTER 5. FEATURE ANALYSIS 49

These features are described in detail in Chapter 4.

Table 5.7 shows the t-test results for the question response segmentation analysis and

Table 5.8 shows the t-test results for the question chunk analysis.

Feature t df p Sig.

W 5.73 7361 1.00E-08 D

VP 6.09 7366 1.20E-09 D

C 6.37 7392 2.00E-10 D

T 5.54 8076 3.00E-08 D

DC 5.08 7422 3.90E-07 D

CT 3.81 8001 0.00014 D

CP 3.21 7296 0.0013 D

CN 5.49 7406 4.10E-08 D

MLS 5.68 7380 1.40E-08 D

MLT 6.19 7273 6.20E-10 D

MLC 4.58 8028 4.80E-06 D

C.S 6.31 7416 2.90E-10 D

VP.T 6.53 7271 6.90E-11 D

C.T 6.75 7347 1.60E-11 D

DC.C 3.53 8025 0.00042 D

DC.T 5.38 7330 7.80E-08 D

T.S 5.49 8080 4.20E-08 D

CT.T 4.07 7993 4.60E-05 D

CP.T 3.05 7384 0.0023 D

CP.C 1.43 7937 0.15

CN.T 5.59 7376 2.40E-08 D

CN.C 3.69 8022 0.00023 D

Table 5.7: Differences in mean complexity features in truthful and deceptive interviewee

question responses. D=increased in deceptive speech, T=increased in truthful speech.
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Feature t df p Sig.

W 10.21 7732 2.50E-24 D

S 6.04 7961 1.70E-09 D

VP 10.03 7774 1.60E-23 D

C 9.8 7787 1.60E-22 D

T 7.41 7945 1.30E-13 D

DC 9.39 7628 7.70E-21 D

CT 8.71 7779 3.80E-18 D

CP 8.43 7615 4.10E-17 D

CN 9.31 7776 1.60E-20 D

MLS 10.24 7431 1.90E-24 D

MLT 9.36 7680 1.00E-20 D

MLC 6.24 8034 4.60E-10 D

C.S 10.52 7452 1.10E-25 D

VP.T 9.76 7645 2.30E-22 D

C.T 9.67 7636 5.50E-22 D

DC.C 8.43 8076 4.00E-17 D

DC.T 7.75 7791 1.10E-14 D

T.S 9.56 8080 1.60E-21 D

CT.T 7.43 8069 1.20E-13 D

CP.T 6.19 7656 6.40E-10 D

CP.C 2.49 7910 0.013 D

CN.T 7.42 7953 1.30E-13 D

CN.C 5.19 8080 2.20E-07 D

Table 5.8: Differences in mean complexity features in truthful and deceptive interviewee

question chunks. D=increased in deceptive speech, T=increased in truthful speech.

These tables show that all measures of syntactic complexity that were examined are

significantly different in truthful and deceptive chunks, and all except CP.C are signifi-

cantly different in truthful and deceptive responses. Interestingly, these measures are all
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significantly increased in deceptive responses, suggesting that deceptive responses are char-

acterized by increased complexity, compared with truthful responses. This is somewhat

counter-intuitive, and conflicts with the theory that lying increases cognitive load [Vrij

et al., 1996]. However, since the deception in the CXD corpus is partially premeditated

(i.e. subjects had time to prepare their responses before the interview, but they did not

know what follow up questions would be asked), it is possible that they did not experience

an increase in cognitive load.

5.4 Discussion

This chapter aimed to answer the question: What are the differences in acoustic-prosodic

and linguistic features between truthful and deceptive interviewee responses? We carefully

analyzed the characteristics of truthful and deceptive speech in the CXD corpus. Two seg-

mentation units, question responses and question chunks, were analyzed in order to study

the differences in cues to deception and truth between the immediate response to a question

and the responses to related follow-up questions. Using paired t-tests to compare feature

means between truthful and deceptive speech segments, we studied acoustic-prosodic, lexi-

cal, and syntactic feature sets.

Acoustic-Prosodic Indicators Pitch max and intensity max were significantly in-

creased in deceptive interviewee responses and chunks, and intensity mean was increased

in deceptive interviewee chunks. Speakers on average tended to speak higher in their pitch

range and with louder volume when they were lying. Increased pitch has been previously

identified as a cue to deception [Ekman et al., 1976; Streeter et al., 1977], but few previous

studies analyzed the relationship between intensity and deception.

Lexical Indicators 28 Linguistic Deception Indicator (LDI) features and 93 LIWC

dimensions were analyzed in truthful and deceptive interviewee speech segments. Several

patterns of deceptive language were apparent from this analysis, and many of the findings

confirmed prior studies of deceptive language. For example, disfluencies such as false starts

and filled pauses were increased in deceptive speech, as were hedge words and phrases;

these findings confirmed previous work that identified these cues to deception [DePaulo
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et al., 2003; Vrij et al., 1996; Adams, 1996]. There was increased pronoun usage (I, we,

third person pronouns) in deceptive speech, which is characteristic of imaginative writing

Ott et al. [2011]. Other findings contradicted previous studies. For example, features

capturing negation had greater frequencies in truthful responses, while previous studies

found that there was more negation in deceptive statements. This is likely a domain-

dependent phenomenon. In some situations, negation is likely to be deceptive. For example,

in the context of an interrogation about a crime, a guilty suspect who is lying will deny

their guilt with negation.

There were some differences in cues to deception between question responses and ques-

tion chunks. This is an important distinction, and suggests that there are some cues present

in a speaker’s immediate response to a question, while others are only captured over a longer

dialogue segment. In practice, it is possible that practitioners can benefit from treating cues

to deception differently depending on where they appear in a dialogue.

Syntactic Indicators 23 syntactic complexity features were analyzed; all of these

measures were indicators of deceptive responses. This suggests that syntactic complexity

measures are useful features for automatic deception detection. Contrary to theories that

deceptive language is simplistic, all complexity measures were increased in deceptive re-

sponses. It is possible that since interviewees in the CXD corpus were given time before

the interview to prepare their lies, they did not experience an increase in cognitive load and

therefore syntactic complexity was not reduced in deceptive speech.

Most of the findings presented in this chapter were consistent with prior work, but some

contradicted previous findings. It is difficult to identify global deception indicators, since

there are many important differences in experimental paradigms that affect the nature

of deception. Are the lies premeditated or spontaneous? Is there incentive provided for

successful deception? Are the deceptive responses constrained to a particular structure

(e.g. yes/no responses) or domain (e.g. opinion about death penalty)? In what modality

does the deception take place (e.g. face-to-face, text, oral)?

In this work we identified acoustic-prosodic, lexical, and syntactic characteristics of

deceptive and truthful speech in the context of the CXD corpus. Interviewees responded

to a set of 24 biographical questions with premeditated lies or truths, but also spontaneous
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responses to follow up questions. They were provided financial incentive to lie well, and the

target of the deception was the interviewer. The deception modality was audio only. This

paradigm mimics a real-world scenario where an individual might be questioned about their

background over the phone.

This systematic analysis of over 150 speech- and text-based features in a large-scale

corpus of deceptive speech furthers our scientific understanding of deceptive language and

is an important contribution of this thesis.

There are several ways to extend this work. One area that can be improved is the

quality of the lexical features. Several of features (e.g. LIWC, hedge words) are identified

using lexicons, and this approach often introduces noise. For example, there is ambiguity in

hedge word identification, where contextual information is necessary to determine whether

a word is a hedge or not. Contextual cues can be leveraged in a rule-based or machine

learning classifier [Ulinski et al., 2018] to improve the quality of the features.

Additionally, this analysis identifies trends across all speakers in the corpus, but there

are some speakers that do not exhibit these trends. It is important to consider not only the

patterns of behavior in the aggregate, but also of individuals and of sub-groups. In Part

II of this thesis we analyze the same features, considering subgroups of speakers that have

the same gender, native language, or personality type.
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Chapter 6

Deception Classification

In Chapter 5, we demonstrated that there were significant differences between deceptive and

truthful interviewee responses – in prosody, lexical content, psycholinguistic dimensions, and

syntactic complexity measures. Motivated by these differences, we used acoustic-prosodic

and linguistic features to train machine learning classifiers to automatically distinguish

between deceptive and truthful speech. This chapter presents the results of a series of

classification experiments to answer the following questions:

• What segmentation unit is best for deception classification?

• What is the best classification approach for automatic deception detection?

• Which features are useful for deception classification?

In order to shed light on the optimal segmentation size for deception classification, we

compared the results of classifiers trained on four different segmentation units described

in Chapter 4: IPUs, turns, question responses, and question chunks. An inter-pausal unit

(IPU) is defined as a pause-free segment of speech from a single speaker, with a pause

length threshold of 50 ms. A turn is defined as a maximal sequence of IPUs from a single

speaker without any interlocutor speech that is not a backchannel. A question response is

an interviewee turn that is a direct answer to an interviewer question from the list of 24

biographical questions. A question chunk is a set of interviewee turns that are answers to

an interviewer biographical question and its related follow-up questions.
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IPUs and turns have local deception annotations, while question responses and chunks

have global deception annotations. Global deception refers to the veracity of a multi-

utterance response to a set of questions related to a salient discourse topic. Local deception

refers to the veracity of utterances that are spoken in support of a topic. In the CXD cor-

pus, the discourse topics are the 24 biographical questions that are used during interviews,

and each interviewee response to a question is globally true or false. Comparing deception

classification results across the four segmentation units helps us understand the role of con-

text in deception classification, as well as the trade-offs between global and local deception

annotations.

We compared the performance of several supervised learning approaches in order to

study which method performed best for deception classification. We selected four classifica-

tion models that are commonly used in speech and text classification problems, described

below. (In addition to these four classifiers, we also explored neural network classifiers.

Those experiments are described later, in Chapter 14.)

• Random Forest (RF)

Random Forest is an ensemble method, where multiple decision trees are generated,

each trained on a random subset of features, and classification is done by majority

voting. We used forests of 100 trees for our experiments.

• Logistic Regression (LR)

Logistic Regression is a linear model for classification, which uses a logistic (sigmoid)

function to model the probability of a binary dependent variable. We used L2 regu-

larization to reduce overfitting.

• Support Vector Machine (SVM)

A Support Vector Machine determines an optimal hyperplane to separate classes. We

used an SVM with a linear kernel.

• Naive Bayes (NB)

A Naive Bayes classifier applies Bayes’ theorem which assumes independence of fea-

tures. They have been shown to work well for document classification problems. We
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used an implementation of Gaussian Naive Bayes, which assumes the likelihood of the

features is Gaussian.

We used the scikit-learn implementation of all classification models (http://scikit-learn.

org). The local deception labels for IPUs and turns were not balanced: 57% of IPUs were

labeled as ‘T’ and 42% of IPUs were labeled as ‘F’; 60% of turns were labeled as ‘T’ and 40%

of turns were labeled as ‘F’. On the other hand, the global labels for question responses and

chunks were balanced, since participants were instructed to lie for exactly 12 of the 24 ques-

tions. In order to overcome the skewed distribution of local deception labels, we randomly

sub-sampled the truthful class so all of the data was balanced for these experiments. This

enabled easy comparison of results across segmentations. Thus, the random baseline for all

four segmentations is 50% accuracy; that is, a classifier that always predicts the same class

will correctly label 50% of the test samples. Another baseline that we compare our results

to is human performance. Because the subjects playing the role of interviewer provided

deception judgments during the interview, we can measure human performance as the aver-

age percentage of correct judgments made by interviewers, which was 56.75% This human

baseline performance is for the task of deception classification of question chunks only. This

is because interviewers marked their judgments after asking each question and correspond-

ing follow up questions. We did not collect human judgments of deception for any other

segmentation; thus this human baseline can only be directly compared with classification

of question chunks.

For all experiments, we evaluated the models using 10-fold cross validation, with unique

speakers in each fold. The speakers per fold were the same for all segmentations to ensure

consistency.

We trained classifiers using acoustic-prosodic, lexical, and syntactic feature sets de-

scribed in Chapter 4. We first trained classifiers on each individual feature set, and then

on feature combinations. We also conducted feature ranking analysis to understand which

features were most useful for deception classification. All features were z-score normalized

per speaker.

http://scikit-learn.org
http://scikit-learn.org
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6.1 Individual Feature Classification

We began by training classifiers on individual feature sets in order to assess which single

feature sets were most discriminative between truthful and deceptive speech. We compared

the performance of multiple classifiers trained on each feature set. We repeated these

experiments on each of the four segmentation units. In the tables below, we show the

classification results. The classifiers were evaluated using accuracy metric, as well as the

F1-score for truth (F1-T), F1-score for deception (F1-F), and the average F1-score for truth

and deception (F1-F). The “CLF” column in the tables below represents the classifier that

performed best for a particular feature set. In the analysis of the results and in choosing the

best classifiers, we focused on the average F1 metric which captures the balance of precision

and recall for both truthful and deceptive classes, and is a robust measure of the classifier

performance.

The individual feature sets that we assessed were: Praat, IS09, LIWC, LDI, Complexity,

and N-gram features.

Table 6.1 shows the results for classification of IPUs.

Feature Acc F1-T F1-F F1-Avg CLF

Praat 51.23 50.10 52.07 51.09 LR

IS09 52.08 51.70 52.35 52.03 LR

LIWC 53.32 51.98 54.58 53.28 LR

LDI 52.59 49.97 54.93 52.45 LR

Complexity 51.12 50.34 51.85 51.09 LR

N-gram 53.30 54.00 52.56 53.28 LR

Table 6.1: IPU classification with all individual feature sets.

IPU classification results ranged from 51.09 F1 (Praat, complexity) to 53.28 F1 (LIWC,

n-gram). All results were better than the random baseline (50% accuracy), however they

were only marginally better. Overall, the text-based features did slightly better than the

speech-based features. Complexity features performed poorly. This is likely because IPU

segments were short and did not have enough context to capture useful syntactic complex-
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ity features. The logistic regression classifier was the best performing model for all IPU

classification tasks.

Table 6.2 shows the results of turn classification experiments.

Feature Acc F1-T F1-F F1-Avg CLF

Praat 52.00 56.79 45.82 51.30 LR

IS09 52.10 52.94 51.17 52.05 LR

LIWC 54.39 56.60 51.93 54.26 SVM

LDI 52.96 54.46 51.32 52.89 LR

Complexity 52.15 57.77 44.69 51.23 LR

N-gram 55.87 58.42 52.95 55.69 LR

Table 6.2: Turn classification with all individual feature sets.

Turn classification results ranged from 51.23 F1 (complexity) to 55.69 F1 (n-grams). As

with IPUs, complexity features performed poorly for turn classification. Although many

turns are longer than IPUs and provide more context, there are also many turns that consist

of a single IPU or even a single word, which makes it difficult to capture meaningful syn-

tactic structures. The best performing feature set was n-gram features, and these features

benefited from the additional context in turns over IPUs. The logistic regression classifier

was the best model for all feature sets except LIWC, which performed best with the SVM

classifier.

Table 6.3 shows the results of classification experiments for question response segmen-

tation.
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Feature Acc F1-T F1-F F1-Avg CLF

Praat 52.76 55.77 49.15 52.46 LR

IS09 54.84 52.89 56.59 54.74 RF

LIWC 58.86 55.82 61.50 58.66 SVM

LDI 57.75 54.68 60.40 57.54 LR

Complexity 53.97 55.66 52.06 53.86 LR

N-gram 60.54 58.56 62.33 60.44 LR

Table 6.3: Question response classification with all individual feature sets.

Results for question responses ranged from 52.46 F1 (Praat) to 60.44 F1 (n-grams).

Praat features were again the worst performing feature set, and n-gram features were again

the best performing feature set, achieving an F1-score about 10% better than the random

baseline. LIWC features also performed strongly (58.66 F1). The logistic regression classifier

performed best for all features except LIWC (SVM was best) and IS09 (RF was best).

Table 6.4 shows the classification results for question chunk segmentation.

Feature Acc F1-T F1-F F1-Avg CLF

Praat 55.69 58.66 51.90 55.28 RF

IS09 56.15 54.65 57.47 56.06 RF

LIWC 59.62 58.53 60.64 59.59 SVM

LDI 58.89 58.89 58.87 58.88 LR

Complexity 57.53 57.19 57.83 57.51 SVM

N-gram 60.96 59.89 61.95 60.92 LR

Table 6.4: Question chunk classification with all individual feature sets.

Question chunk classification results ranged from 55.28 F1 (Praat) to 60.92 F1 (n-grams).

For question chunks, logistic regression was no longer the preferred classifier for most feature

sets. Instead, we see that acoustic-prosodic feature sets (Praat, IS09) performed best with

the random forest classifier, while LIWC and complexity features performed best with the

SVM classifier, and LR was the best performing classifier for LDI and n-gram features. It



CHAPTER 6. DECEPTION CLASSIFICATION 60

is interesting that different classification algorithms performed best with different feature

sets depending on the segmentation unit.

In summary, all classifiers incrementally improved as segmentation unit sizes increased,

from IPUs to turns to question responses to question chunks. This was true for all feature

sets. It is particularly interesting that classification of question responses consistently per-

formed better than turn classification, since question responses are simply a subset of turns

that are direct answers to biographical questions. Despite the fact that the set of question

responses is only about 20% of the full set of turns, we obtained much better performance

from reducing the data size. It seems that it is easier to classify turns with global deception

labels than local deception labels. The remaining 80% of turns include answers to follow

up questions, but they also include statements that are off-topic or perhaps do not have

a clearly defined deception label. These results are consistent with the work of Enos et

al. [2007], who found that classification of so-called “critical segments,” segments that are

relevant to salient deception topics, yielded better performance than classification of local

deception in their full corpus.

Praat features were the lowest performing feature set for all segmentations. This is likely

because these are only 15 summary statistics of acoustic-prosodic features. IS09 features are

a much larger and complex acoustic-prosodic feature set, and it seems that these features

better capture the prosodic differences between truthful and deceptive speech. Complexity

features were highly sensitive to segmentation unit, performing barely above baseline for

IPUs and turns, but achieving 57.51 F1 for question chunks. Text-based features generally

performed better than acoustic-prosodic features, and standard n-grams were surprisingly

the best-performing feature set, outperforming our customized deception features (LDI)

and psychologically motivated features (LIWC).

We also explored additional syntactic features for the topic based segmentation - ques-

tion responses and question chunks. IPUs and turns were excluded from these classification

experiments because the syntactic features captured by the complexity feature set were noisy

for those shorter segmentation units. The additional syntactic features that we explored

are:

• POS (Part-of-speech)



CHAPTER 6. DECEPTION CLASSIFICATION 61

• Word+POS

• PR-lex (Production rules, lexicalized)

• PR-unlex (Production rules, unlexicalized)

• G-PR-lex (Grandparent-annotated production rules, lexicalized)

• G-PR-unlex (Grandparent-annotated production rules, unlexicalized)

These features are described in detail in Chapter 4, Section 4.4.2. A list of the POS tags

and their descriptions is found in Appendix B.

For classification purposes, we represented each of these feature sets as a bag of words

(n-gram) model, but instead of words as tokens, we used the feature (e.g. POS tag, or

production rule) as tokens. The logistic regression classifier performed best for all of these

syntactic features, for both question response and question chunk segmentations.

Table 6.5 shows the classification results using these syntactic features for question

response segmentation.

Feature Acc F1-T F1-F F1-Avg

POS 57.42 52.75 61.24 57.00

Word+POS 60.53 58.94 61.98 60.46

PR-Lex 59.74 57.51 61.75 59.63

PR-Unlex 56.55 52.66 59.84 56.25

GPR-Lex 59.22 56.92 61.27 59.09

GPR-Unlex 55.94 51.96 59.30 55.63

Table 6.5: Question response classification with individual syntactic feature sets.

Results for question response segmentation ranged from 55.63 F1 (GPR-Unlex) to 60.46

F1 (Word+POS). Combining word tokens with their part of speech tags was useful for

deception detection. However, we note that the performance of this feature set was almost

the same as using n-grams alone (60.44 F1), so it is unclear whether there is much to be

gained from adding part of speech tag information. Lexicalized production rules (PR-Lex)

also performed well, with an F1-score of 59.63.
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Table 6.6 shows the classification results using syntactic features for question chunk

segmentation.

Feature Acc F1-T F1-F F1-Avg

POS 57.27 56.22 58.25 57.24

Word+POS 60.93 60.68 61.17 60.92

PR-Lex 59.90 58.90 60.82 59.86

PR-Unlex 57.30 56.34 58.16 57.25

GPR-Lex 58.99 58.29 59.62 58.96

GPR-Unlex 56.60 55.88 57.23 56.55

Table 6.6: Question chunk classification with individual syntactic feature sets.

The results for question chunk segmentation are similar to those from the question

response segmentation, ranging from 56.55 F1 (GPR-Unlex) to 60.93 F1 (Word+POS).

Again, the best results come from combining words with their part of speech tags, and this

yields the same performance as training a model with word-only n-grams (60.93 F1). In

general, lexicalized production rules performed better than unlexicalized production rules.

These results provide insight into which classifiers and features are useful for deception

detection, depending on the segmentation unit being classified. In the next section, we

explore classifiers trained on combinations of features to leverage the strengths of multiple

features. In addition, we explore feature ranking to understand which features contribute

the most to classification.

6.2 Feature Combinations

This section presents the results of classification experiments using combinations of features

explored in the previous section. We grouped features into three main feature sets:

• Acoustic-prosodic

• Lexical

• Syntactic
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Acoustic-prosodic features consist of Praat and IS09 feature sets, and lexical features

consist of LIWC, LDI, and n-gram feature sets. The syntactic feature set is only the

complexity features for IPUs and turns, and is the combination of POS, word+POS, and

production rule features for question responses and question chunks.

In this section we present the results of classifiers trained with each of these feature sets,

as well as combinations of these three feature sets. To combine feature sets, we concatenated

the feature vectors of each feature. We did this for each of the four segmentation units.

Because concatenating feature vectors resulted in a very large number of features, we

used feature selection to reduce the feature space and eliminate features that were not helpful

to classification. Feature selection was done using the SelectKBest function in scikit-learn.

We used a score function which scores features using the ANOVA F-value between the class

label and each feature. We used grid search to optimize k, the number of top-ranked features

that were selected. The tables below show the results of these experiments, evaluated by

accuracy (Acc), F1-score for the truthful class (F1-T), F1-score for the deceptive class (F1-

F), and average F1-score (F1-Avg). The CLF column indicates which classifier performed

best for each feature set, and the k column indicates the number of features that were

selected for that feature set.

Table 6.7 shows the results using feature combinations for IPU classification.

Feature Acc F1-T F1-F F1-Avg CLF k

Acoustic 52.90 52.27 53.50 52.89 LR 200

Lexical 56.01 56.16 55.85 56.00 LR 3000

Syntactic 51.12 50.34 51.85 51.09 LR all

Acoustic+Lexical 56.25 56.33 56.17 56.25 LR 3000

Acoustic+Syntactic 52.72 52.26 53.16 52.71 LR 300

Lexical+Syntactic 56.00 56.33 55.66 55.99 LR 3000

All 56.29 56.37 56.20 56.29 LR 3000

Table 6.7: IPU classification with combined feature sets.

Classification results for IPUs using feature combinations ranged from 51.09 F1 (syn-
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tactic) to 56.29 F1 (all features). The syntactic feature set for IPUs consisted of only

complexity features, and as we observed previously, these features do not capture useful

differences between truthful and deceptive IPUs. This is likely because IPUs are too short

to have meaningful syntactic complexity measures. The best performance of 56.29 F1 was

obtained by combining all three sets of features and using the top 3000. However, this

performance was not much better than the performance obtained using the best single fea-

ture set, lexical – 56 F1. It seems that lexical features (LIWC + LDI + n-grams) were

the most useful for IPU classification. Combining these three categories of lexical features

yielded better results than training with any of those feature sets individually. As shown

in Table 6.1 above, the best performance for IPU classification with a single feature set

was 53.28 F1 (n-grams). Consistent with our findings from single feature classification, the

best classifier for IPU segmentation with combined features was logistic regression, for all

feature combinations.

We show the results for turn classification with feature combinations in Table 6.8.

Feature Acc F1-T F1-F F1-Avg CLF k

Acoustic 52.98 53.85 52.06 52.96 LR 200

Lexical 58.03 60.19 55.60 57.90 LR 3000

Syntactic 52.15 57.77 44.69 51.23 LR all

Acoustic+Lexical 59.77 65.78 51.21 58.49 NB 3000

Acoustic+Syntactic 53.03 53.65 52.40 53.02 LR 300

Lexical+Syntactic 57.86 59.83 55.67 57.75 LR 3000

All 57.86 58.53 57.17 57.85 LR 3000

Table 6.8: Turn classification with combined feature sets.

Classification results for turns using feature combinations ranged from 51.23 F1 (syn-

tactic) to 58.49 F1 (acoustic+lexical). As with IPUs, the syntactic feature set for turns

consisted of only complexity features, and as we observed previously, these features do not

capture useful differences between truthful and deceptive turns.

The best performance of 58.49 F1 was obtained using a combination of acoustic+lexical
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feature sets. The acoustic+lexical NB classifier also achieved the highest accuracy (59.77%)

and the highest F1 for the truthful class (65.6 F1-T). However, as seen from the breakdown

of F1 for T and F classes, the classifier has a high F1 of 65.78 for truthful turns, and a

low F1 of 51.21 for truthful turns. In contrast, the LR classifier trained on all features

had a slightly lower average F1 (57.86), but a more evenly balanced F1 across T and F

classes. Depending on the application, one might prefer to optimize a classifier for F1 of a

particular class. For example, in a high-stakes scenario where it is critical to avoid a false

positive (e.g. incriminating an innocent person), we would prefer a model with a very high

F1 for deception, even at the cost of F1 for the truthful class. All of our experiments were

optimized for average F1 across both classes, but this objective can be modified depending

on the application.

Although using acoustic+lexical features yielded the best average F1-score, training with

lexical features alone yielded an F1 of 57.90, which was very close to the best performance.

As with IPUs, it seems that lexical features (LIWC + LDI + n-grams) were the most useful

for turn classification. Combining these three categories of lexical features yielded better

results than training with any of those feature sets individually. As shown in Table 6.2

above, the best performance for turn classification with a single feature set was 55.69 F1

(n-grams).

Consistent with our findings from single feature classification, the logistic regression

classifier was preferred for all feature combinations except for acoustic+lexical features

combined.

We show the results for question response classification with feature combinations in

Table 6.9.
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Feature Acc F1-T F1-F F1-Avg CLF k

Acoustic 56.40 56.45 56.34 56.40 SVM 200

Lexical 64.43 64.56 64.27 64.42 SVM 3000

Syntactic 66.05 66.29 65.80 66.04 SVM 5000

Acoustic+Lexical 63.47 63.99 62.93 63.46 SVM 3000

Acoustic+Syntactic 64.31 65.25 63.32 64.28 SVM 5000

Lexical+Syntactic 65.77 66.27 65.24 65.76 SVM 5000

All 63.69 64.61 62.71 63.66 SVM 5000

Table 6.9: Question response classification with combined feature sets.

Classification results for question responses using feature combinations ranged from

56.40 F1 (acoustic) to 66.04 F1 (syntactic). Syntactic features for question responses in-

clude complexity features as well as POS, word+POS, and production rule n-gram features.

This combined feature set yielded strong classification performance. The total size of the

syntactic feature set without feature selection was close to 30,000, and the best performance

was obtained using the top 5,000 ranked features.

This combined syntactic feature set yielded better results than training with any of those

feature sets individually – as shown in Table 6.5 above, the best performance for question

response classification with a single syntactic feature set was 60.46 F1 (word+POS).

Combining the syntactic features with other feature sets did not improve performance.

Some of the syntactic features capture lexical content (e.g. word+POS features, lexicalized

production rules), and this explains why combining syntactic with lexical features does

not improve performance. It is surprising that combining acoustic features with syntactic

features did not improve over syntactic features alone, since they provide a new dimension.

However, training with acoustic features on their own resulted in an F1-score of 56.4, so

it seems that acoustic features were not as useful in discriminating between truthful and

deceptive responses.

In contrast to IPUs and turns, where logistic regression was the preferred classifier, here

we found that SVMs resulted in the best performance for question response classification

with feature combinations.
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Finally, we show the results for question chunk classification with feature combinations

in Table 6.10.

Feature Acc F1-T F1-F F1-Avg CLF k

Acoustic 58.10 57.48 58.69 58.09 SVM 200

Lexical 64.96 64.65 65.25 64.95 NB 3000

Syntactic 69.34 69.38 69.29 69.34 NB 5000

Acoustic+Lexical 66.31 65.93 66.66 66.30 NB 3000

Acoustic+Syntactic 69.24 69.23 69.24 69.23 NB 5000

Lexical+Syntactic 69.81 69.95 69.66 69.80 NB 5000

All 69.43 69.53 69.32 69.43 NB 5000

Table 6.10: Question chunk classification with combined feature sets.

Classification results for question chunks using feature combinations ranged from 58.09

F1 (acoustic) to 69.8 F1 (lexical+syntactic). Syntactic features for question chunks include

complexity features as well as POS, word+POS, and production rule n-gram features. This

feature set, combined with lexical features (LIWC, LDI, and n-grams) yielded strong clas-

sification performance. The lexical+syntactic classification results were only marginally

better than the results using syntactic features alone, likely because lexical content is also

captured by some of the syntactic features. Combining these features yielded better results

than training with any of those feature sets individually. As shown in Table 6.6 above, the

best performance for question chunk classification with a single feature set was 60.92 F1

(word+POS). Interestingly, Naive Bayes (NB) classifiers resulted in the best performance

for question response classification with feature combinations. It seems that classifier selec-

tion should be made based on the segmentation unit as well as the features being classified.

In summary, acoustic-prosodic, lexical, and syntactic features are predictive of deceptive

language. We achieved performance well above a random baseline of 50% accuracy for each

segmentation: +6.3% for IPUs, +9.8% for turns, +16% for question responses, and +19.8

for question chunks. Because interviewers recorded their judgments for each of the 24

biographical questions, we also have a human baseline for question chunk classification
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of 56.75% accuracy. The best performance for automatic question chunk classification

was 69.8% accuracy, an absolute increase 13.05% and a relative increase of 23%. Thus,

we can achieve “super-human” performance at deception detection using natural language

processing and machine learning techniques.

We found that combining feature sets always improved performance over using indi-

vidual features, and using reduced feature sets with top ranked features further improved

performance. We also observed that different classification algorithms performed better for

different feature sets and segmentation units, suggesting that there are many important

factors to consider when modeling deception.

6.3 Feature Ranking

Having demonstrated that these acoustic-prosodic, lexical, and syntactic features are highly

effective at deception classification, we were interested in analyzing which features con-

tributed most to classification. In particular, we observed that feature selection was an

important step to improve classifier performance, since the full set of features totaled to

over 30,000 features.

For each of three main feature groups – acoustic-prosodic, lexical, and syntactic, we

show the top features selected by feature selection. We also show the top features for the

set of all features combined. Feature selection was done using the SelectKBest function

in scikit-learn. We used a score function which scores features using the ANOVA F-value

between the class label and each feature. Below we show the top 20 features and their

F-values for each group of features. Because question chunks consistently yielded the best

performance, we show the feature ranking for the question chunk segmentation.

The top 20 ranked acoustic-prosodic features are shown in Figure 6.1.
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Figure 6.1: Top 20 acoustic features for deception classification, ranked by ANOVA F-values.

All 20 top acoustic features came from the IS09 feature set, and none came from the

Praat feature set. 13 were MFCC features, five were functionals computed over the zero-

crossing rate (ZCR) from the time signal, and two features were functionals computed over

RMS energy.

Figure 6.2 shows the top 20 ranked features from the lexical feature set.

Figure 6.2: Top 20 lexical features for deception classification, ranked by ANOVA F-values.

Six of the top 20 lexical features came from the LIWC feature set, nine came from
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the LDI feature set, and five came from the n-gram feature set. Several of these features

were found to be significant indicators of deception or truth, as shown in Chapter 5. For

example, hedge phrases and filled pauses were more frequently used in deceptive interviewee

responses. Specificity scores were also increased in deceptive speech. N-gram features were

not previously analyzed, and here we see that some unigrams appear in the top lexical

feature set: and, no, just, was, so. Some of these were captured in LDI or LIWC features.

Conjunctions (e.g. and) were more common in deceptive responses, as were past tense verbs

(e.g. was). Thus, these ranked features are largely consistent with the findings of our prior

analysis. Unlike the top acoustic-prosodic features, which were dominated by IS09 features,

it seems that there was a more equal distribution of top features from all three lexical

feature sets.

Figure 6.3 shows the top 20 ranked syntactic features.

Figure 6.3: Top 20 syntactic features for deception classification, ranked by ANOVA F-

values.

Nine of the top 20 syntactic features were from the complexity feature set, five from the

POS and word+POS features, and six from the production rules feature sets. Some of these

features capture similar cues from other feature sets. For example, lexicalized production

rules “DT− >no” and “CC− >and” and word+POS features “no-dt” and “and-cc” are the
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same, and they are essentially the same as the n-grams “no” and “and”, which were top

lexical features. Prepositions also appear in a few of the top syntactic features, and these

were found to occur more frequently in deceptive responses.

Figure 6.4 shows the top 20 ranked features from the combined set of acoustic, lexical,

and syntactic features.

Figure 6.4: Top 20 acoustic+lexical+syntactic features for deception classification, ranked

by ANOVA F-values.

From all of the feature sets, WC (word count from LIWC) and W (word count from

complexity, and WPS (words per sentence) are the top three ranked features. All three of

these features capture the same trend – deceptive statements had more words and words per

sentence than truthful statements. We see from this figure that the top 20 features are a mix

of acoustic-prosodic, lexical, and syntactic features. Feature selection was an important step

in improving classification performance, and it is also helpful to examine the top selected

features to understand which features were effective at distinguishing between truthful and

deceptive responses. We found that the top selected features were generally consistent with

our statistical analysis of cues to deception and truth.
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6.4 Discussion

This chapter presented a comprehensive set of machine learning experiments to classify

deceptive and truthful interviewee responses. The results of these experiments enable us to

address our original questions about automatic deception classification:

What segmentation unit is best for deception classification? Our experiments

were conducted using four segmentation units: IPUs, turns, question responses, and ques-

tion chunks. Two of the segmentations, IPUs and turns, were labeled with local deception

annotations using the participant keypress logs. The other two deception annotations,

question responses and turns, were labeled with global deception annotations using the

participant responses from the biographical questionnaire. The experimental results consis-

tently showed improved performance as segmentation duration increased. IPU classification

had the lowest performance, followed by turn classification, then question response classi-

fication, and the best performance was achieved using question chunk classification. This

was true across all feature sets and classification methods.

Despite the fact that the shorter segmentation units had the largest amount of training

instances, the results clearly indicate that the best deception classification performance is

achieved using question chunks. Although there are many more instances of IPU and turn

segmentations, they include ambiguous segments that do not have a clearly defined veracity

label. Contextual information is often necessary for disambiguation. For example, an IPU

that consists of a filled pause or laughter is not clearly truthful or deceptive. It is only in

the context of the preceding and following IPUs that a veracity label can be determined.

Question chunk classification has the advantage of a large amount of contextual information.

Further, comparing performance across segmentation units allowed us to evaluate the

benefits of local vs. global deception annotations. The experimental results suggest that

the globally annotated data was more useful than locally annotated data. Overall, it seems

that data quality is much more important than data quantity.

What is the best classification approach for automatic deception detection?

We compared the performance of four classification algorithms: Random Forest (RF), Lo-

gistic Regression (LR), Support Vector Machine (SVM), and Naive Bayes (NB). The clas-

sification results indicate that there is no single best approach for deception classification,



CHAPTER 6. DECEPTION CLASSIFICATION 73

but that different classifiers are suited for different tasks.

Logistic regression (LR) was the best classification algorithm for most IPU and turn

classification tasks. LR models the probability of a dependent variable (in this case true

or deceptive) using a logistic function. It is often used as a baseline before trying other

more complex models since it is efficient, interpretable, and works well off-the-shelf without

parameter tuning. IPU and turn classification were the lowest performing tasks across

all classifiers and feature sets, suggesting that the truthful and deceptive classes were not

easily separable using the various acoustic-prosodic and linguistic features. It seems that

the simple LR classification algorithm worked best for the more difficult tasks. However,

it did not perform strongly – the best LR IPU classification performance was 53.28 F1 for

single feature sets (n-grams) and 56.29 F1 for feature combinations (all features). The best

LR turn classification performance was 55.69 F1 for single feature sets (n-grams) and 58.49

F1 for feature combinations (all features).

Logistic regression was also the best performing classification algorithm for classification

of n-gram features across all segmentations. For question responses and question chunks,

LR was the best classifier for all individual n-gram feature sets, including word n-grams,

POS n-grams, and n-grams of various forms of syntactic production rules. N-grams are

high dimensional, sparse features and highly correlated, and logistic regression can handle

features with these characteristics.

After combining multiple feature sets and applying feature selection, SVM was the best

performing classifier for the question response segmentation. However, Naive Bayes was the

best performing classifier for the question chunk segmentation, after feature selection. NB

applies Bayes’ theorem with the naive assumption of independence between features. Thus,

it performs poorly at text classification without feature selection, since there are highly cor-

related features. NB does not perform well for deception classification with acoustic features

which are also highly correlated with each other. The best classifier for acoustic-prosodic

features extracted from question chunks was random forest, which can handle correlated

features. Despite the strong performance of NB for the question chunk segmentation, it was

not the best classifier for the question response segmentation. The quality of the features, in

particular the syntactic n-grams, was higher for question chunks than question responses,
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since dependency parses were more accurate when there was more context available. It

seems that the NB classifier benefited from these higher quality features.

Overall, there is no single classification algorithm that is “best” for deception detec-

tion. Rather, best practices for deception classification vary significantly depending on the

segmentation units classified and the feature sets used. The classifier that seems most ver-

satile across feature sets and segmentation units is logistic regression. However, the best

performance was obtained by using a NB classifier trained on selected lexical and syntactic

features for question chunk segmentation.

Which features are useful for deception classification? We trained classifiers

using two acoustic-prosodic feature sets (Praat, IS09), three lexical feature sets (LDI, LIWC,

n-gram), and one syntactic feature sets for IPUs and turns (complexity), and seven syntactic

feature sets for question responses and question chunks (complexity, POS, word+POS, PR-

lex, PR-unlex, G-PR-lex, and G-PR-unlex). Classifiers were trained using individual feature

sets and combinations of multiple feature sets. The experimental results show that text-

based features (lexical and syntactic) generally performed better than acoustic-prosodic

features. The best performing single feature set across all segmentations was word n-grams,

ranging from 53.28 F1 (IPU) to 60.92 F1 (question chunk).

Although there were some trends across all segmentations, some features performed

very differently depending on the segmentation unit. For example, complexity features on

their own performed barely above chance for IPUs and turns (51 F1), but were more useful

for question chunks (57.51 F1). The complexity features were computed from dependency

parses, which were much more accurate for longer segmentations.

Feature combinations yielded the best deception classification performance, and feature

selection was an important pre-processing step to reduce the feature dimensions. The

optimal feature combinations varied across segmentations: all features for IPUs (56.29 F1),

acoustic+lexical for turns (58.49 F1), syntactic features for question responses (66.04 F1),

and lexical+syntactic for question chunks (69.8 F1).

In addition to comparing classification results for different feature sets, we conducted

feature ranking analysis to understand which specific features were most discriminative

between truthful and deceptive speech. This analysis is complementary to the feature anal-
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ysis reported previously in Chapter 5. This provides insight into which acoustic-prosodic,

lexical, and syntactic features were most useful for classification.

In summary, we compared the performance of 4 classification algorithms, trained with

various acoustic-prosodic, lexical, and syntactic feature sets. We trained classifiers for 4

segmentation units: IPUs, turns, question responses, and question chunks, and reported

optimal classifiers and feature sets for the different segmentation units. We explored classifi-

cation with various feature combinations and used feature selection to improve performance.

Finally, we presented feature ranking results to understand which features contributed most

to classification. Our best classifier was a Naive Bayes classifier trained with a combination

of lexical and syntactic features extracted from question chunks, and achieved an accuracy

of 69.8% – well above human performance of 56.75% accuracy. In addition to the contribu-

tion of these strong performing deception classifiers, this work contributes to our scientific

understanding of deceptive language, and provides useful insights for future experiments

with automatic language-based deception detection.
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Chapter 7

Error Analysis

Having trained automatic deception detection classifiers, in this chapter we take a closer

look at the classification performance and compare it with human performance. We aimed

to answer the following questions:

• Does classifier and human deception detection performance vary across speakers?

I.e. Are there speakers that are “easier” or “harder” for humans or machines to detect

when they are lying?

• Are classifier judgments of deception related to human judgments?

• Are there particular groups of speakers (e.g. by gender, native language, or person-

ality) that are easier or harder to classify? Does this differ for human and machine

judges?

• Are there particular groups of segments that are easier or harder to classify? Does

this differ for human and machine judges?

In order to answer these questions, we analyzed the predictions made by the best classi-

fication model: a Naive Bayes classifier trained on a combination of 5000 selected lexical and

syntactic features, for the question chunk segmentation. This model achieved an F1-score

of 69.8.
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7.1 Deception Detection per Speaker

Does classifier and human deception detection performance vary across speak-

ers? To answer this question, we grouped the question chunk segments by speaker, and

computed the average F1-score of the classifier predictions for each speaker individually.

We also computed the average F1-score of human predictions for each speaker. There are

340 unique speakers in the corpus, and each speaker had a maximum of 24 question chunk

segments (some speakers had slightly fewer segments, because of missing features or miss-

ing data from the interview). Table 7.1 shows summary statistics of average F1-score per

speaker, computed from both classifier and human predictions. Q1, Q2, and Q3 represent

the first, second, and third quartiles.

Judge Mean Std Min Q1 Q2 Q3 Max

CLF 68.48 11.17 31.25 60.79 69.42 77.22 91.66

Human 55.33 12.50 22.57 46.67 54.17 64.26 100.00

Table 7.1: Summary statistics for speaker-level F1-scores, for both classifier and human

judgments. (CLF=classifier)

Figure 7.1 shows the distribution of average F1-scores per speaker, comparing F1-scores

from human and classifier predictions. F1-scores from human judges are shown in red,

classifier F1-scores are shown in blue, and the overlapping region is purple.
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Figure 7.1: Histogram of speaker-level F1-scores for classifier and human judgments. F1-

scores from human judges are shown in red, classifier F1-scores are shown in blue, and the

overlapping region is purple.

As shown from both the summary statistics and the histogram, there is a wide range

of both human and classifier F1-scores across speakers. The standard deviation is high for

both humans and machines. In addition, classifier performance is consistently higher than

human judge performance.

7.2 Human vs. Machine Performance

Are classifier judgments of deception related to human judgments? We explored

this question at both the segment level and the speaker level. At the segment level, we aimed

to discover whether the deception classifier and the human judges made similar deception

judgments across all interviewee responses (i.e. were segments that were easy/hard for

humans to judge also easy/hard for the classifier to judge?). And at the speaker level, we

aimed to discover whether the classifier and humans performed similarly for each speaker
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(i.e. were speakers that were easy/hard for humans to judge also easy/hard for the classifier

to judge?).

At the segment level, we performed two analyses to answer this question. First, we

used the Pearson’s chi-squared test to compare classifier judgments and human judgments

across all question responses, and found that they were not independent (χ2(1, N = 7772) =

94.65, p ≈ 0). That is, human judgments and classifier judgments were strongly related.

Next, we examined whether classifier and human performance at deception detection was

related at the segment level. To do this, we computed a “correct” or “incorrect” label for

each segment, for both human predictions and classifier predictions. We then compared

classifier performance and human performance using the chi-squared test, and found that

these were also strongly related (χ2(1, N = 7772) = 32.17, p ≈ 0). Thus, classifier and

human judgments of deception, as well as classifier and human performance at deception

detection, were strongly related at the segment level. This is true despite the fact that the

human judgments were made by many different interviewers.

At the speaker level, we computed the average F1 of the classifier for all segments per

speaker CLFF1, as well as the average F1 of the human interviewer for all segments per

speaker humanF1. These measures represent how difficult or easy it was for a classifier or

human judge to detect deception for a particular speaker. We used three analysis methods

to study the relationship between human and classifier performance at the speaker level.

We computed the Pearson’s correlation between humanF1 and CLFF1, and found that

there was no correlation between these measures (r(340) = −0.02, p = 0.73). Thus, although

human and machine deception judgments were correlated at the segment level, human and

classifier performance were not correlated at the speaker level.

We also computed the Kendall’s rank correlation coefficient τ between humanF1 and

CLFF1. This statistic measures the ordinal association, i.e. the relationship between rank-

ings, between two variables. We observed no significant correlation between speaker ranking

by humanF1 and speaker ranking by CLFF1 (τ(340) = 0.01, p = 0.76).

Finally, we partitioned each speaker into one of three bins – high, average, or low –

using quantiles of the F1-score to partition the speakers. Speakers who were classified with

an F1-score in the top 75% were placed in the “high” bin, representing speakers that were
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classified with high performance, while speakers who were classified with an F1-score in

the bottom 25% were placed in the “low” bin. The remaining speakers were placed in the

“average” bin. We computed the bins using humanF1 and CLFF1 and used Pearson’s Chi-

squared test to evaluate whether the distributions were independent. The results show no

significant interaction between the two distributions (χ2(4, N = 340) = 0.85, p = 0.93).

In summary, all three analysis methods suggest that classifier performance per speaker

is not related to human performance. The average F1 values per speaker were not corre-

lated between human and speaker judgments, and the relative rankings of the speakers by

human and machine judgments were also not correlated. Finally, the distribution of high,

med, and low F1-scores from human and classifier predictions were independent. Thus,

although human judgments of deception were strongly related to classifier judgments across

all segments, humans and the classifier did not perform similarly at the speaker level.

7.3 Classifier and Human Performance Across Speaker Traits

Are there particular groups of speakers (e.g. by gender, native language, or

personality) that are easier or harder to classify? Does this differ for human

and machine judges? To answer these questions, we compared the CLFF1 and humanF1

measures across groups of speakers. Paired t-tests comparing both CLFF1 and humanF1

between male and female interviewees, and between native Chinese and native English

speakers, yielded no significant differences. It seems that the classifier and human judges

did not perform significantly better or worse for speakers of a particular gender or native

language.

We used an ANOVA to compare humanF1 and CLFF1 across personality factors, using

the high, average, and low personality bins described in Chapter 12. We observed a signif-

icant effect of the personality factor of Conscientiousness on CLFF 1 (F (2, 337) = 3.99, p =

0.02). A Tukey post-hoc test revealed that the difference came from the comparison of

CLFF1 between speakers that were in the Low and Average Conscientiousness bins. The

mean CLFF1 for speakers in the Average bin was 66.7, while the mean for speakers in

the Low bin was 70.32 (p = 0.014). Thus, the classifier performed significantly better for
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speakers who were low on the Conscientiousness scale.

We did not observe any significant effect for personality when comparing humanF1. In

summary, interviewee gender, native language, and personality did not generally have a

significant effect on classifier or human performance. However, we did observe an effect of

Conscientiousness on classifier performance, but not on human judge performance.

7.4 Classifier and Human Performance Across Segment Char-

acteristics

Are there particular groups of segments that are easier or harder to classify?

Does this differ for human and machine judges?

We considered segment characteristics of duration, the biographical question that was used

to elicit the response segment, and the biographical question type.

Duration

Duration is end time - start time of a segment, and for question chunks this represents the

duration of a dialogue about a particular biographical question (since it includes interviewer

follow up questions).

We computed paired t-tests to compare segment duration between predicted true and

predicted false segments, from both classifier and human predictions. The results showed

that duration was significantly different between segments that were believed to be true

or judged to be false, by humans and the classifier. The mean duration of segments that

were judged as false by humans was 37.07, while the mean duration of segments that were

judged as true by humans was 31.39 (t(7772) = 6.19, p ≈ 0). The difference was even more

stark for classifier judgments: the mean duration of segments that were judged as false by

the classifier was 48.78, while the mean duration of segments that were judged as true by

the classifier was 18.95 (t(7772) = 35.48, p ≈ 0). Both humans and the machine learning

classifier tended to judge longer question chunk segments as deceptive, and shorter segments

as truthful. This is an intuitive result for human judges, since the interviewers decided how

many follow up questions to ask for each question.

It is likely that when an interviewer was skeptical about the interviewee’s initial response,



CHAPTER 7. ERROR ANALYSIS 82

they would ask more follow up questions. To test this hypothesis, we compared the number

of follow up questions in question chunks that were believed or not believed by humans

and the classifier. The results confirmed this hypothesis: the mean number of follow up

questions in chunks that were believed by interviewers was 5.06, while the mean number of

follow up questions in question chunks judged as deceptive was 5.74 (t(7772) = 5.19, p ≈ 0).

The same was true for classifier judgments: the mean number of follow up questions in

chunks that were judged as true by the classifier was 3.69, while the mean number of follow

up questions in question chunks judged as deceptive was 7.02 (t(7772) = 27.48, p ≈ 0).

These findings are intuitive, since the number of follow up questions per question chunk

was strongly correlated with the chunk duration (r(7772) = 0.83, p ≈ 0).

We also computed paired t-tests to analyze the difference between classifier and human

performance across segment duration and number of follow up question per segment. We

found that segment duration was not significantly different between segments that were

correctly or incorrectly judged by humans (t(7772) = 0.43, p = 0.67), nor was the number of

follow up questions (t(7772) = 0.09, p = 0.93). Similarly, we found no difference in duration

between segments that were correctly or incorrectly judged by the classifier (t(7772) =

1.09, p = 0.28) and no difference in number of follow up questions (t(7772) = 1.31, p = 0.18).

Although the classifier and human judgments of deception were strongly related to the

duration and number of follow up questions per segment, human and classifier performance

were not.

Biographical Question

Next, we examined whether human and classifier judgments of deception varied across

responses to different questions. There were 24 biographical questions used in each interview

session (see Appendix A.4 for a sample questionnaire). We aimed to discover whether

certain questions were easier or more difficult to classify, for humans or for the classifier.

We computed CLFF1 and humanF1 aggregated by question number, from 1-24. That is,

we computed the F1 score individually for all segments that were responses to a particular

biographical question. Figure 7.2 shows the classifier F1 per question, and Figure 7.3 shows

the human F1 per question.
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The figures show that there was significant variation in both classifier and human perfor-
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mance across questions. Further, there are some similar trends in performance by question

for the classifier and humans. We computed the Pearson’s correlation between CLFF1 and

humanF1 and found that they were significantly correlated (r(24) = 0.69, p = 0.0002).

Thus, questions that were easier or more difficult for human judges were similarly easier

or more difficult for the classifier. For example, both humans and the classifier performed

strongly for question number 5, “Have your parents divorced?” Human F1 was 72.36 for

this question (+16 from the mean of 56.37 across all questions). Classifier F1 was 76.39 for

this question (+6.58 from the mean of 69.82 across all questions). Both humans and the

classifier also performed strongly for question 13, “Have you ever gotten into trouble with

the police?” and question 16, “What is the most you have ever spent on a pair of shoes?”

To understand why these questions might have been easier for both humans and the

classifier to identify deception, we examined the interviewee responses to these questions.

In addition to writing a lie in response to half of the questions, subjects were also instructed

to record the truthful response to each question, enabling us to study the ground truth for

each question. We identified important trends in the data that help explain this pattern.

For question 5, we found that about 80% of truthful responses stated that their parents had

not divorced, while only 20% of truthful responses stated that their parents had divorced.

Thus, human interviewers could have used this intuition about general divorce trends to

judge responses to question 5. Similarly, the classifier could learn this distribution for this

question. If the classifier always judged “yes” responses to this question as false, and “no”

responses to this question as true, it would obtain a very high accuracy of about 80%.

We found a very similar trend for question 13: about 80% of interviewees truthfully

stated that they had never gotten into trouble with the police, while only about 20%

truthfully stated that they did. Again, humans using their intuition about the probability

that a college student had previously had trouble with the police, or the classifier learning

the distribution, could result in high performance.

For question 13, participants were asked to provide the amount of money that they spent

on their most expensive pair of shoes. We analyzed the amount reported for truthful and

for deceptive responses, and found that the median amount for truthful responses was $150,

while the median amount for deceptive responses was $350. Human interviewers could use



CHAPTER 7. ERROR ANALYSIS 85

their domain knowledge of shoe prices and college student behavior, and a machine learning

classifier could learn this pattern from training data.

On the other hand, question 8, “Have you ever stayed overnight in a hospital as a

patient?” was particularly difficult for humans and the classifier. Humans achieved an F1

of 50 for this question (F1 of 50, -6.37 from mean), and classifier performance was 64.59 F1

(-5.22 from mean). We analyzed the truthful responses to question 8 and found that 61%

of interviewees had never stayed overnight in the hospital as a patient, while 39% had. This

difference is much smaller than the 80%-20% difference for the “easy” questions, and helps

explain why it would be harder to detect deception for this question.

There were also some differences between human and classifier performance per ques-

tion. Question 6, “Have you ever broken a bone?” had one of the lowest F1 scores for

human judges (51.55, -4.82 from mean), but was above average for the classifier (72.61,

+2.85 from mean). An analysis of the truthful responses to question 6 showed that 75% of

interviewees had never broken a bone, while 25% had. It is possible that human intuition

about this question was incorrect, while the classifier was able to learn this distribution and

perform better.

Question Type

Having established that there is variation in human and classifier performance across re-

sponses to different questions, in this next analysis we studied whether there are also dif-

ferences across categories of questions. One way of categorizing the questions is by differ-

entiating between questions that require a yes-no response (e.g. “Have you ever tweeted?”)

and those that are open-ended (e.g. “What is your major?”). 13 of the 24 questions are

yes-no questions (questions 5-11,13,18,19,22,23,24), and 11 are open-ended questions (ques-

tions 1-4,12,14,15,16,17,20,21). Another way to categorize the questions is into sensitive

and non-sensitive questions. We followed the criteria in Tourangeau and Yan [2007] to de-

fine sensitive questions in our corpus. These questions are related to money (number 16),

parental or romantic relationships (5,14,15), mortality (23), socially undesirable behaviors

or experiences (12,13,24). In total, there are 8 sensitive questions and 16 non-sensitive

questions.

To explore whether human and classifier judgments were different across question type,
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we used the Pearson’s chi-squared test to compare judgments between sensitive/non-sensitive

questions, and between yes-no/open-ended questions. We found that there was no effect of

question type on human judgments of deception (sensitive/non-sensitive:χ2(1, N = 7772) =

2.07, p = 0.15; yes-no/open-ended: χ2(1, N = 7772) = 0.19, p = 0.66). That is, human

judgments of deception were not significantly different across question type. We also com-

pared human performance at deception detection across pair type by assigning a “correct”

or “incorrect” label to each segment, indicating whether the human interviewer had cor-

rectly or incorrectly judged that segment as true or false. We found a significant effect

for sensitive/non-sensitive questions type (χ2(1, N = 7772) = 17.18, p ≈ 0). To exam-

ine this effect, we computed humanf1 across all sensitive questions and all non-sensitive

questions, and found that it was higher for sensitive questions (59.67 F1) than for non-

sensitive questions (54.70 F1). No effect for yes-no/open-ended question type was observed

(χ2(1, N = 7772) = 0.67, p = 0.41).

Next, we repeated this analysis for classifier judgments of deception. In contrast to

our findings for human judgments, we found a strong effect of question type on classifier

judgments of deception, for both sensitive/non-sensitive questions (χ2(1, N = 7772) =

39.757, p ≈ 0) and yes-no/open-ended questions (χ2(1, N = 7772) = 114.5, p ≈ 0). The

classifier was more likely to predict that a segment was true if it was in response to a

non-sensitive question, and also if it was in response to a yes-no question.

However, also in contrast to our findings for human judgments, we observed no effect of

question type on classifier performance (sensitive/non-sensitive:χ2(1, N = 7772) = 2.64, p =

0.1; yes-no/open-ended: χ2(1, N = 7772) = 1.84, p = 0.18).

It seems that question type had different effects on human and classifier judgments of

deception. Human judgments were not different across question type, but human perfor-

mance was higher for sensitive questions. On the other hand, classifier judgments were

different across question type (more “trusting” of responses to non-sensitive questions and

open-ended questions), but classifier performance did not vary across question type. This

suggests that the classifier was influenced in some way by the different patterns of responses

to different question types, but this did not affect the classifier performance. Humans were

better at detecting deception in responses to sensitive questions, and perhaps this finding
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can be useful for practitioners – it is possible that asking sensitive questions rather than

neutral questions can aid in deception detection.

7.5 Discussion

This chapter took a close look at the deception judgments made by the best performing

deception classifier, to understand the strengths and weaknesses of the model compared

with human judges. This work addressed the following questions:

Does classifier and human deception detection performance vary across speak-

ers? That is, are there some speakers that are easier or more difficult for humans or

machines to detect when they are lying? We computed the average F1-score per speaker of

classifier and human judgments, and found that there was a wide range of both human and

classifier judgments across speakers. Human performance ranged from 22.57 to 100 F1, with

a median of 54.17, and classifier performance ranged from 31.25 to 91.66 F1, with a median

of 69.42. Classifier performance was consistently superior to human judge performance at

deception detection, but they both had significant variation across speakers.

Are classifier judgments of deception related to human judgments? With this

analysis, we aimed to discover whether the deception classifier and human judges performed

better/worse for the same speakers, or for the same interviewee responses. Using multiple

statistical analyses, we found that classifier performance was strongly correlated with human

performance per segment, but not per speaker. That is, there were particular kinds of

interviewee responses (across all speakers) that were easy or difficult for both humans and

classifiers to judge. However, humans and classifiers did not perform similarly for particular

speakers.

Are there particular groups of speakers or segments that are easier or harder

to classify, for humans or machines? We studied classifier and human judgments across

speaker gender, native language, and personality traits, to understand whether classifier or

human judgments of deception vary depending on these speaker characteristics. The analy-

sis showed no significant effect of gender or native language on human or machine judgments

of deception. There was also no effect of interviewee personality on human judgments of
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deception. However, there was a significant effect of Conscientiousness on classifier judg-

ments of deception – the classifier performed significantly better for speakers who scored

low on Conscientiousness. These individuals are characterized as careless, inefficient, and

not dependable. It seems that automatic deception detection is easier for speakers who

have these characteristics.

We also analyzed classifier and human judgments across groups of interviewee responses,

considering segment characteristics of duration, the biographical question that elicited the

response, and the biographical question type (open-ended vs. yes-no, sensitive vs. non-

sensitive). Segment duration was a significant factor in human and classifier judgments

– longer segments (in duration, and in number of turns per chunk) were judged as more

deceptive. However, human and classifier performance was not affected by duration. That

is, there was no significant difference in duration between segments that were correctly or

incorrectly classified (by humans or the classifier). The biographical question that was used

to elicit an interviewee response played an important role in human and classifier judgments.

Performance at deception detection varied greatly across questions, and classifier and human

performance across questions were strongly correlated. We identified specific questions that

were easier/harder for both humans and machines, likely because the distribution of truthful

answers for some questions was skewed. Question type also played a role in deception

judgments. Humans performed better at deception detection for sensitive questions, and

the classifier was more likely to predict that a segment was true if it was in response to a

yes-no question or a non-sensitive question.

This chapter highlights the importance of carefully analyzing classifier predictions to

understand the factors that affect those predictions. These experiments show that the

classifier acts similarly to human judges in some ways, and very differently in other ways.

It is important to note that we analyzed a single deception classifier and compared it with

aggregated judgments of multiple human interviewers. One classifier was used to classify

all interviewee responses in the corpus, whereas the human judge was different for each

session. This makes it difficult to draw conclusions from the analysis – each utterance in

the corpus was labeled by a single interviewer, and there are many factors that affect each

interviewer’s judgments. In future work, we plan to use crowd-sourcing to collect multiple
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judgments of deception for each interviewee segments, which will allow for a more complete

analysis of human deception judgments compared with the classifier.

We found that there were substantial differences in classifier performance across re-

sponses to different biographical questions. It seems that using domain knowledge can be

very useful for both human and machine deception detection. However, there are trade-offs

involved in leveraging domain-specific information for deception classification. If the goal

is to develop a general purpose deception classifier that can detect deception independent

of the domain, then using domain-specific information should be avoided. A possible way

to achieve this is to train a classifier using multiple data sources from different domains.

On the other hand, if optimal deception detection performance for a particular domain is

the objective, domain knowledge can be leveraged to achieve this goal. For example, in our

classification experiments the classifier was blind to the questions that were asked to elicit

the interviewee responses. It only had access to features from the interviewee in isolation.

Based on these results, it is likely that giving the classifier the question number as a feature

would be useful and further improve performance of question chunk classification.
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Chapter 8

Entrainment in Deceptive Dialogue

In this chapter we present an analysis of entrainment in deceptive dialogues. Entrainment

is the phenomenon of interlocutors becoming similar to each other in dialogue. It has

been found to occur in multiple dimensions of spoken language, including acoustic-prosodic

[Levitan et al., 2012], linguistic style [Danescu-Niculescu-Mizil et al., 2011], and syntactic

structure [Reitter and Moore, 2006]. Importantly, entrainment has been associated with

positive conversation outcomes, such as likability [Chartrand and Bargh, 1999], naturalness,

and task success [Nenkova et al., 2008]. Prior studies of entrainment have examined (appar-

ently) truthful dialogues, mostly goal-oriented. For example, [Levitan et al., 2012] studied

acoustic-prosodic entrainment in a corpus of spontaneous dialogue between partners playing

collaborative computer games. Lee et al. [2010] measured acoustic-prosodic entrainment in

dialogues between married couples discussing problems in their relationship.

In this work, we studied entrainment in deceptive dialogue. Deceptive dialogue is fun-

damentally different from truthful dialogue in terms of conversational goals. Interpersonal

Deception Theory (IDT) [Buller and Burgoon, 1996] models deception as an interactive

process between a deceiver and his conversational partner, where both interlocutors make

strategic adjustments during their communication. The goal of the deceiver is to convince

his partner that his lies are in fact true. Because of this important difference between truth-

ful and deceptive speech, we were interested in examining the relationship between dialogue

coordination and deception. The closest previous work to ours is that of Yu et al. [2015],

which examined nonverbal entrainment (e.g. synchrony of facial expressions and head move-
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ments) in deceptive and truthful dialogue, and found that synchrony features were useful

for automatic discrimination of deception from truth. In another relevant study, Hancock

et al. [2007a] identified correlations between linguistic category usage of deceivers and their

partners, and observed greater correlations during deceptive than truthful speech.

This work focuses on entrainment in acoustic-prosodic and lexical features. Entrainment

in this features has not been previously studied in deceptive dialogues. We aimed to answer

the following questions:

1. Do interlocutors entrain in acoustic-prosodic and lexical dimensions in deceptive dia-

logues?

2. Is entrainment related to deception outcomes? (a) Is entrainment correlated with

the ability to deceive or detect deception? (b) Is there a difference in entrainment

behavior between truthful and deceptive speech?

The CXD corpus is particularly useful for a study of entrainment. Most deception

corpora contain speech from the deceiver alone, while this corpus consists of the dialogue

between the interviewer and deceptive interviewee, allowing us to study entrainment. In

addition, each interview consists of half truthful and half deceptive responses, enabling a

within-speaker comparison of entrainment in truthful and deceptive speech. The corpus

also includes both global and local annotations of deception, as well as interviewer global

(i.e. question-level) deception judgments. Thus, we can analyze entrainment with respect

to global and local deception labels, and also consider the relationship between interviewer

perception of deception and entrainment.

Some of this work was published in Levitan et al. [2018b], and was done in collaboration

with my co-author Jessica Xiang.

8.1 Method

We examined entrainment in eight acoustic-prosodic features that are commonly studied

in speech research: intensity mean, intensity max, pitch mean, pitch max, jitter, shimmer,

noise-to-harmonics ratio (NHR), and speaking rate. All acoustic features were extracted
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using Praat, and z-score normalized by gender (z = (x-µ)/σ; x = value, µ = gender mean,

σ = gender standard deviation). In addition to acoustic-prosodic features, we studied

entrainment in four lexical features: 100 most frequent words, 25 most frequent words,

hedge words/phrases, and cue phrases. Entrainment in the use of the most frequent words

in a dialogue or corpus has been studied by Nenkova et al. [2008] and shown to be predictive

of dialogue naturalness and correlated with task success. Hedge words and phrases are used

by speakers to express distance or lack of commitment to what they are saying (e.g. “I

think,” “sort of”), and are a novel domain for entrainment analysis. Cue phrases are

linguistic expressions that function as explicit indicators of discourse structure, and have

also not been previously studied in the context of entrainment. We used lists of hedge words

and affirmative cue lexicons that are found in Appendix C.

There are many ways to quantify entrainment behavior. In this work we followed the

methods proposed in Levitan [2014], and differentiated between global and local entrain-

ment. Global entrainment is the phenomenon where a speaker is similar to her partner

over the course of a conversation, for a particular feature. This is measured using feature

means over the dialogue. Local entrainment refers to a dynamic alignment that occurs

within a conversation, regardless of the similarity across the entire conversation. This is

measured by looking at similarity at every point in the dialogue. We studied acoustic-

prosodic entrainment at both global and local levels, but only examined lexical entrainment

at the global level, where there is enough lexical content to compute meaningful lexical

entrainment measures.

8.1.1 Local Entrainment Measures

For all local measures of entrainment, features were extracted at the IPU level. We identified

the starting IPU of each interviewer and interviewee turn (excluding the first turn of each

session) and these formed the set of target IPUs. For each target IPU, IPUt, we identified

the corresponding partner IPU, IPUp, which was defined as the ending IPU of the speaker’s

partner’s preceding turn (excluding overlapping IPUs).

Local Proximity We calculated partner difference and other difference for each IPUt,

letting IPUi be the ending IPU of a random speaker that was not the partner of the speaker
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of IPUt.

partner difference = −|IPUt − IPUp| (8.1)

other difference = −
∑1000

i=1 |IPUt − IPUi|
1000

(8.2)

Evidence for local proximity was determined using a paired t-test between partner dif-

ference and other (non-partner) difference. If the partner difference was significantly smaller

than the difference between the random non-partner, we define that as evidence of local

entrainment.

Local Convergence We computed local convergence, the tendency of partners to be-

come more locally similar to each other over time, as the Pearsons correlation coefficient

between time and the absolute difference between each target IPU and its corresponding

partner IPU.

Local Synchrony We computed local synchrony, the relative alignment of features of

conversational partners, as the Pearsons correlation coefficient between each target IPU

and its corresponding partner IPU. We repeated each correlation (for local convergence and

synchrony) ten times with randomly ordered data to verify that significant results were not

just a product of the size of our corpus; we consider a result valid if at least nine of the ten

random permutations fail to exhibit significant correlation.

8.1.2 Global Entrainment Measures

For all global measures of entrainment, features were extracted at the IPU level and then

averaged over each session. For both speakers in each session, we let Savg equal the mean of

all IPU values for the speaker and Pavg equal the mean of all IPU values for the speaker’s

partner. Oavg was the average of all IPU values for every speaker in the corpus with the

same role (i.e. interviewer or interviewee) as the partner but who was not the partner. We

calculated partner difference as the negated difference between Savg and Pavg and other

difference as the negated difference between Savg and Oavg.

Global Proximity Evidence for global proximity was determined using a paired t-test

between partner difference and other difference. If the partner difference was significantly
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smaller than the difference with other speakers for a particular feature, we considered that

to be evidence of global proximity.

Global Convergence Evidence for global convergence was determined using two ap-

proaches. The first approach was a paired t-test to compare average partner difference

during the first five minutes and last five minutes of each session. The second approach was

similar, except that partner differences in the first half of each session was compared with

the second half.

All tests for significance correct for family-wise Type I error by controlling the false

discovery rate (FDR) at α = 0.05. The kth smallest p value is considered significant if it is

less than k∗α
n .

In all the tables in this chapter, we use E to indicate that a feature was entrained on,

and D to indicate that a feature was disentrained on (e.g. was significantly more similar

to random other speakers that to partner). We consider a result to approach significance

if its uncorrected p value is <= 0.05 and indicate this with parentheses (e.g. “(E)”) in the

tables.

8.2 Local Entrainment Results

Feature t p Sig.

Pitch Max -3.12 0.002 D

Pitch Mean 4.87 1.14E-06 E

Intensity Max 12.82 1.36E-37 E

Intensity Mean 10.67 1.38E-26 E

Speaking Rate 6.04 1.51E-09 E

Jitter 3.95 7.87E-05 E

Shimmer 2.48 0.013 E

NHR 2.75 0.006 E

Table 8.1: T-tests for local proximity: partner vs. non-partner differences.
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As shown in Table 8.1, there was evidence of local proximity for all acoustic features except

for max pitch. Voice quality features of shimmer and NHR had slightly weaker evidence

of entrainment than pitch, intensity, and speaking rate. Adjacent partner turns were not

significantly more similar to each other in max pitch than to non-adjacent turns, and in

fact were more similar to the max pitch of non-adjacent turns. This is likely because of

the interview format of the dialogue, where interviewers asked questions (which were often

uttered with a final rising pitch) and interviewees responded with declarative statements

(typically using falling pitch).

Feature r p Sig.

Pitch Max 0.003 0.51

Pitch Mean -0.006 0.12

Intensity Max 0.02 6.68E-09 E

Intensity Mean 0.04 3.42E-21 E

Speaking Rate -0.01 0.004 D

Jitter -0.01 0.01 D

Shimmer 0.0005 0.91

NHR 0.01 3.24E-05 E

Table 8.2: Correlation results for local convergence analysis.

As shown in Table 8.2, we observed local convergence for max intensity, mean intensity,

and NHR and divergence for speaking rate and jitter. There was no evidence of local

convergence for max and mean pitch or shimmer. Again, the lack of entrainment on pitch

features is likely due to the question/answer interview format of the dialogue. As with local

proximity entrainment, voice quality features were less commonly entrained on.
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Feature r p Sig.

Pitch Max 0.02 2.26E-08 E

Pitch Mean 0.03 2.79E-11 E

Intensity Max 0.15 0 E

Intensity Mean 0.16 0 E

Speaking Rate 0.08 3.30E-82 E

Jitter 0.05 8.15E-29 E

Shimmer 0.03 4.64E-11 E

NHR 0.05 5.96E-35 E

Table 8.3: Correlation results for local synchrony analysis.

Table 8.3 shows evidence of local synchrony for all features. Unlike local proximity and

local convergence, there was evidence of synchrony for both max and mean pitch. Thus, it

seems that in this question-answer dialogue format, speakers did not entrain on pitch by

value, rather, they entrained relatively on pitch, adjusting pitch to a corresponding level

within their own range.

All of the correlation coefficients were weak for convergence and synchrony (the highest

was .16 for synchrony on mean intensity), indicating a lack of strong trends across all speaker

pairs. To better understand the variation across speakers, we analyzed local convergence

and behavior for each pair of speakers. For local convergence, 51% of pairs converged for at

least one feature, and 49% did not converge for any feature. Of the pairs that did converge

for at least one feature, 44% only converged positively, 49% only diverged, and 7% converged

for some features and diverged for other features. For synchrony, 52% of pairs synchronized

for at least one feature, while 48% did not exhibit significant synchrony for any feature. Of

the pairs that did synchronize for at least one feature, 73% only had positive synchrony,

19% only had negative synchrony, and 8% exhibited positive synchrony for some features

and negative synchrony for others.

Although there was evidence of only positive synchrony across all speakers, when we an-

alyzed this by speaker pairs, we observed evidence of both positive and negative synchrony.

There was also evidence of both positive and negative convergence for each feature. Neg-
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ative convergence, or divergence indicates that speakers adjusted their speech to become

less similar over time. Negative synchrony indicates complementary entrainment, where

speakers adjust their speech away from their partners speech at each turn. This may be

viewed as “completing” the previous turn.

Feature Convergence Synchrony

% Total %Pos % Total % Pos

Max Pitch 14 50 11 56

Mean Pitch 20 33 16 65

Max Intensity 26 47 33 87

Mean Intensity 27 53 32 89

Speaking Rate 13 41 19 91

Jitter 14 57 15 81

Shimmer 10 36 12 66

NHR 12 54 11 68

Table 8.4: Session-level local convergence and synchrony.

Table 8.4 shows the percentage of pairs with significant convergence and synchrony for

each feature, considering only pairs that converged or synchronized for at least one feature.

It also shows the proportion of positive and negative convergence/synchrony. The feature

which partners converged most on was mean intensity, with 27% of pairs exhibiting conver-

gence behavior. The split between positive and negative correlations for mean intensity was

roughly balanced, with 53% converging on mean intensity. For some features, it was more

common to converge than to diverge (e.g. jitter), while for other features it was more com-

mon to diverge (e.g. pitch mean). Max and mean intensity were by far the most commonly

synchronized feature, while synchrony for max pitch was the least common. For all features,

there was a much greater proportion of positive synchrony than negative synchrony. These

findings highlight the lack of strong convergence and synchrony trends across speakers. It

seems that speakers were adjusting to their partners’ behavior, but in very different ways.



CHAPTER 8. ENTRAINMENT IN DECEPTIVE DIALOGUE 98

8.2.1 Deception Analysis

Having established the presence and characteristics of local entrainment in dialogue contain-

ing deceptive speech, we were interested in exploring the differences in entrainment between

deceptive and truthful speech. We computed local proximity entrainment measures for each

pair of speaker turns that represented a question and its (immediate) answer from the list

of 24 biographical questions asked in the interviews. Question/answer pairs were identified

using the question identification approach described in Maredia et al. [2017]. Each inter-

viewee answer was labeled as true or false using the biographical questionnaire response

sheet prepared by each subject, which was annotated with true and false labels. In addi-

tion, each interviewee response was labeled with an interviewer judgment label, indicating

whether the interviewer believed that the response was true or false. This resulted in 7260

question/answer pairs. Using this data, we examined the following research questions:

Is there a difference in entrainment behavior between truthful and deceptive

speech? Paired t-tests between local proximity measures of truthful and deceptive intervie-

wee responses showed significantly more entrainment on max intensity in deceptive speech

than truthful speech (t(7244) = 3.08; p = 0.002). In addition, there was significantly more

entrainment on jitter in deceptive speech than truthful speech (t(7226) = 2.66; p = 0.008).

This suggests that acoustic-prosodic entrainment measures, and particularly local proximity

of intensity max and jitter, can be useful indicators of deception.

Is there a difference in entrainment behavior between speech that is trusted or

not trusted? We repeated the previous analysis, this time comparing entrainment mea-

sures between interviewee responses that were perceived as truthful and those perceived as

deceptive by interviewers, regardless of whether they were in reality truthful or deceptive.

Paired t-tests between local proximity measures of trusted and not trusted interviewee re-

sponses showed significantly more entrainment on mean intensity in speech judged to be

deceptive than in speech judged to be truthful (t(7222) = 2.45; p = 0.014). This suggests

that entrainment on mean intensity is indicative of an exchange where one speaker does not

trust the other, regardless of whether the interlocutor is in fact telling the truth.

Is there a difference in entrainment behavior between successful and unsuccess-

ful lies? In this final analysis, we considered deceptive responses only, and compared en-
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trainment measures of lies that were successful (i.e. perceived as truthful by the interviewer)

and unsuccessful (i.e. correctly perceived as deceptive by the interviewer). Paired t-tests

between successful and unsuccessful deceptive interviewee responses showed no significant

differences in entrainment measures for any acoustic-prosodic features. This suggests that

interviewees and interviewers were not significantly more coordinated under a successful or

unsuccessful deception condition. Despite the fact that there were differences in entrain-

ment behavior between truthful and deceptive speech, it seems that interviewers were not

able to perceive these differences and to use them to discriminate between truth and de-

ception. This is consistent with findings that humans in general are very poor at deception

detection. In their analysis of over 200 studies of over 24,000 human judges of deception,

Bond Jr and DePaulo [2006] reported that detection accuracy is close to 54% on average

for judgments of trust and deception. Because of this difficulty in human perception, it is

possible that entrainment measures as an indicator of deception will be more useful to a

machine learning approach to automatic deception detection than to a human practitioner.
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8.3 Global Entrainment Results

Feature t p Sig.

High Frequency 100 0.33 0.74

High Frequency 25 2.56 0.01 E

Hedge 2.82 0.005 E

Cue 0.18 0.9

Pitch Max 2.1 0.04 E

Pitch Mean 0.89 0.37

Intensity Max 3.94 8.53E-05 E

Intensity Mean 4.26 2.17E-05 E

Speaking Rate 3.98 7.30E-05 E

Jitter 3.2 0.001 E

Shimmer 3.44 0.0006 E

NHR 2.31 0.02 E

Table 8.5: T-test results for global proximity: partner vs. non-partner differences.

As shown in Table 8.5, there was evidence of global proximity for all features except the

100 most frequent words, cue words, and mean pitch. There was stronger evidence of

entrainment for our novel dimension, hedge words, than for high frequency words, suggesting

that this is a useful dimension to use for entrainment analysis. On the other hand, we

found no evidence for entrainment for our other novel entrainment dimension, cue words.

In addition, high frequency 25 words were entrained on, while high frequency 100 words

were not. Perhaps this is because the larger group contained many words pertaining to the

interview questions that were used in all dialogues.
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Feature Beg. vs. End 1st vs. 2nd Half

t p Sig. t p Sig.

High Frequency 100 1.99 0.05 (E) 1.72 0.09

High Frequency 25 2.05 0.04 (E) 1.9 0.06

Hedge 1.29 0.2 0.53 0.6

Cue 1.18 0.24 1.32 0.19

Pitch Max -0.56 0.58 -0.62 0.54

Pitch Mean 0.14 0.89 -0.21 0.83

Intensity Max 0.02 0.99 -0.14 0.89

Intensity Mean -0.49 0.63 -0.2 0.84

Speaking Rate 1.04 0.3 1.26 0.21

Jitter 0.37 0.71 0.32 0.75

Shimmer 1.58 0.12 0.87 0.38

NHR 0.92 0.36 0.42 0.68

Table 8.6: T-test results for 2 measures of global convergence. “Beg. vs. End” compares

first 5 and last 5 min, and “1st vs. 2nd Half” compares features from the first half and

second half of each dialogue.

As shown in Table 8.6, we did not find evidence of global convergence using either

metric - comparing the first 5 and last 5 minutes (“Beg. vs. End”) and comparing the first

and second halves of each dialogue (“1st vs. 2nd Half”). We observed a trend approaching

significance for “Beg. vs. End”: people were less similar in both high frequency entrainment

measures in the last 5 min. than the first 5 min. Despite significant evidence of convergence

at the local level, we found almost no evidence for global convergence, supporting the view

that global and local entrainment are independent phenomena.

8.3.1 Deception Analysis

To further examine the relationship between entrainment and deceptive vs. truthful speech,

we computed correlations between partners’ global proximity entrainment and the follow-
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ing global deception metrics: Interviewee percent answers believed : the number of the

interviewee’s answers that their interviewer thought were true out of a total of 24 answers;

Interviewee percent lies believed : the number of the interviewees lies that their interviewer

thought were true out of the total number of lies the interviewee told; Interviewer per-

cent guesses correct : the number of the interviewer’s guesses that were correct out of 24

total guesses; and Interviewer percent lies correctly identified : the total number of the in-

terviewee’s lies that the interviewer guessed correctly out of the total number of lies the

interviewee told. The results showed that there was significant correlation between entrain-

ment on high frequency 25 and interviewer percent guesses correct (i.e. interviewer ability

to judge deception) (r = 0.13; p = 0.016). This indicates that it was easier for interviewers

to detect deception in dialogues where the interlocutors entrained lexically. However, there

was no relationship between any of the other features and any of these metrics.

8.4 Discussion

In this chapter we presented a study of entrainment in deceptive interview dialogues. This

work contributes to our scientific understanding of entrainment as well as deception, two

critical components of human communication. Our results show strong evidence of entrain-

ment in deceptive speech, in many acoustic-prosodic and lexical dimensions, at both global

and local levels. We identified significant variation in local convergence and synchrony be-

havior. In our ongoing work, we are exploring the relationship between individual traits,

such as gender and native language of both interlocutors, and the nature of convergence

and synchrony behavior. It will be interesting to identify clusters of speakers with shared

characteristics that exhibit local convergence and synchrony in similar ways. We also iden-

tified differences in local entrainment on max intensity and jitter in deceptive and truthful

speech, as well differences in local entrainment on mean intensity in trusted and mistrusted

speech. These findings have implications for automatic deception detection systems, and

for entraining dialogue systems that aim to elicit user trust. Future work can extend these

experiments by exploring entrainment as a feature for deception classification. Another

area for future work is to examine entrainment in deceptive and truthful dialogue between
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human and machine interlocutors. It will be very interesting to explore similarities and dif-

ferences between entrainment and trust in human-human interaction and human-computer

interaction.
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Chapter 9

Conclusions and Future Work

Part I of this thesis provides a comprehensive framework for deceptive speech research. Pre-

vious research on deception has been limited to small corpora, often with few features, and

some studies have used rule-based classification methods. We created a large-scale corpus

of deceptive speech, extracted and analyzed a large number of acoustic-prosodic, lexical,

and syntactic feature sets, trained statistical machine learning classifiers to automatically

identify deceptive speech, and compared human and classifier judgments of deception.

We developed an experimental paradigm for collecting dialogues of cross-cultural decep-

tive and truthful speech. This paradigm was designed to mitigate some drawbacks of data

collected in a laboratory setting: it allows subjects to choose their own lies so they are more

genuine, and it provides financial motivation for interviewers and interviewees, tailored to

each role. Using this framework, we collected a large-scale corpus of within-subject decep-

tive and truthful speech, totaling over 122 hours. The previous largest corpus contained

about seven hours of subject speech [Enos, 2009]. Our corpus enabled studies of deceptive

speech on a scale that was not previously possible. The CXD corpus is a significant con-

tribution of this thesis, and will hopefully be used by others to further the advancement of

deceptive speech research.

The systematic analysis of over 150 speech- and text-based features in a large-scale

corpus of deceptive speech revealed many significant differences between truthful and de-

ceptive responses. Several of our findings were consistent with previous studies of deceptive

language. Some of the features that we examined had not been previously examined in de-
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ceptive speech, and were new indicators of deception. And some of our findings contradicted

previous observations about deception. The range of results highlights the importance of

understanding cues to deception in the context of the data in which they were observed

and the underlying goal of the deceivers. We studied cues to deception and truth in two

segmentation units: question responses and question chunks. While most cues were consis-

tent across both segmentations, differences between the two suggest that some cues should

be treated differently depending on where they appear in a dialogue. This work furthers

our scientific understanding of deceptive language and is an important contribution of this

thesis.

We focused here on identifying cues to deceptive and truthful speech. However, the

poor performance of human judges at deception detection in this corpus and other corpora

suggests that perception of deception is distinct from the production of deception. In our

ongoing work we are studying cues to perception of deception, or trust, using interviewer

judgments of deception as trust labels.

We conducted a series of classification experiments to automatically identify deceptive

speech using a variety of acoustic-prosodic and linguistic features. We compared perfor-

mance across multiple classification algorithms and feature combinations, using four units of

analysis for training and evaluation: IPUs, turns, question responses, and question chunks.

We reported optimal classifiers and feature sets for each of the different segmentation units,

as well as feature ranking results to understand which features contributed most to classifi-

cation. Our best classifier was a Naive Bayes classifier trained with a combination of lexical

and syntactic features extracted from question chunks, and achieved an accuracy of about

70% – well above human performance of 56.75% accuracy. In addition to the contribution

of these strong performing deception classifiers, this work contributes to our scientific un-

derstanding of deceptive language, and provides useful insights for future experiments with

automatic language-based deception detection.

We analyzed the predictions made by the best performing deception classifier, and com-

pared them with the judgments made by human interviewers. The analysis showed that

human and classifier judgments were correlated at the segment level but not at the speaker

level. We further analyzed interviewee response segments to understand which segments
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were easier or more difficult for human judges and for the classifier, and identified segment

characteristics that affected judgments. Our findings have implications for practitioners and

for training deception classifiers. For example, human judges performed better at detect-

ing deception in response to sensitive questions, suggesting that sensitive questions should

be used in interviewing and interrogation. Our analysis showed that classifiers and human

judges performed better at detecting deception in response to certain biographical questions,

where domain knowledge could be leveraged, suggesting that this is a useful approach for

improving domain-specific deception detection. This analysis also highlights the importance

of carefully examining the data being classified, which can reveal potential biases. Future

work should explore evaluate classifiers trained on the CXD corpus on corpora in other

domains, to explore the implications for cross-domain generalization. In future develop-

ment of deception corpora, these biases should be considered when designing experimental

paradigms. It is difficult to draw conclusions from the analysis of human judgments, since

each interviewer judged a single interviewee, so there are many confounding factors. Future

work can extend this analysis by collecting additional judgments of deception for the corpus

from multiple judges.

Our study of entrainment in deceptive speech contributes further insight into the na-

ture of deceptive dialogues. We show that entrainment occurs on global and local levels

in deceptive speech, and in acoustic-prosodic and lexical dimensions. We introduced two

novel features for entrainment analysis: hedge words and cue phrases. We also highlight

differences in entrainment behavior between truthful and deceptive dialogues. Exploring

the use of entrainment features, such as proximity measures for acoustic-prosodic and lex-

ical features, is a useful direction for future work. Our analysis of entrainment showed

substantial variation in local convergence and synchrony behavior. This work can be ex-

tended by studying factors that affect these differences, such as gender, native language,

and personality type.

Part I has focused on identifying trends in deceptive speech across all speakers in the

corpus, and training classifiers using features that capture those trends to automatically

identify deceptive speech. Although there are patterns of deceptive speech that are apparent

across all speakers, there are some speakers that do not exhibit those trends. In Part II
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of this thesis, we present analyses of individual differences in deceptive speech, considering

subgroups of speakers that have the same gender, native language, or personality type.

We introduce methods to leverage these differences with the goal of improving automatic

deception detection.
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Part II

Individual Differences in Deceptive

Behavior
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Chapter 10

Motivation and Research Goals

In Part I of this thesis we established that there are acoustic-prosodic and linguistic dif-

ferences between truthful and deceptive speech. We also showed that machine learning

classifiers can distinguish between truthful and deceptive speech significantly better than

human judges. All feature analysis and classification were performed without considering

individual variation in cues to deception. In Part II of this thesis, we present our work on

individual differences in spoken deception. The overarching goal of this chapter is twofold:

we aim to identify differences in gender, native language, and personality in how people pro-

duce and perceive deception, and we aim to leverage these differences to improve deception

classification.

Most previous work on deception detection has aimed to identify cues to deception

across all speakers. The underlying assumption is that there exist universal indicators of

deception. In this work we question that assumption and hypothesize that different groups

of speakers produce deception in different ways. People from different backgrounds and

cultures, with different genders and personality traits, produce speech in different ways,

and we can often identify a speaker’s traits using speech processing and machine learning

methods. If different speakers produce speech in different ways, it would not be surprising

if they produce deception in different ways. And if they do, it is important to identify these

differences, and to leverage them in automatic deception classification methods.

Some previous studies of deception have observed individual differences in how people

lie. For example, Hirschberg et al. [2005] studied deception in American English speech, and
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observed differences in the production of deception across speakers. While some subjects

raised their pitch when lying, others lowered it significantly; some tended to laugh when

deceiving, while others laughed more while telling the truth. However, there have not been

significant efforts to empirically study these differences, and understand the factors that

affect these differences. An impediment to empirical studies of individual differences in

deceptive speech has been the lack of corpora with annotations of individual traits. The

Columbia X-Cultural (CXD) corpus was designed and collected with the goal of studying

individual differences in deception, and it includes annotations of three categories of speaker

traits that might play a role in variation in deception production: (1) gender (2) culture

and (3) personality.

There are many differences in speech production between male and female speakers,

and there has been extensive research to identify these differences in acoustic-prosodic and

linguistic features [Argamon et al., 2003; Shafran et al., 2003]. Gender affects language pro-

duction significantly, motivating our interest in exploring how gender affects the production

of deceptive speech.

Most work on deception has focused on native speakers of Standard American English.

The few studies of deception in other languages have largely focused on within-culture de-

ception. We were interested in studying deception both within and across cultures, and

identifying differences in cues to deception across culture. Culture is difficult to quantify,

and for this study we use native language as a proxy for culture. We studied deception

in conversations between native speakers of American English and native speakers of Man-

darin Chinese, all speaking in English. We examined similarities and differences in their

production of deception, as well as their perception of deception. Although there are people

from various cultures included in these groups, this work is a first step in increasing our

understanding of the relationship between culture and deceptive behavior. The methods

used in this work can be extended and applied to study other cultural groups in the future.

Enos et al. [2006] discovered that human judges’ accuracy in judging deception could

be predicted from their scores on simple personality tests – the NEO-FFI Five Factor

Personality Inventory [Costa and McCrae, 1989]. Based on this, it is possible that such

personality tests provide useful information in predicting individual differences in deceptive
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behavior of speakers rather than judges of deception. We were interested in exploring

the role of personality in deception production. We also used the NEO-FFI personality

inventory to measure the big five personality traits: Neuroticism, Extroversion, Openness

to Experience, Agreeableness, and Conscientiousness.

In this section we aim to answer the following main research questions:

Are there group-specific differences in acoustic-prosodic and linguistic features between

truthful and deceptive interviewee responses? We use statistical methods to compare the

features of deceptive and truthful speech across gender, native language, and personality.

Chapter 12 presents the results of this analysis.

Can we leverage differences across groups to improve deception classification perfor-

mance? In Chapter 13, we explore methods of incorporating gender, native language, and

personality scores in classification models, and compare these results to those presented in

Chapter 6. Chapter 14 explores speaker-dependent neural network models for deception

classification.

Can we automatically identify gender, native language, and personality of speakers using

acoustic-prosodic and linguistic features? In Chapter 15, we report the results of several

experiments aimed at identifying speaker traits from short samples of speech, with the goal

of using these automatically learned labels to improve deception detection.
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Chapter 11

Related Work

This work is motivated by previous studies of deception that observed individual variation

in deceptive speech. In their work on automatic deception detection in American English

speech, Hirschberg et al. [2005] noticed differences in spoken cues to deception across sub-

jects. For example, some subjects raised their pitch when lying, while others lowered it

significantly. Some tended to laugh more when lying, others laughed more while telling the

truth. We are interested in exploring individual characteristics that might play a role in

these differences in deceptive behavior, such as gender, personality, and culture.

11.1 Deception and Gender

Of the possible speaker traits to explore in relation to deception, gender has been the most

studied. This is likely due to the ease of obtaining gender labels. For speech corpora,

speaker gender is easily identifiable, and gender is standard demographic information that

is collected in most studies. Despite several studies of deceptive behavior across gender,

the relationship between gender and deceptive behavior is not well understood, with several

inconsistent findings in the literature.

Some studies have examined ability to lie and detect lies across gender. DePaulo et

al. [1985] studied the effects of speaker gender and listener gender in an experiment where

subjects described their deceptive and truthful opinions on controversial topics. They found

that lies told by female participants were more easily detected than lies told by males. They
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also found that same-gender deception was easier than cross-gender deception, i.e. lies were

more likely to be detected when the judge was the opposite gender of the deceiver. However,

a study of deception using an interactive social media game platform found no significant

difference between the success of male and female deceivers [Ho and Hollister, 2013]. Tilley et

al. [2005] studied gender differences in computer-mediated deception. Subjects participated

in a fake job interview session via an online communication platform and provided judgments

about whether they thought their partner was honest or dishonest. In contrast to [DePaulo

et al., 1985], they did not observe a significant effect of deceiver gender on deception success.

However, they did find that female subjects were significantly better at detecting deception

than male subjects. They suggest that females are more attentive to details and therefore

notice more deception cues than males.

Other studies examined gender differences in motivations for lying and also in the choice

of what to lie about. A study by Dreber and Johannesson [2008] examined propensity to

deceive using an economics game, and found that men were significantly more likely than

women to lie in order to gain a monetary benefit. With the increase in computer-mediated

communication, researchers have studied deception in online communications, where it is

easy to lie about one’s identity. In particular, dating profiles have been a popular area

to study gender differences in deception. Hancock et al. [2007b] measured the height and

weight of subjects and verified their ages by checking their ID (e.g. driver’s license), and

then compared these verified attributes with those reported on their online dating profiles.

They found that 81% of subjects lied about at least one variable and observed these gender

differences: Men were more likely to overestimate height, while women underestimated

weight. According to the self-presentational model of deception [DePaulo et al., 2003],

people lie to portray themselves in a beneficial way to others, and so it is intuitive that

there are gender differences in what is considered positive self-presentations. In another

study of deception in the context of online dating, Guadagno et al. [2012] examined how

the expectation of meeting impacted deception. Participants in their study were randomly

assigned a dating condition: face-to-face, email, no meeting, or a control group (no relation

to dating), and filled out self-reported personality and attractiveness questionnaires. They

found that male participants (but not females) exaggerated their positive characteristics
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when there was an expectation of dating, and did so most dramatically when the expected

modality was email communication.

Recently, people have studied differences in machine learning performance at deception

detection across gender. Similar to studying differences in human deception detection ability

depending on the gender of the deceiver, here the goal is to see whether there is a difference in

automatic deception detection performance for male or female speakers. Abouelenien et al.

[2017] explored gender-based differences in multimodal deception detection. They reported

differences in classification performance between males and females, and observed different

patterns in deceptive behavior across gender. A trend in their findings was that deception

appeared to be more easily detectable in females. Similarly, Pérez-Rosas and Mihalcea

[2014b] trained classifiers to detect deception in short texts, and found that automatic

deception detection performance was slightly higher for female deceivers than for male

deceivers.

11.2 Deception and Culture

There has been little study of the effects of culture on deceptive behavior. Different cul-

tures often have differing social norms, behaviors, values, and communication patterns, and

therefore studying cultural effects on deceptive behavior is an interesting and potentially

useful area of research to explore. It is difficult to measure the effects in a reliable way,

and studies have used different methods to try to study cultural differences in deceptive

behavior.

Some studies used surveys to address whether beliefs about deceptive behavior are uni-

versal or culture-specific. Al-Simadi [2000b] asked Jordanians to complete a 20-item ques-

tionnaire that assessed their beliefs about behaviors associated with deception, and com-

pared their responses to reported beliefs by Americans. They found many culture-specific

beliefs about deception (for example, only Jordanians rated face color as a cue to decep-

tion), while only three of the 20 behaviors (e.g. hesitations) were believed to be deceptive

in both cultures. A more comprehensive study by Team [2006] recruited participants from

75 countries, speaking 43 languages, to provide beliefs about deceptive behaviors. They
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found agreement on some cues to deception across many cultures, and even identified a cue

to deception that was shared by all 75 countries – averted eye gaze. They also observed

several culture-specific perceptions of deception. These studies contribute toward our un-

derstanding of how culture affects the perception of deception; however, it does not address

the problem of identifying cultural effects on the production of deception. This is arguably

a more useful area of research for deception detection, since perceptions about deception

have not been found to correlate with reliable cues to deception Zuckerman et al. [1981].

Another method for examining cross-cultural deception cues has been to test whether

people detect deception within and across cultures from visual and/or audio information.

Bond et al. [1990] videotaped Jordanians and Americans telling lies and truths in their native

language, and then other Jordanians and Americans were asked to watch the videotapes,

without sound, and judge whether the subject was lying or telling the truth. Raters were

able to reliably detect lies within their culture but not across cultures, indicating that visual

cues may be culture-specific. Follow up studies found that people can detect deception

across cultures and languages if visual and audio information are available [Bond Jr and

Atoum, 2000]. Al-Simadi [2000a] found that Jordanians and Malaysians were able to detect

lies across cultures when they had audio and visual information and were able to judge

lies within cultures when they had only audio or audio and visual information. These

findings suggest that there may be differences in ability to perceive deception accurately

depending upon modality of information and that these abilities may differ when one is

judging deception in one’s own culture or in another.

It is often difficult to distinguish cultural and language effects. Many studies draw

conclusions from comparing people speaking two different languages. A study by Cheng

and Broadhurst [2005] found that Cantonese-English bilinguals were more often judged as

being deceitful when they spoke in their second language than when they spoke in their first

language, regardless of whether they were telling the truth or lying. This indicates that

second-language speakers may be perceived differently than native-language speakers. To

our knowledge, no study has directly compared the effect of culture on deception behaviors

when speakers from different cultures are all speaking one language.

In recent years, studies have been able to research cultural effects on deception using



CHAPTER 11. RELATED WORK 116

automated methods. Pérez-Rosas and Mihalcea [2014a] studied the effects of culture on

deception by collecting a corpus of deceptive and non-deceptive texts written by people

from three countries: United States (American English), India (Indian English) and Mexico

(Spanish). They compared the performance of within-culture deception classification with

cross-cultural classification (i.e. training on data from one country and testing on another

country) and found that within-culture classification was significantly higher performing

than cross-cultural classification. They also compared the cues to deception across cultures

and observed some common trends across cultures and some culture-specific cues to decep-

tion. This study focused on written deception, and the dataset consists of texts without an

explicit receiver, so there is no study of the effects of both the deceiver’s culture and the

target’s culture on deceptive behavior.

In summary, there has been little study of cross-cultural deception, compared to the

amount of work on deception within cultures. There seem to be some universal perceptions

of deception, and many culture-specific beliefs about deception, but these perceptions and

beliefs do not always correlate with deceptive behaviors. Studies have indicated that people

can successfully detect deception across cultures and languages. However, little work has

been done to identify reliable indicators of deception in different cultures. Finally, there has

not been work directly comparing the effect of culture on deception behaviors when speakers

from different cultures are all speaking one language. Our work aims to fill in these gaps in

the literature on culture and deception. We carefully study verbal cues in deception across

cultures in an objective manner, examining precisely defined and automatically extractable

features, and using statistical and machine learning techniques. Our corpus consists of

dialogues between native speakers of English and Chinese, all speaking in English to avoid

identifying language-specific rather than culture-specific cues to deception.

11.3 Deception and Personality

Personality is another speaker trait that has been minimally studied in the context of de-

ception. Our personality influences how we communicate, and personality traits can be

automatically identified from speech or writing samples [Mairesse et al., 2007; Moham-
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madi and Vinciarelli, 2012]. Therefore, it is interesting and potentially useful for deception

detection to study the effect of personality on deceptive behavior.

A meta-analysis by Aamodt and Custer [2006] analyzed over 200 studies of deception,

examining the relationship between individual differences and accuracy at deception de-

tection. They analyzed the relationship between personality and deception detection, and

found that people who had a “self-monitoring” personality were better at deception detec-

tion. Self-monitoring measures the degree to which people can regulate their behaviors to

accommodate social situations. Due to the lack of studies that examined personality and

deception the meta-analysis had no other findings related to personality traits.

Enos et al. [2006] studied personality differences in human ability to detection decep-

tion. They used the NEO-FFI Costa and McCrae [1989] to measure personality and found

that the accuracy of humans at deception detection could be predicted from their NEO-FFI

personality scores. They found strong correlations between success in judgments and high

scores on Agreeableness and Openness to experience. Judges scoring high on Neuroticism

were more reluctant to rate statements as lies. These findings suggest that there are person-

ality differences in ability to judge deception, but it is unclear whether there are personality

differences in ability to deceive or in deceptive behavior.

Bradley and Janisse [1981] did study personality differences in ability to deceive. They

used a mock-crime paradigm for the deception task, and used the Eysenck Personality

Inventory (EPI) Eysenck and Eysenck [1975] to assess extroversion. They found that people

with high extroversion scores were more likely to be judged correctly as lying or telling the

truth than people who were more introverted. They hypothesized that since introverts

have general anxiety in social situations, they would exhibit anxiety both when lying and

telling the truth, whereas extroverts would only display anxiety when lying. In contrast,

Siegman and Reynolds [1983] observed that extroverted individuals were better at lying than

introverts. They hypothesized that extroverts are more socially comfortable and better able

to monitor and control their cues to deception than introverts. These conflicting findings

demonstrate that the relationship between personality and deception is not well-understood,

and further research is needed to draw conclusions.

Vrij and Graham [1997] also examined personality differences in ability to deceive. They
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studied the personality traits of public self-consciousness (PSC) and ability to control be-

havior (ACB). They found that people with high levels of PSC had fewer hand movements

when deceiving, while people with low PSC levels had increased hand movements when

lying. Further, they found that people who scored high for PSC and ACB had the fewest

hand movements when lying, while those who scored low for both traits had the most hand

movements when lying. These results were consistent with their hypothesis that people

who have high public self-consciousness and are skilled in controlling their behavior would

make fewer hand movements when lying than telling the truth. In a follow up study, Vrij

and Graham [1997] used this information to train people in deception detection. They told

participants that people with these personality traits were found to have decreased hand

movements when deceiving, and asked them to assess the personality of potential deceivers

as well as the veracity of their statements. The group that was trained with this infor-

mation performed better at deception detection than the untrained control group. This

suggests that knowledge about the effect of personality on deceptive behavior can be useful

for deception detection.

11.4 Conclusions

Based on previous work, it seems that gender, culture, and personality can affect the pro-

duction and perception of deception. However, there has been little work done do identify

specific differences across these traits. Do speakers with different traits exhibit different

cues to deception? If so, can we identify them, and leverage the differences to improve

automatic deception detection? This section addresses these important questions.
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Chapter 12

Individual Differences in Cues to

Deception

Previous studies of deceptive language have focused on general inferences about deception;

this work carefully examines patterns of deception that differ across gender, native language,

and personality types. This analysis is critical for understanding how a speaker’s individual

traits can affect their production of deception. The CXD corpus allowed us to analyze

deceptive speech on a scale that had not been previously possible, and in Chapter 5 we

reported differences in features of deceptive and truthful speech. Having identified many

differences between deceptive and truthful language across all speakers, we were interested

in analyzing differences in deceptive language across different groups of speakers. In this

chapter we explore differences in cues to deception across groups of speakers. This work aims

to answer the following question: Are there group-specific differences in acoustic-prosodic

and linguistic features between truthful and deceptive interviewee responses?

12.1 Method

We examined groups of speakers defined by gender (male or female), native language (Stan-

dard American English or Mandarin Chinese), and personality, defined by the NEO-FFI

personality inventory Costa and McCrae [1989]. We computed the participants’ NEO-FFI

personality scores in five dimensions, Neuroticism (N), Extroversion (E), Openness to Ex-
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perience (O), Agreeableness (A), and Conscientiousness (C). The NEO scores are on a

continuous scale for each of the five dimensions.

In order to partition speakers into personality groups we binned the numeric personality

scores to high, average or low for each dimension, using the thresholds provided in Locke

[2015]. These thresholds were determined by psychologists based on population norms from

a large sample of administered NEO-FFIs, and are different for males and females. Table

12.1 shows the mapping of numeric NEO scores to the three categorical labels.

Trait Gender Low Average High

N Male < 13 13 =<,<= 21 > 21

Female < 16 16 =<,<= 25 > 25

E Male < 24 24 =<,<= 30 > 30

Female < 25 25 =<,<= 31 > 31

O Male < 23 23 =<,<= 30 > 30

Female < 23 23 =<,<= 30 > 30

A Male < 29 29 =<,<= 35 > 35

Female < 31 31 =<,<= 36 > 36

C Male < 30 30 =<,<= 37 > 37

Female < 32 32 =<,<= 38 > 38

Table 12.1: Personality mapping from continuous scale to high, average, low.

As expected, the personality bins are highly unbalanced. Table 12.2 shows the distri-

bution of participants in the high, average, and low personality bins for each of the 5 NEO

dimensions.
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Bin N E O A C

Low 11.93 21.93 6.02 35.30 42.72

Average 40.00 36.77 41.92 45.35 39.93

High 48.07 41.30 52.06 19.35 17.35

Table 12.2: Distribution of participants in high, average, and low personality bins for each

of the 5 NEO dimensions.

For each of the three group traits, we conducted two types of analysis. First, we directly

compared deception performance measures (ability to deceive as interviewee, and ability to

detect deception as interviewer) between speakers with different traits, to assess the effect

of individual characteristics on deception abilities. In addition, we compared the features

of deceptive and truthful language in subsets of the corpus, considering only people with

a particular trait (e.g. all native Chinese speakers) in order to determine group-specific

patterns of deceptive language. We examined the following four feature sets for individual

differences: (1) Praat (2) LDI (3) LIWC (4) Complexity. These feature sets are described in

detail in Chapter 4, Section 4.4. All features were z-normalized by speaker, so that features

represent distance from a speaker’s mean, measured in standard deviations. For example, we

analyzed differences in acoustic-prosodic features between truthful and deceptive responses,

considering only male responses and only female responses. We consider a cue to be gender-

specific if a feature is significantly different between truthful and deceptive speech for only

male speakers or only female speakers, but not both. To avoid noise, we eliminated LIWC

features that did not appear in 90% of question response segments. This reduced our

analysis to 42 of the 93 LIWC dimensions.

All tests for significance were corrected for family-wise Type I error by controlling the

false discovery rate (FDR) at α = 0.05. The kth smallest p value is considered significant if

it is less than k∗α
n . All data was balanced by gender and native language for this analysis.

However, as shown in Table 12.2, the distribution of speakers across personality bins is

unbalanced.

In all the tables in this chapter, we use D to indicate that a feature was significantly

increased in deceptive speech, and T to indicate a significant indicator of truth. We consider
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a result to approach significance if its uncorrected p value is <= 0.05 and indicate this

with parentheses (e.g. “(D)”) in the tables. We include trends in group-specific cues to

deception since segmenting the data by group reduces the size of the data analyzed, and

some of these trends might become statistically significant with additional data. Rows

shaded in gray indicate that the features in those rows were not significant indicators of

deception or truth across all groups of speakers. All analysis was done using the question

response segmentation, which is the set of interviewee turn that are direct responses to the

24 biographical questions.

12.2 Gender Analysis

In this section we present the results of our analysis of gender in deceptive speech. We

observed no difference across gender in ability to deceive (t(300) = −0.38, p = 0.70), nor

in ability to detect deception (t(300) = 0.64, p = 0.52). There were also no differences in

interviewer judgments across interviewee gender; that is, interviewers were not better at

detecting deception for male or female interviewees (t(300 = 0.22, p = 0.83)). However, we

observed many differences in cues to deception between male and female participants. We

present an analysis of acoustic-prosodic, LDI, LIWC, and complexity feature sets below.

12.2.1 Acoustic Features

Table 12.3 shows the acoustic-prosodic cues to deception that differ for male and female

participants.
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Gender Feature t df p Sig.

Male Pitch Mean 2.22 3555 0.027 (D)

Male Pitch Median 2.17 3539 0.03 (D)

Male Pitch SD 3.17 3565 0.0016 D

Male Intensity Min -2.29 3572 0.022 (T)

Male Intensity SD 2.68 3570 0.0075 D

Female Intensity Mean 2.36 3560 0.018 (D)

Table 12.3: Gender-specific acoustic-prosodic cues to deception. Rows shaded in gray indi-

cate cues that were not present across all speakers.

As shown is this table, there are several gender differences in acoustic-prosodic cues to

deception. Across all subjects, standard deviation of pitch and intensity were increased

in deceptive speech. However, when we segmented the data by gender and analyzed male

and female responses separately, we found that both of these cues were only present in

male speech. Intensity min was increased in truthful speech across all speakers, but this

trend was only present in male speech. In addition, we found two new cues to deception in

male speech that were not found across all speakers - increased pitch mean and median in

deceptive speech. We also observed a female-specific cue to deception – intensity mean was

increased in deceptive speech across all speakers, but this was true in female-only speech

and not male-only speech. Pitch and intensity provided cues to deception for both genders,

but in some cases in different ways.

12.2.2 LDI Features

Table 12.4 shows the LDI cues to deception that differed for male and female participants.
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Gender Feature t df p Sig.

Male DAL.imagery 3.74 3561 0.00019 D

Male hasAbsolutelyReally 2.02 1347 0.044 (D)

Male hasFalseStart 2.59 2069 0.0097 D

Male hasHedgePhrase 2.16 3157 0.031 (D)

Male hasNot -2.68 2068 0.0074 T

Male hasWe 2.11 866 0.035 (D)

Male numHedgePhrases 2.14 3139 0.032 (D)

Female DAL.wc -3.4 3538 0.00067 T

Female hasContraction -2.84 3294 0.0045 T

Table 12.4: Gender-specific LDI cues to deception. Rows shaded in gray indicate cues that

were not present across all speakers.

This table shows several gender differences in LDI cues to deception. As with acoustic-

prosodic indicators, there were more male-specific cues than female-specific cues. Of the

20 LDI features that were significantly different between truthful and deceptive responses

across all participants, seven were significantly different or trended toward significance in

male speakers only. For example, hedge words were increased in deceptive responses overall,

but this was due to differences in male speakers’ use of hedge words. No difference was ob-

served in the use of hedge words when analyzing female responses alone. We also observed

two female-specific cues – contractions and DAL.wc. Interestingly, use of contractions was

significantly increased in truthful speech for female speakers, but there was no difference in

contraction use between truthful and deceptive responses across all speakers. The Reid and

Associates method of interrogation and interviewing Buckley [2000] teaches that contrac-

tions are a sign of truthful speech, based on the theory that contractions are indicative of

more natural speech (e.g. “I didn’t do it” is a more natural way to deny a crime than than

“I did not do it”). Here we present a more nuanced finding – female speakers were more

likely to use contractions in truthful speech, but male speakers were not.
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12.2.3 LIWC Features

Table 12.5 shows the LIWC cues to deception that differed for male and female participants.

Gender Feature t df p Sig.

Male conj 2.37 3130 0.018 (D)

Male focuspast 4.47 3177 8.20E-06 D

Male nonflu 2.11 3531 0.035 (D)

Male prep 2.84 3412 0.0046 D

Male pronoun 2.08 3570 0.038 (D)

Male relativ 2.45 3553 0.014 D

Male space 3.84 3277 0.00013 D

Female adj -2.1 3041 0.036 (T)

Female allPunc -2.85 3450 0.0044 T

Female apostro -2.83 3286 0.0047 T

Female netspeak 2.1 2827 0.035 (D)

Table 12.5: Gender-specific LIWC cues to deception. Rows shaded in gray indicate cues

that were not present across all speakers.

We observed several gender differences in LIWC cues to deception, and again found

more male-specific cues than female-specific cues. Of the 23 LIWC features that were dif-

ferent between truthful and deceptive responses across all participants, six were significantly

different or trended toward significance in male speakers only, and two in female speakers

only. For example, the focuspast dimension, which captures words used in past tense, was

more frequent in deceptive responses overall, but this was due to the difference in male

speakers’ use of past tense when lying and telling the truth. No difference was observed in

the use of past tense words when analyzing female responses alone. A female-specific cue

that we observed was that female speakers used apostrophes more when telling the truth

than when lying. Apostrophes only appeared in contractions in the transcriptions, so this

supports the finding that contractions were an indicator of truth-telling for female speakers

only. We also observed 3 new cues that were not present when analyzing all speakers. The
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relativity dimension, which includes words such as “above,” “near,” and “new,” was more

frequent in deceptive responses for male speakers only. Adjectives and allPunctuation were

more frequent in truthful speech for female speakers only.

12.2.4 Complexity Features

Complexity features were extracted using a system for automatic syntactic complexity [Lu,

2010]. Chapter 4 describes the complexity features in detail. Table 12.6 shows the com-

plexity cues to deception that differed for male and female participants.

Gender Feature t df p Sig.

Male W 4.87 3236 1.10E-06 D

Male DC 3.71 3225 0.00021 D

Male CT 2.89 3308 0.0039 D

Male CP 2.99 2768 0.0029 D

Male CN 3.48 3310 0.00051 D

Male MLS 4.75 3253 2.10E-06 D

Male DC.C 2.73 3354 0.0064 D

Male DC.T 4.28 3177 1.90E-05 D

Male CT.T 3.07 3303 0.0022 D

Male CP.T 2.95 2565 0.0032 D

Male CP.C 2.58 2606 0.0098 D

Male CN.T 3.83 3288 0.00013 D

Female CN.C 2.1 3692 0.036 (D)

Table 12.6: Gender-specific complexity cues to deception. Rows shaded in gray indicate

cues that were not present across all speakers.

Of the 19 syntactic complexity cues to deception that we observed across all participants,

nine were male-specific cues and one was a trend observed in female speakers only. For

example, DC.C (dependency clauses / number of clauses) and DC.T (dependency clauses

/ number of T-units) were cues to deception across all participants, but this finding was
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true only for male speakers. CN.C (complex nominals / number of clauses) were more

frequent in deceptive speech across all subjects, but this was true only for female speakers.

We also observed three new syntactic complexity cues to deception for male participants

only: deceptive responses from male speakers were characterized by an increased frequency

of CP (coordinate phrases), CP.T (coordinate phrases / number of T-units) and CP.C

(coordinate phrases / number of clauses). Coordinate phrases include adjective, adverb,

noun, and verb phrases that are joined by a coordinating conjunction.

12.3 Native Language Analysis

Having identified many gender-specific cues to deception, in this section we present the

results of our analysis of native language in deceptive speech.

We observed no difference between native speakers of English and Chinese in ability to

deceive (t(300) = −0.99, p = 0.32). However, we did find a slight difference in ability to

detect deception across native language (t(300) = 1.67, p = 0.09), although this difference

was not statistically significant. Native Chinese speakers were slightly better at detecting

deception than native English speakers – the average deception detection performance for

native Chinese speakers was 57.8% and 55.58% for native speakers of English. Deception

detection performance is defined here as # correct judgments
24 × 100.

There were no differences in interviewer judgments across interviewee native language,

that is, interviewers were not better at detecting deception for native Chinese or Native

English speakers (t(300) = 0.62, p = 0.53). However, we did observe a large difference

in interviewer judgments across interviewee native language (t(300) = 3.66, p = 0.0003):

on average, interviewers judged 61.71% of responses of native Chinese speakers as true,

while they only judged 57.13% of responses of native English speakers as true. It seems

that native Chinese speakers were trusted at a higher rate than native English speakers.

To better understand this finding, we ran pairwise comparisons of interviewer judgments

between 3 language types of pairs: (1) English-English, (2) English-Chinese, (3) Chinese-

Chinese. We found a significant difference between English-English and Chinese-Chinese

pairs (t(90) = −2.29, p = 0.02) – native Chinese interviewers who were paired with native
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Chinese interviewees judged their partners as telling the truth more frequently (61.51%)

than native English interviewers paired with native English interviewees (57.59%).

We also observed many differences in cues to deception between native speakers of Chi-

nese and English. We present an analysis of acoustic-prosodic, LDI, LIWC, and complexity

feature sets below.

12.3.1 Acoustic Features

Table 12.7 shows the acoustic-prosodic cues to deception that differ for native English and

native Chinese speakers.

Native Lang Feature t df p Sig.

English Pitch Min -2.15 3547 0.031 (T)

English Intensity Mean 3.8 3554 0.00015 D

English Intensity SD 2.07 3554 0.038 (D)

English Jitter -2.86 3443 0.0042 T

English Shimmer -2.35 3381 0.019 (T)

Chinese Pitch Mean 2.01 3540 0.044 (D)

Chinese Pitch SD 3.83 3552 0.00013 D

Chinese Intensity Min -2.01 3573 0.044 (T)

Chinese Speaking Rate -2.81 3573 0.005 T

Table 12.7: Native language-specific acoustic-prosodic cues to deception. Rows shaded in

gray indicate cues that were not present across all speakers.

This table shows several differences in acoustic-prosodic cues to deception across native

language. We previously found that for all participants, intensity mean and standard devi-

ation and pitch standard deviation were increased in deceptive speech. In this analysis we

find that intensity mean and standard deviation are only cues to deception for native En-

glish speakers, and pitch standard deviation are a cue specific to native speakers of Chinese.

We also previously found that truthful speech was associated with increased pitch minimum

and intensity minimum, but here we find that increased pitch minimum is specific to native
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English speakers, and increased intensity minimum is specific to native Chinese speakers.

In addition, we have found four new deception indicators that were not present when

studying all speakers. Truthful speech of native English speakers was characterized by an

increase in jitter and shimmer. For native Chinese speakers, pitch mean was increased in

deceptive speech, and speaking rate was increased in truthful speech. This last finding

is intuitive; according to the cognitive theory of deception, we would expect non-native

speakers to speak slower when lying and faster when telling the truth, since lying is a

more cognitively taxing task. Further, consistent with the theory of Vrij et al. [2008],

cognitive cues to deception (such as decreased speaking rate) should be more pronounced

when deception is combined with a cognitively difficult task – in this case, speaking in one’s

non-native language.

12.3.2 LDI Features

Table 12.4 shows the LDI cues to deception that differed for native English speakers and

native Chinese speakers.

Native Lang. Feature t df p Sig.

English DAL.wc -3.59 3538 0.00033 T

English hasCuePhrase -3.71 3556 0.00021 T

English hasHedgePhrase 2.6 2967 0.0093 D

English hasI 3.41 3321 0.00066 D

English hasLaugh 2.09 1915 0.037 (D)

English hasNot -3.01 1984 0.0027 T

English numLaugh 2.18 1901 0.029 (D)

English thirdPersonPronouns 2.95 2413 0.0032 D

Chinese hasFalseStart 2.75 2221 0.006 D

Chinese hasYes 6.5 3237 9.40E-11 D

Table 12.8: Native language-specific LDI cues to deception. Rows shaded in gray indicate

cues that were not present across all speakers.
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This table shows several differences across native language in LDI cues to deception. We

found that there were more native English-specific cues than native Chinese-specific cues.

Of the 20 LDI features that were significantly different between truthful and deceptive

responses across all participants, six were significantly different for native English speakers

only. For example, hedge words were increased in deceptive responses overall, but this

was due to differences in native English speakers’ use of hedge words. No difference was

observed in the use of hedge words when analyzing native Chinese responses alone. It

is interesting that we previously observed that hedge words were a male-specific cue to

deception. Combining the gender and native language analyses, it seems that hedge words

were increased in deceptive speech from male native English speakers.

We also observed two native Chinese-specific cues to deception – hasYes and hasFalseS-

tart. The fact that deceptive responses from native Chinese speakers had on average more

false starts is again consistent with the cognitive theory of deception and the extension of

it by Vrij et al. [2008]. False starts are a form of speech disfluency that we would expect

to see more of during deception due to the increase in cognitive load associated with lying.

And it is also intuitive that this cue should be present in the responses of native Chinese

speakers since they are speaking in their non-native language, which adds another level of

cognitive load.

In addition, we observed a new cue to deception for native English speakers only – their

deceptive responses had on average more instances of laughter. Laughter can be a sign of

nervousness, or it can be used in an attempt to sound natural and relaxed. It is interesting

that laughter as a cue to deception is specific to native speakers of English, and perhaps

there are cultural differences in the use of laughter in dialogue.

12.3.3 LIWC Features

Table 12.9 shows the LIWC cues to deception that differed for native English and native

Chinese speakers in our corpus.



CHAPTER 12. INDIVIDUAL DIFFERENCES IN CUES TO DECEPTION 131

Native Lang Feature t df p Sig.

English adverb 2.13 3133 0.033 (D)

English conj 2.39 2921 0.017 D

English focuspresent -2.33 3538 0.02 T

English I 1.97 3536 0.049 (D)

English netspeak 2.28 2583 0.022 D

English nonflu 2.81 3330 0.005 D

English posemo 2.62 3005 0.0087 D

English ppron 2.76 3554 0.0058 D

English pronoun 2.78 3557 0.0055 D

English social 2.75 3515 0.0061 D

English tone 2.93 3228 0.0034 D

Chinese cogproc -3.11 3318 0.0019 T

Chinese space 2.52 3364 0.012 D

Table 12.9: Native language-specific LIWC cues to deception. Rows shaded in gray indicate

cues that were not present across all speakers.

We observed several differences across native language in LIWC cues to deception, and

again found more cues that were specific to native English speakers than to native Chinese

speakers. Of the 23 LIWC features that were different between truthful and deceptive

responses across all participants, eight were significantly different in native English speakers

only, and two in native Chinese speakers only.

For example, the tone and posemotion dimensions, which capture words with positive

tone and emotion, were more frequent in deceptive responses overall, but this was due to the

difference in native English speakers’ use of positive words when lying and telling the truth.

No difference was observed in the use of positive words when analyzing native Chinese

responses alone. On the other hand, a cue that was specific to native Chinese speakers was

cogproc (cognitive process) words, including “cause,” “know,” and “aught.” These words

were used more frequently in the truthful responses of native Chinese speakers. This follows

the trend that we previously observed with other features – we found evidence of increased
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cognitive load when lying for native Chinese speakers.

We also observed three new deception indicators in native English speakers that were

not present when analyzing all speakers, and these are shaded in gray in Table 12.9. For

example, the focuspresent category, which captures words in present tense, was used more

frequently in truthful responses of native English speakers. It is interesting that this dif-

ference in usage of tense was only present for native English speakers and suggests that

deception indicators that involve nuances in verb tense are specific to native speakers of

English, and should not be applied to non-native speakers.

12.3.4 Complexity Features

Table 12.10 shows the complexity cues to deception that differed across native language.

Native Lang. Feature t df p Sig.

English DC 3.9 3351 9.60E-05 D

English CT 2.79 3486 0.0054 D

English CP 2.31 2807 0.021 D

English CN 3.93 3544 8.60E-05 D

English DC.C 3.46 3456 0.00054 D

English DC.T 3.78 3362 0.00016 D

English CT.T 2.99 3483 0.0028 D

English CN.T 3.35 3581 0.00083 D

English CN.C 3.01 3633 0.0026 D

Table 12.10: Native Language-specific complexity cues to deception. Rows shaded in gray

indicate cues that were not present across all speakers.

Of the 19 syntactic complexity cues to deception that we observed across all participants,

eight were only observed in native English, and there were no syntactic complexity cues that

were specific to native Chinese speakers. In addition, we observed a new cue to deception

that was only present in the responses of native English speakers, and not in the analysis

of all speakers.
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Deceptive responses from native English speakers were characterized by an increased

frequency of CP (coordinate phrases). We previously observed that this was true for male

speakers but not female speakers, so it seems that this finding is strongest for male native

English speakers.

It is not surprising that we observed many more syntactic complexity cues to deception

in native English speakers. Again, this emphasizes the importance of taking into account

demographic information when analyzing deceptive speech, and not applying general rules

about deception to all populations.

12.4 Personality Analysis

Having identified many gender-specific and native language-specific cues to deception, in

this section we present the results of our analysis of personality in deceptive speech.

We ran Pearson’s correlations between the five raw NEO scores and ability to deceive

and to detect deception, and found no correlation for any trait. We also examined the

relationship between personality and how often a person was believed or believed others. We

found a slight negative correlation between interviewee Neuroticism and the rate of being

believed by the interviewer – as interviewee Neuroticism scores increased, the percent of

responses that the interviewer judged as true (i.e. believed) decreased (r(300) = −0.13, p =

0.02).

In order to analyze differences in cues to deception across personality types, we used

a different method than the one we used for gender and native language analysis. That

data was balanced for gender and native language, but the personality bins were highly

unbalanced, as shown in Table 12.2. Thus, simply comparing t-test results for speakers

that are in a “high” vs “low” personality bin would not be meaningful, since the results

could be due to the amount of data in each bin rather than the personality characteristics.

Therefore, for each speaker we computed TFdifff for each feature f :

TFdifff =

∑
si∈F f(si)

sizeF
−

∑
si∈T (si)

sizeT
(12.1)

where F is the set of a speaker’s false responses and T is the set of a speaker’s truthful

responses. sizeF is the number of segments in F and sizeT is the number of segments in
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T . f(si) is the value of feature f in segment si. Thus, TFdifff represents the difference

between the average feature f in a speaker’s deceptive responses and truthful responses. A

positive value of TFdifff indicates that feature f was increased in deceptive speech, while

a negative value indicates that f was decreased in deceptive speech.

Computing this measure allows us to identify salient cues to deception across personality

bins using the one-way ANOVA. Since all features are speaker normalized, they represent a

speaker’s distance from their mean, measured in standard deviations. This minimizes the

effect of speaker differences.

12.4.1 Acoustic Features

We ran one-way ANOVAs with TFdifff as the dependent variable and the personality bin

(low, average, high) as the independent variable. We repeated these tests for each feature

and each NEO dimension, and corrected for family-wise Type I error by controlling the false

discovery rate (FDR) at α = 0.05. The kth smallest p value is considered significant if it is

less than k∗α
n .

Table 12.11 shows the ANOVA results for acoustic-prosodic features. “(*)” indicates

that the p-value was less than 0.05 before correction for family-wise Type I error.
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Trait Feature df between df within F p Sig.

N Duration 2 297 3.44 0.033 (*)

N Intensity Max 2 297 3.95 0.02 (*)

E Shimmer 2 297 3.76 0.024 (*)

O Duration 2 297 4.16 0.017 (*)

O Intensity Min 2 297 3.18 0.043 (*)

O Intensity SD 2 297 3.24 0.041 (*)

C Intensity Min 2 297 4.15 0.017 (*)

C Intensity Mean 2 297 3.38 0.035 (*)

C Intensity SD 2 297 3.17 0.044 (*)

C NHR 2 297 3.48 0.032 (*)

Table 12.11: ANOVA results comparing differences in acoustic prosodic features in deceptive

and truthful responses across personality bins.

We see from this table that there were several differences in acoustic-prosodic indicators

of deception across personality bins. However, none of the ANOVAs yielded statistically

significant results after correction, so we consider these trends. We note that this analysis

is done at the speaker level, and the data is balanced by gender and native language so

there are 300 data points in total. Compared to the analysis of gender and native language,

which was at the segment level (about 8k segments) we expect to see less statistical power

for this analysis.

In order to identify where the differences in deception indicators occurred (i.e. which per-

sonality bins were significantly different from each other) we computed Tukey post-hoc tests

for all ANOVAs with significant or approaching significant results. The results of the Tukey

tests for acoustic-prosodic features are shown in Table 12.12. The columns “Avg-Low,”

“High-Low,” and “High-Avg” represent the pairwise comparisons between those personal-

ity bins and the cell values are the p-values of the pairwise comparisons. P-values less than

0.05 are shaded in gray. The column “µH” represents the mean feature value for speakers

in the high personality bin, “µA” for the average personality bin, and “µL” for the low

personality bin.
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Trait Feature Avg-Low High-Low High-Avg µH µA µL

N Duration 0.067 0.025 0.87 0.16 0.13 -0.06

N Intensity Max 0.018 0.028 0.92 0.19 0.21 -0.03

E Shimmer 0.055 0.028 0.97 0 -0.01 -0.16

O Duration 0.2 0.023 0.2 0.18 0.09 -0.07

O Intensity Min 0.23 0.047 0.37 -0.09 -0.03 0.13

O Intensity SD 0.3 0.053 0.28 0.1 0.03 -0.11

C Intensity Min 0.054 0.041 0.78 0.04 -0.01 -0.13

C Intensity Mean 0.065 0.1 0.94 0.13 0.1 -0.02

C Intensity SD 0.26 0.044 0.45 -0.04 0.04 0.12

C NHR 0.025 0.8 0.38 0 0.08 -0.04

Table 12.12: Tukey post-hoc results for acoustic-prosodic cues to deception. Cells shaded

in gray indicate a p-value less than 0.05.

The Tukey post-hoc tests revealed that the majority of the differences came from the

High-Low comparison, and none of the differences were from the High-Avg comparison.

This analysis revealed interesting differences in cues to deception across all personality

types except Agreeableness. For example, we previously observed that duration was a cue

to deception across all speakers – deceptive responses were on average longer than truthful

responses. Here we see that this behavior was varied across personality. For the trait

of Neuroticism, speakers in the high bin had longer deceptive responses, as evidenced by

a positive TFdiff value for µH . However, speakers in the low bin had shorter deceptive

responses than truthful responses. The same trend was true for the trait of Openness to

Experience - speakers in the high bin for Openness had longer deceptive responses while

speakers in the low bin had shorter deceptive responses. It seems that speakers in different

personality groups exhibited cues to deception in different ways.
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12.4.2 LDI Features

Table 12.13 shows the ANOVA results for LDI features. “(*)” indicates that the p-value

was less than 0.05 before correction for family-wise Type I error.

Trait Feature df between df within F p Sig.

N specScores 2 297 4.3 0.014 (*)

E hasWe 2 297 5.73 0.0036 (*)

E thirdPersonPronouns 2 297 3.03 0.05 (*)

O hasYes 2 297 3.52 0.031 (*)

O isJustYes 2 297 4.64 0.01 (*)

O numFilledPauses 2 297 4.8 0.0089 (*)

O specScores 2 297 3.64 0.027 (*)

A specificDenial 2 297 3.2 0.042 (*)

Table 12.13: ANOVA results comparing differences in LDI features in deceptive and truthful

responses across personality bins.

This table shows several differences in LDI indicators of deception across personality

bins. As with the acoustic-prosodic analysis, none of the ANOVAs yielded statistically

significant results after correction, so we consider these trends. In order to identify where

the differences in deception indicators occurred (i.e. which personality bins were significantly

different from each other) we computed Tukey post-hoc tests for all ANOVAs with significant

or approaching significant results. The results of the Tukey tests for LDI features are shown

in Table 12.14.
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Trait Feature Avg-Low High-Low High-Avg µH µA µL

N specScores 0.011 0.081 0.38 0.1 0.17 -0.08

E hasWe 0.0072 0.0071 1 0.05 0.05 -0.04

E thirdPersonPronouns 0.11 0.99 0.077 0.03 0.13 0.02

O hasYes 0.055 0.023 0.85 0.09 0.12 0.34

O isJustYes 0.024 0.0071 0.77 -0.01 0.02 0.2

O numFilledPauses 0.01 0.0074 1 0.17 0.17 -0.11

O specScores 0.037 0.021 0.95 0.14 0.12 -0.12

A specificDenial 0.77 0.034 0.12 0.04 -0.01 -0.03

Table 12.14: Tukey post-hoc for LDI cues to deception. Cells shaded in gray indicate a

p-value less than 0.05.

As with acoustic-prosodic features, the Tukey post-hoc tests revealed that the majority

of the differences came from the High-Low comparison, and none of the differences were from

the High-Avg comparison. This analysis revealed interesting differences in cues to deception

across all personality types except Conscientiousness. For example, we previously observed

that specScores, which measure specificity in language, was a cue to deception across all

speakers – deceptive responses were on average more specific than truthful responses. Here

we see that this behavior was varied across personality. For the trait of Neuroticism, speakers

in the high bin used more specific language when lying, as evidenced by a positive TFdiff

value for µH . However, speakers in the low bin had less specific deceptive responses than

truthful responses. The same trend was true for the trait of Openness to Experience -

speakers in the high bin for Openness had more specific deceptive responses while speakers in

the low bin had lower scores for specificity in deceptive responses. These findings support the

trend that speakers in different personality groups exhibited cues to deception in different

ways.
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12.4.3 LIWC Features

Table 12.15 shows the ANOVA results for LIWC features. “(*)” indicates that the p-value

was less than 0.05 before correction for family-wise Type I error.

Trait Feature df between df within F p Sig.

N authentic 2 297 3.48 0.032 (*)

N relativ 2 297 3.3 0.038 (*)

N space 2 297 3.68 0.026 (*)

E focuspast 2 297 3.22 0.042 (*)

O work 2 297 4.23 0.015 (*)

A informal 2 297 3.51 0.031 (*)

Table 12.15: ANOVA results comparing differences in LIWC features in deceptive and

truthful responses across personality bins.

This table shows several differences in LIWC indicators of deception across personality

bins. As with the previous features analyzed, none of the ANOVAs yielded statistically

significant results after correction, so we consider these trends. In order to identify where

the differences in deception indicators occurred (i.e. which personality bins were significantly

different from each other) we computed Tukey post-hoc tests for all ANOVAs with significant

or approaching significant results. The results of the Tukey tests for LIWC features are

shown in Table 12.16.
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Trait Feature Avg-Low High-Low High-Avg µH µA µL

N authentic 0.23 0.031 0.36 0.09 0.02 -0.12

N relativ 0.071 0.03 0.89 0.07 0.04 -0.14

N space 0.074 0.019 0.74 0.1 0.07 -0.11

E focuspast 0.68 0.044 0.19 0.03 0.12 0.17

O adverb 0.89 0.21 0.053 0.07 -0.05 -0.09

O work 0.26 0.99 0.015 -0.03 0.11 -0.04

A informal 0.024 0.4 0.69 0.16 0.21 0.07

Table 12.16: Tukey post-hoc for LIWC cues to deception. Cells shaded in gray indicate a

p-value less than 0.05.

As with acoustic-prosodic and LDI features, the Tukey post-hoc tests revealed that the

majority of the differences came from the High-Low comparison. This analysis revealed

interesting differences in cues to deception across all personality types except Conscien-

tiousness. For example, informal language was a cue to deception across all speakers -

deceptive responses had on average less formal language than truthful responses. Here we

see that this behavior was varied across personality. For the trait of Agreeableness, speakers

in the average bin used more informal language when lying than when telling the truth,

as evidenced by a positive TFdiff value for µA. However, speakers in the low bin had less

informal deceptive responses than truthful responses. Again, these findings support the

trend that speakers in different personality groups exhibited cues to deception in different

ways.

12.4.4 Complexity Features

Table 12.17 shows the ANOVA results for complexity features. “(*)” indicates that the

p-value was less than 0.05 before correction for family-wise Type I error.
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Trait Feature df between df within F p Sig.

N VP 2 297 5.67 0.0038 *

N C 2 297 5.69 0.0038 *

N DC 2 297 3.29 0.039 (*)

N MLT 2 297 3.26 0.04 (*)

N C.S 2 297 5.52 0.0044 *

N VP.T 2 297 5.98 0.0028 (*)

N C.T 2 297 5.88 0.0031 *

N DC.T 2 297 3.3 0.038 (*)

Table 12.17: ANOVA results comparing differences in complexity features in deceptive and

truthful responses across personality bins.

We see from this table that there were several differences in complexity indicators of

deception across personality bins, but only for the Neuroticism dimension. Unlike previ-

ous features analyzed, for complexity we see that some of the ANOVAs yielded statistically

significant results after correction. In order to identify where the differences in deception in-

dicators occurred (i.e. which personality bins were significantly different from each other) we

computed Tukey post-hoc tests for all ANOVAs with significant or approaching significant

results. The results of the Tukey tests for LIWC features are shown in Table 12.18.
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Trait Feature Avg-Low High-Low High-Avg µH µA µL

N VP 0.019 0.0025 0.63 0.18 0.13 -0.11

N C 0.017 0.0024 0.66 0.19 0.14 -0.09

N DC 0.12 0.03 0.66 0.1 0.06 -0.1

N MLT 0.089 0.03 0.81 0.16 0.13 -0.05

N C.S 0.017 0.0029 0.72 0.18 0.14 -0.09

N VP.T 0.013 0.0018 0.66 0.18 0.14 -0.1

N C.T 0.015 0.002 0.65 0.19 0.15 -0.08

N DC.T 0.2 0.033 0.46 0.12 0.06 -0.08

Table 12.18: Tukey post-hoc for complexity cues to deception. Cells shaded in gray indicate

a p-value less than 0.05.

The Tukey post-hoc tests revealed that all of the features were significantly different

between bins high and low for Neuroticism, and some between average and low, but there

were no significant differences between high and average. Interestingly, Neuroticism was

the only personality trait with differences in complexity cues to deception. For all of these

measures of syntactic complexity, speakers that were in the high Neuroticism bin produced

more syntactically complex deceptive utterances than truthful utterances, as evidenced by

a positive value for µH , while speakers that were in the low Neuroticism bin produced

more syntactically complex truthful responses, as evidenced by a negative value for µL.

This difference is very interesting and highlights the importance of considering individual

differences determining the veracity of a speaker’s statements.

12.5 Discussion

This chapter aimed to answer the following question: Are there group-specific differences

in acoustic-prosodic and linguistic features between truthful and deceptive interviewee re-

sponses? We carefully analyzed differences in cues to deception across gender, native lan-

guage, and personality types. We examined a variety of acoustic-prosodic and linguistic

features and identified many group-specific cues to deception. In some cases, we found that
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previously observed general cues to deception across all speakers were not present when we

examined particular groups of speakers. In other cases, we discovered new cues to deception

for specific groups of speakers that were not present when we analyzed all speakers.

Gender Pitch and intensity features provided cues to deception in different ways for

male and female speakers. Cues to deception in male speakers included increased pitch

mean, median, and standard deviation, and increased intensity standard deviation, while

female deceptive speech was characterized by increased intensity mean. There were also

differences in linguistic cues to deception between male and female subjects. Hedge words

and phrases were increased in deceptive speech for male speakers only, as were false starts.

Male speakers also used past tense verbs more when lying. Only female speakers had

increased frequency of contractions in truthful responses. Adjective usage was increased

in truthful responses for female speakers only. We observed differences in syntactic cues

to deception across gender. Of the 19 syntactic complexity cues to deception that were

observed across all speakers, nine were only present in male speakers, and only one trend

was specific to female speakers. In general, there were more male-specific cues than female-

specific cues to deception identified with this analysis.

Native Language Several differences in acoustic-prosodic cues to deception between

native speakers of SAE and MC were identified. Jitter and shimmer were increased in

truthful speech of SAE speakers only, and intensity mean and standard deviation were

increased in deceptive speech of SAE speakers only. Native MC speakers had increased pitch

mean and standard deviation in deceptive speech, and increased speaking rate in truthful

speech. It is intuitive that only MC speakers spoke faster when telling the truth, since we

expect cognitive cues to deception to be more pronounced when deception is combined with

a cognitively difficult task – in this case, speaking in one’s non-native language. There were

also several differences in linguistic cues to deception between native SAE and MC speakers.

For example, positive emotion words and laughter were increased in deceptive speech of SAE

speakers only. Present tense verbs were also increased in SAE deceptive speech only. False

starts and cognitive process words were increased in deceptive responses on MC speakers

only, reinforcing the trend of cognitive cues to deception that were only present in MC

speakers. Of the 19 syntactic complexity cues to deception across all subjects, eight were
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only present in native SAE speakers, and none were specific to MC speakers. It seems

that syntactic complexity features are more useful indicators of deception in native SAE

speakers. In general, there were more SAE-specific cues than MC-specific cues to deception

identified with this analysis.

Personality Differences in acoustic-prosodic and linguistic cues to deception were ob-

served between subjects with different personality types, however these differences were

not statistically significant after correction for multiple comparisons. The majority of the

differences in cues to deception were between speakers who scored high vs. low for the

five personality dimensions. For example, subjects who scored high in Neuroticism had

increased intensity max when lying, while subjects who scored low in Neuroticism had de-

creased intensity max when lying. Subjects who scored high for Extroversion used “we”

more when lying, while those who scored low used “we” more when telling the truth. Sub-

jects who scored high in Openness used filled pauses more when lying, and those who scored

low in Openness used filled pauses more when telling the truth. Differences in syntactic

cues to deception between personality types were statistically significant, and they were

all for speakers in high vs. low or average vs. low on the Neuroticism scale. All mea-

sures of syntactic complexity were increased in deceptive responses of speakers who scored

high in Neuroticism. Overall, the greatest number of trait-specific cues were observed for

Neuroticism (14), and the fewest for Agreeableness (2).

The findings presented in this chapter suggest that gender, native language, and person-

ality all play a role in how people produce deceptive speech. Because of this, practitioners

should be cautious about applying blanket rules about deceptive language to all popula-

tions. For example, some cues to deception that involve nuances in language such as verb

tense changes were only present in native English speakers, and should not be applied to

non-native speakers. Ideally, gender, native language, and personality should be taken into

account when detecting deception. This is a difficult task for human practitioners. In

the next chapter, we explore incorporating these individual differences into our machine

learning models, with the goal of improving automatic deception detection.

While previous studies of deception have observed some variation in cues to deception

across speakers, this work is the first comprehensive analysis of gender, native language,
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and personality differences in acoustic-prosodic and linguistic cues to deception.
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Chapter 13

Classification: Exploring Speaker

Differences

This chapter presents the results of deception classification experiments that explore speaker

differences in deceptive behavior. This work is motivated by our findings in Chapter 12,

which showed a wide range of deceptive behavior across speakers of different genders, cul-

tures, and personality types. Having identified these differences, we aimed to determine

whether these speaker differences can be incorporated in our classification methods to im-

prove the performance of automatic deception detection. In Chapter 6 we trained decep-

tion classifiers using acoustic-prosodic, lexical, and syntactic feature sets. In this chapter

we aimed to answer the following question: Can we use information about speaker

characteristics to improve automatic deception detection?

We explored three approaches to incorporate differences in deceptive behavior across

speakers:

1. Classification with individual traits as features

2. Classification with homogenized data

3. Classification with speaker dependent features

In the first approach, we included features that indicate the gender, native language, and

personality scores of the speaker. In the second approach, we trained gender-specific and
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native language-specific classifiers using homogeneous training data from subjects sharing

the same trait (e.g. female speakers). In the third approach, we included speaker-dependent

features extracted from a baseline sample of speech for each speaker, to capture a speaker’s

deviation from their natural speaking style during deception.

For each approach, we trained classifiers using the combined feature sets detailed pre-

viously in Section 6.2. The feature sets are:

• Acoustic

• Lexical

• Syntactic

• Acoustic+Lexical

• Acoustic+Syntactic

• Lexical+Syntactic

• Acoustic+Lexical+Syntactic

For each of these feature sets, we compared the results of the models that incorporate

speaker differences with the results of generic models presented in Chapter 6. We did this

for each of the four segmentation units: IPU, turn, question response, and question chunk.

We used the same training and evaluation framework for all experiments in this chap-

ter as in Chapter 6 (unless otherwise noted). We used the same folds for our 10-fold

cross-validation setup, as well as the same classifiers and parameters, to ensure that these

experimental results are directly comparable with our previous results.

13.1 Classification with Individual Traits as Features

In this section we present the results of classification experiments that use speaker differ-

ences by including individual traits as features. This first approach is straightforward – we

append a 7-element vector to the existing feature vector that represents the speaker’s gen-

der (male or female), native language (English or Chinese), and five raw personality scores
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from the NEO-FFI (Neuroticism, Extroversion, Openness to Experience, Agreeableness,

and Conscientiousness).

The motivation for this approach is that we observed differences in cues to deception

between male and female speakers, native English and native Chinese speakers, and between

speakers with different personality types. By including these speaker traits as features,

perhaps the classifiers can learn how the acoustic-prosodic and linguistic characteristics

of a speaker’s responses interact with their unique combination of speaker traits to signal

deception or truth.

The tables below show the classification results. For each feature set, we show the

performance of the generic classifier without speaker traits (Generic) along with the results

of the classifier trained with the additional speaker trait features (SpeakerTrait). The

column labeled |Generic − ST | shows the absolute value of the difference between the

performance of the generic classifier and the performance of the classifier trained with the

additional speaker trait features. Shaded gray cells indicate which model performed better.

The performance metric shown in the tables is accuracy. We compared accuracy because

this enabled us to test whether the differences in classifier performance were statistically

significant, using a two-tailed .95 confidence interval. (This is not possible with F1, which

does not have a probabilistic interpretation.)

Table 13.1 shows the results of combined feature sets with speaker traits for IPU clas-

sification.
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Feature Generic SpeakerTrait |Generic− ST |

Acoustic 52.90 52.87 0.03

Lexical 56.01 56.07 0.06

Syntactic 51.12 51.09 0.03

Acoustic+Lexical 56.25 56.25 0.00

Acoustic+Syntactic 52.72 52.72 0.00

Lexical+Syntactic 56.00 56.01 0.01

All 56.29 56.32 0.03

Table 13.1: IPU classification accuracy with combined feature sets + speaker traits (ST).

Shaded cells indicate which model performed better.

Overall, we did not find that adding speaker traits was useful at the IPU-level. The

differences between the generic and speaker trait classifiers were minuscule for all feature

sets, with an average difference in performance of .02% This suggests that combining speaker

traits with acoustic-prosodic and linguistic features is not useful for detecting deception in

IPU segments.

Table 13.2 shows the results of combined feature sets with speaker traits for turn clas-

sification.

Feature Generic SpeakerTrait |Generic− ST |

Acoustic 52.98 53.00 0.02

Lexical 58.03 57.93 0.10

Syntactic 52.15 52.14 0.01

Acoustic+Lexical 59.77 59.46 0.31

Acoustic+Syntactic 53.03 53.02 0.01

Lexical+Syntactic 57.86 57.91 0.05

All 57.86 57.84 0.02

Table 13.2: Turn classification accuracy with combined feature sets + speaker traits (ST).

Shaded cells indicate which model performed better.
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This table shows a similar trend for turn classification that we saw for IPU classification.

There were very slight differences between the generic and speaker trait classifiers for turn

classification, none of which were significant at a .95 confidence interval. The mean difference

in classifier performance was only 0.07%, and in some cases the classifier performance was

lower after adding speaker traits. Including speaker traits for turn classification did not

significantly improve performance.

Table 13.3 shows the results of combined feature sets with speaker traits for classification

of question responses.

Feature Generic SpeakerTrait |Generic− ST |

Acoustic 56.40 56.36 0.04

Lexical 64.43 64.63 0.20

Syntactic 66.05 66.11 0.06

Acoustic+Lexical 63.47 63.47 0.00

Acoustic+Syntactic 64.31 64.36 0.05

Lexical+Syntactic 65.77 65.64 0.13

All 63.69 63.77 0.08

Table 13.3: Question response classification accuracy with combined feature sets + individ-

ual traits. Shaded cells indicate which model performed better.

As with IPU and turn classification, we observed no significant differences between the

generic and speaker trait classifiers for question response classification. The mean difference

in classifier performance was .08% and in some cases performance was lower after including

speaker traits. It seems that including speaker traits for question response classification

was not helpful in improving deception detection performance.

Table 13.4 shows the results of combined feature sets with speaker traits for classification

of question chunks.
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Feature Generic SpeakerTrait |Generic− ST |

Acoustic 58.10 58.09 0.01

Lexical 64.96 64.99 0.03

Syntactic 69.34 69.29 0.05

Acoustic+Lexical 66.31 66.33 0.02

Acoustic+Syntactic 69.24 69.29 0.05

Lexical+Syntactic 69.81 69.73 0.08

All 69.43 69.42 0.01

Table 13.4: Question chunk classification accuracy with combined feature sets + individual

traits. Shaded cells indicate which model performed better.

Question chunk classification followed the same trend as the other segmentations, where

differences between the generic and speaker trait models were marginal. The mean difference

in classifier performance was 0.04%. It seems that including speaker traits for question chunk

classification did not improve classification performance.

Overall, our experimental results suggest that adding speaker traits as features was

not useful for IPUs, turns, question responses, or question chunk segmentation. None of

the differences between the results of the generic classifier and the speaker trait classifier

were statistically significant. It is possible that this approach was too simplistic. The

generic classifiers were trained using hundreds of segment-level features, some of which

were significantly different between truthful and deceptive speech. It seems that adding a

handful of speaker trait features, which do not differentiate between truthful and deceptive

segments on their own, was not helpful for the classification.

13.2 Classification with Homogenized Data

We previously observed that including traits as features did not significantly improve de-

ception classification performance. In this section we explore a second method to leverage

speaker variability in deception classification, namely, data homogenization. Motivated by

our findings that male and female speakers, as well as native Chinese and native English
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speakers, exhibit cues to deception differently, we hypothesized that training gender-specific

and language-specific deception classifiers could improve performance over generic classi-

fiers. Further, data homogenization was successfully used by An and Levitan [2018] for

personality identification using the CXD corpus, motivating our experiments in deception

classification. To test this hypothesis, we trained three versions of each deception classifier:

1. Generic

2. Gender-specific

3. Language-specific

For the gender-specific models, we trained a male classifier using only male speakers and

a female classifier using only female speakers. At inference time, we used the male classifier

to classify deception for male test speakers, and the female classifier to classify deception

for female test speakers. We used the same approach for the language-specific classifier,

training an English classifier and a Chinese classifier using only speakers with that native

language, and applying the appropriate classifier at inference time. Because the data is

balanced by gender and native language, the gender-specific and language-specific models

were trained using half of the training data available. To ensure a fair comparison between

generic and homogenized classifiers, we trained the generic classifier on a randomly selected

half of the training data, so all classifiers were trained using the same amount of data.

We compared generic, gender-specific, and language-specific classifiers for all four seg-

mentation units (IPU, turn, question response, question chunk) as well as for the seven

feature sets used in the above experiments (acoustic, lexical, syntactic, and combinations).

Table 13.5 shows the results comparing generic and homogenized models.
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Feature Generic Gender-specific Lang-specific |Generic− best|

Acoustic 52.24 52.45 52.49 0.25

Lexical 54.86 54.39 54.85 0.00

Syntactic 51.08 50.97 50.91 0.00

Acoustic+Lexical 55.13 54.79 55.03 0.00

Acoustic+Syntactic 52.22 52.22 52.46 0.24

Lexical+Syntactic 54.80 54.51 54.81 0.01

All 55.00 54.84 55.05 0.05

Table 13.5: IPU generic vs. homogenized classification accuracy accuracy with combined

feature sets. Shaded cells indicate which model performed best.

We see from this table that the language-specific classifier outperformed the generic clas-

sifier for several feature combinations, including acoustic, acoustic+syntactic, lexical+syntactic,

and all features combined. However, the margins of improvement were very small (the

largest was .25%) and none were statistically significant at a .95 confidence interval.

Table 13.6 shows the comparison between generic and homogenized models for classifi-

cation of turns.

Feature Generic Gender-specific Lang-specific |Generic− best|

Acoustic 52.42 51.92 52.77 0.35

Lexical 56.35 56.50 57.02 0.67

Syntactic 52.10 51.86 51.87 0.00

Acoustic+Lexical 57.09 57.06 56.90 0.00

Acoustic+Syntactic 52.35 52.19 52.23 0.00

Lexical+Syntactic 56.77 56.42 57.08 0.31

All 56.19 56.00 56.13 0.00

Table 13.6: Turn generic vs. homogenized classification accuracy with combined feature

sets. Shaded cells indicate which model performed best.

As shown in this table, the language-specific classifiers outperformed the generic classifier
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for the acoustic, lexical and lexical+syntactic feature sets. However, as with IPUs, the

margins of improvement were small (less than 1% improvement for all feature combinations)

and none were statistically significant at a .95 confidence interval.

Table 13.7 shows the comparison between generic and homogenized models for classifi-

cation of question responses.

Feature Generic Gender-specific Lang-specific |Generic− best|

Acoustic 55.21 54.91 55.22 0.01

Lexical 60.47 60.84 61.76 1.29

Syntactic 63.21 63.48 63.09 0.27

Acoustic+Lexical 58.81 58.94 60.17 1.36

Acoustic+Syntactic 60.03 61.51 61.54 1.51

Lexical+Syntactic 62.34 62.43 62.81 0.47

All 59.64 60.65 60.87 1.23

Table 13.7: Question response generic vs. homogenized classification accuracy with com-

bined feature sets. Shaded cells indicate which model performed best.

As shown in this table, the gender- and language-specific classifiers outperformed the

generic classifier for all feature combinations. The gender-specific model was preferred for

one feature set (syntactic), and the language-specific model was preferred for all other fea-

ture combinations (acoustic, lexical, acoustic+lexical, acoustic+syntactic, lexical+syntactic,

and all features). The margins of improvement were larger for question responses than for

IPUs and turns for some feature sets (as high as 1.5% for acoustic+syntactic). However,

none were statistically significant at a .95 confidence interval.

Table 13.8 shows the comparison between generic and homogenized models for classifi-

cation of question chunks.
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Feature Generic Gender-specific Lang-specific |Generic− best|

Acoustic 57.24 56.55 56.83 0.00

Lexical 61.90 61.64 61.87 0.00

Syntactic 68.73 67.77 68.10 0.00

Acoustic+Lexical 62.85 62.94 62.78 0.09

Acoustic+Syntactic 68.84 67.65 68.17 0.00

Lexical+Syntactic 69.69 68.41 68.11 0.00

All 68.99 68.30 68.19 0.00

Table 13.8: Question chunk generic vs. homogenized classification accuracy with combined

feature sets. Shaded cells indicate which model performed best.

We see from this table that unlike the results for IPUs, turns, and question responses, the

generic classifier was preferred for all feature sets except one. It seems that the classifiers

trained and evaluated with the question chunk segmentation did not benefit from using

homogenized data. Although none of the performance differences between the generic and

homogenized models were statistically significant, we observed a trend that the homogenized

models were the most useful for question responses, and the least useful for question chunks.

It is possible that question chunks benefit the least because they have the advantage of

the most contextual information, which potentially outweighs the benefits of leveraging

speaker trait information. Another trend that we observed is that the language-specific

models tended to perform better than the gender-specific models, suggesting that there

were more benefits from incorporating language-specific deceptive behaviors than gender-

specific deceptive behaviors.

Overall, we conclude that classification with homogenized models did not significantly

improve deception detection performance. This is contrast to the personality detection work

of An and Levitan [2018], which found that homogenized models significantly outperformed

the baseline generic personality classifiers. It is possible that our generic deception classifiers

were more optimized than the generic personality classifiers, and therefore had less room for

improvement. Another possibility is that there are greater gender and cultural differences

in personality expression than in deception behavior.
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13.3 Classification with Speaker-Dependent Features

In this section we explore a third method to leverage speaker variability in deception clas-

sification: classification with speaker-dependent features. Practitioners are often trained to

establish a baseline behavior for a subject, and then look for deviation from the baseline to

assess the veracity of a subject’s statements. For example, Reid and Associates [Buckley,

2000] train interviewers to begin interviews by asking neutral questions that are easily ver-

ifiable (such as the subject’s name, age, occupation) and observe how the subject behaves

when responding truthfully to establish baseline behavior. These training instructions mo-

tivated Enos [2009] to develop subject-dependent features. These features captured each

speaker’s tendency toward certain behaviors when lying and telling the truth. For exam-

ple, they developed features that captured speaker ratios of laughter and filled pauses in

deceptive and truthful speech. They reported that these features improved classification

performance. A drawback of this approach is that it requires data annotated with truth and

deception labels for each speaker in order to train the classifier. To use a speaker-dependent

classifier to detect deception in a new, unseen speaker, one would first have to obtain la-

beled truth and deception data for that new speaker and compute these ratios. This is an

unrealistic expectation in a real-world situation.

In our work we aimed to avoid this constraint. In our experimental paradigm for collect-

ing the CXD corpus, we included an initial “baseline” interview between an experimenter

and the subject. During this interview, the experimenter asked the subject open-ended ques-

tions that were designed to elicit spontaneous speech (e.g. “What do you like best/worst

about living in NYC?”). Subjects were instructed to respond truthfully during this baseline

session. We collected 3-4 minutes of subject speech for each participant, and this enables us

to establish a baseline behavior for each subject and look for deviations from this baseline

to help with classification decisions. To do this, we extracted features from the baseline

session and combined those features with the features extracted from the lying game. In a

real-world application, it is conceivable that one can obtain a sample of a speaker speaking

truthfully by asking them to answer a few neutral, verifiable questions.

We extracted the following feature sets from the baseline session:
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1. Acoustic: Praat, openSMILE (IS09)

2. Lexical: N-grams, LIWC, LDI

3. Syntactic: Complexity, POS, word+POS

These features were extracted from IPU segments. (We did not define turns in the

baseline data since it was not a dialogue between the participant and the experimenter,

but rather the participant responding to a series of prompts.) The features are described

in detail in Chapter 4, Section 4.4. We computed mean feature vectors, representing the

mean value of each feature in the baseline data, for a particular speaker. For example, the

mean acoustic feature vector of a speaker consisted of the mean value of each Praat and

openSMILE feature across all subject IPUs from the baseline data. We then subtracted

the baseline feature vector from each feature vector extracted from the interview session,

to capture a speaker’s deviation from their baseline behavior. To evaluate the performance

of these speaker-dependent features, we compared three approaches:

1. Generic: trained classifier with only session features, and no baseline features

2. Speaker-dependent: trained classifier with only speaker-dependent features (i.e. ses-

sion features minus baseline features)

3. Combined: trained classifier with session features concatenated with speaker-dependent

features

All classifier parameters were consistent across the three conditions, except for the num-

ber of features used for classification, which was increased for the combined features. The

classifiers and parameters used here were the same as those used in our original deception

classification experiments, described in Chapter 6. All models were evaluated with 10-fold

cross-validation.

Table 13.9 shows the comparison between generic, speaker-dependent, and combined

models for classification of IPUs.
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Feature Generic Speaker-dependent Combined |Generic−Best|

Acoustic 52.90 52.90 52.88 0.00

Lexical 56.01 55.91 56.43 0.42

Syntactic 51.12 51.14 51.13 0.02

Acoustic+Lexical 56.25 56.16 56.73 0.48

Acoustic+Syntactic 52.72 52.73 52.94 0.22

Lexical+Syntactic 56.00 56.01 56.56 0.56

All 56.29 56.28 56.76 0.47

Table 13.9: IPU speaker-dependent classification accuracy with combined feature sets.

Shaded cells indicate which model performed best.

As shown in this table, the classifiers trained with speaker-dependent features or com-

bined features outperformed the generic classifiers for all feature sets except for acoustic.

The model trained with only speaker-dependent features did best for the syntactic fea-

ture set, while the models trained with speaker-dependent and generic features combined

performed best for all other feature combinations. However, the differences in classifier

performance were marginal (the mean improvement was 0.32%), suggesting that adding

speaker-dependent features was not very helpful for improving deception classification for

IPU segments.

Next, we repeated these experiments using the turn segmentation. Table 13.10 shows

the comparison between generic and speaker-dependent models for classification of turns.
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Feature Generic Speaker-dependent Combined |Generic−Best|

Acoustic 52.98 52.97 52.91 0.00

Lexical 58.03 57.98 59.03 1.00

Syntactic 52.15 52.07 52.17 0.02

Acoustic+Lexical 59.77 59.43 59.92 0.15

Acoustic+Syntactic 53.03 53.03 53.03 0.00

Lexical+Syntactic 57.86 58.19 59.01 1.15

All 57.86 57.83 58.38 0.52

Table 13.10: Turn speaker-dependent classification accuracy with combined feature sets.

Shaded cells indicate which model performed best.

As shown in this table, the classifiers trained with both session features and speaker-

dependent features (Combined) performed best for all feature sets except for the acoustic

feature set (for which the generic model performed marginally better). The largest margin

of improvement was 1.15% for lexical+syntactic features. It seems that speaker-dependent

features were more helpful for turn classification than for IPU classification.

Next, we examined the impact of training with speaker-dependent features on question

response classification. Table 13.11 shows the comparison between generic and speaker-

dependent models for classification of question responses.
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Feature Generic Speaker-dependent Combined |Generic−Best|

Acoustic 56.40 56.41 56.52 0.12

Lexical 64.43 64.06 65.95 1.52

Syntactic 66.05 65.82 66.02 0.00

Acoustic+Lexical 63.47 63.49 64.08 0.61

Acoustic+Syntactic 64.31 64.39 64.49 0.18

Lexical+Syntactic 65.77 65.65 65.65 0.00

All 63.69 63.61 63.95 0.26

Table 13.11: Question response speaker-dependent classification accuracy with combined

feature sets. Shaded cells indicate which model performed best.

As shown in this table, speaker-dependent features improved question response classifi-

cation accuracy for all feature sets except for syntactic and lexical+syntactic. Using only

speaker-dependent features achieved the best performance for acoustic features, and a com-

bination of speaker-dependent and generic features yielded the best performance for all other

feature sets. The margin of improvement was largest for lexical features (1.5%). As with

turn classification, we found that adding speaker-dependent features improved deception

classification performance for question response segmentation.

Finally, we examined the impact of training with speaker-dependent features on question

chunk classification. Table 13.12 shows the comparison between generic, speaker-dependent,

and combined generic+speaker-dependent models for classification of question chunks.



CHAPTER 13. CLASSIFICATION: EXPLORING SPEAKER DIFFERENCES 161

Feature Generic Speaker-dependent Combined |Generic−Best|

Acoustic 58.10 58.10 58.69 0.59

Lexical 64.96 65.06 67.96 3.00

Syntactic 69.34 69.19 69.69 0.35

Acoustic+Lexical 66.31 66.36 67.80 1.49

Acoustic+Syntactic 69.24 69.06 69.62 0.38

Lexical+Syntactic 69.81 69.59 70.22 0.41

All 69.43 69.49 69.90 0.47

Table 13.12: Question chunk speaker-dependent classification accuracy with combined fea-

ture sets. Shaded cells indicate which model performed better.

As shown in this table, combining speaker-dependent features with generic features

improved question chunk classification performance for all feature sets. The margin of

improvement was greatest for lexical features (3%).

13.4 Discussion

This chapter aimed to answer the question: Can we use information about speaker charac-

teristics to improve automatic deception detection? We tested three approaches to incor-

porate speaker-dependent information in deception classification: adding speaker traits as

features, training homogenized models, and adding speaker-dependent features. We found

that adding speaker traits did not improve classification performance. The classifiers were

trained with many acoustic-prosodic, lexical, and syntactic features, and simply adding

speaker traits as features, which were the same for all truthful and deceptive speaker utter-

ances, was not useful for improving deception classification. Homogenized models improved

performance under some conditions, particularly for the question response segmentation. In

almost all cases where the homogenized model improved over the generic model, we found

that it was the language-specific model that did best, not the gender-specific model. It

seems that there were larger gains from training classifiers with data from speakers with

the same native language, than from training classifiers with data from speakers with the
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same gender.

The largest improvements were obtained from the third approach of adding speaker-

dependent features, and particularly for the question chunk segmentation. The speaker-

dependent features were computed by extracting features from the 3-4 minute initial in-

terview with each subject, in which subjects were instructed to answer truthfully to each

question, in order to establish baseline speaking behavior when telling the truth. The base-

line features were then subtracted from the session features, to capture distance from the

baseline. We found that combining speaker-dependent features with session features was

better than using only speaker-depending features. The most useful speaker-dependent fea-

tures were the lexical and syntactic features. There were smaller improvements across all

segmentations from adding speaker-dependent acoustic features to interview session acoustic

features.

Overall, we conclude that adding speaker-dependent features that captured speakers’

deviation from their baseline speaking behavior improved deception classification perfor-

mance. For IPUs and question chunks, the improvements were marginal, while for turn,

question response, and question chunk segmentations the improvements were larger (1-3%

for some feature combinations). For some segmentations, we achieved a new best per-

formance using a combination of generic and subject-dependent features, supporting the

hypothesis that capturing deviations from baseline behavior is helpful for deception de-

tection. The improvements from adding speaker-dependent features were not statistically

significant at a .95 confidence interval, so we consider them trends that should be further

studied. Practitioners have advocated for interviewing practices that establish baseline be-

havior of subjects while telling the truth, and then looking for differences from the baseline

to detect deception. Baseline behavior is often elicited by first asking neutral questions that

the subject is expected to answer truthfully. In this work we operationalized a method to

automatically capture deviations from the baseline, instead of relying on human judgment

to determine deviation from the baseline.

In conclusion, not only are there differences in production of deception across speakers,

but our experimental results suggest that those speaker differences can be leveraged to

improve automatic deception classification. Future work can explore modeling speaker
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traits in other ways. For example, recent work by An et al. [2018] used a multi-task learning

framework to jointly predict speaker personality and utterance deception. They found that

this approach performed better for deception classification than including personality scores

as features. This is very promising work, and can be extended to include gender and native

language. Modeling speaker differences in creative ways can help further push the state-of-

the-art in automatic deception classification.
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Chapter 14

Speaker-Dependent Deception

Classification Using Neural

Network Models

In Chapter 13, we explored three approaches to incorporate speaker differences in deception

classification. The three methods had varying degrees of success, with the best approach

using speaker-dependent features extracted from the baseline sample of speech. In this

chapter we explore another approach for speaker-dependent deception classification: train-

ing classifiers using training instances from the same speakers that we evaluated the models

on.

In all prior experiments described in this thesis, we trained models using features ex-

tracted from a set of speakers, and evaluated them on a distinct set of speakers. This was

done to ensure that the models do not overfit to a specific set of speakers, but rather they

learn generalizable patterns of deceptive speech that extend to unseen test speakers. In this

section we explored a method of speaker-dependent classification, where instead of splitting

train and test sets by speaker, we split the data randomly by instances, so that there were

segments in train and test from the same speakers. Although this paradigm is difficult to

replicate in a real-world scenario, these experiments were conducted to see whether decep-

tion classification could greatly benefit from having some labeled training data available for
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a particular speaker. We refer to the two approaches as “speaker split” and “random split.”

We first compared speaker and random split experiments for the feature sets and classi-

fiers described in Chapter 6. Those experiments used standard statistical machine learning

algorithms (e.g. Random Forest, Logistic Regression, Support Vector Machines, and Naive

Bayes) and acoustic, lexical, and syntactic feature sets. Our results showed no significant

differences between the models trained on speaker split and random split data. This sug-

gests that the classifiers trained and evaluated using the same speakers (but not the same

instances) did not learn speaker-specific patterns of deception.

In our next set of experiments, we compared classifiers trained and evaluated on speaker

split data vs. random split data using a new set of classification models: neural network

models. Neural network models are currently the state-of-the-art in many computer vision,

speech recognition, and NLP tasks such as POS tagging. They have not been previously

explored in the context of deception detection, probably because they typically require large

training sets, which are not available for deception. Given the relatively large size of the

CXD corpus, this was not a constraint for our work. An advantage of deep neural networks

is that multiple feature streams can be combined in a single architecture. This is especially

useful for handling both lexical content from the speech transcription jointly with acoustic-

prosodic features extracted from the speech signal. In the remainder of this chapter, we first

describe three neural network architectures that we developed for deception classification.

We then present classification results for both speaker-split evaluation and random-split

evaluation.

Some of this work was published in Mendels et al. [2017], and was done in collaboration

with my co-authors Gideon Mendels and Kai-Zhan Lee.

14.1 Neural Network Architectures

In this section we describe the three neural network models that we developed for deception

classification.

1. LSTM-lexical, trained on word embeddings

2. DNN-acoustic, trained on openSMILE features (IS09)
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3. Hybrid, a combination of the LSTM-lexical and DNN-acoustic models

We used Keras [Chollet and others, 2015] with a TensorFlow backend for all model

implementations. We used Bayesian hyper-parameter optimization [Snoek et al., 2012], as

implemented by the spearmint library [Group, 2017] to select the optimal hyper-parameters

for our models.

LSTM-lexical

In our previous statistical machine learning experiments, we observed that lexical features,

and particularly n-grams, were useful for deception classification. However, lexical features

have the disadvantage of capturing domain-specific trends. Another drawback of n-grams

is that they do not capture context or semantic relationships between words. Therefore, we

designed this lexical neural model trained on word embeddings, a distributed representation

of words that capture context and semantic similarity between words. The model is based

on the bidirectional long short-term memory (BLSTM) architecture. Recurrent models

have been successful in related tasks of sentiment classification [Tang et al., 2015], speech

recognition [Graves et al., 2013] and emotion detection [Trigeorgis et al., 2016]. The BLSTM

model [Schuster and Paliwal, 1997] is a modification of the original long short-term memory

(LSTM) model [Hochreiter and Schmidhuber, 1997] in that it analyzes input simultaneously

in the forward and reverse time directions. The effectiveness of both models comes from

the capacity of an LSTM node to retain memory of its prior values with an internal state,

bridging long temporal gaps. For every node at a given time-step t, with output gate yout,

input gate yin, forget gate net, and differentiable activation functions g, h, output is defined

as y(t) = yout(t)h(s(t)) with internal state s(t) = s(t− 1) + yin(t)g(net(t)) [Hochreiter and

Schmidhuber, 1997]. We used pre-trained word embeddings described in Chapter 4, since

our corpus is relatively small for training word embedding models. These GloVe embeddings

were used to initialize the weights, and we allowed back-propagation to update embedding

values during training. We used a single softmax layer that operated on the final output

and state of the LSTM for prediction. Our final model used a cell size of 256.

DNN: openSMILE

In our statistical machine learning experiments, we observed that the openSMILE feature

set was somewhat discriminative between truthful and deceptive speech. We designed a



CHAPTER 14. SPEAKER-DEPENDENT DECEPTION CLASSIFICATION USING
NEURAL NETWORK MODELS 167

deep neural network model (MLP) using the the same feature set. Prior to training, we

normalized our features by removing the mean and scaling to unit variance. Centering and

scaling were done independently on each feature. Our model consisted of six fully connected

layers, each with 1095 hidden units followed by a Relu activation. For prediction we used

a softmax layer with two outputs that corresponds to the two classes in our task. We used

categorical cross-entropy as our loss function. During training the output of each layer

was normalized using Batch Normalization [Ioffe and Szegedy, 2015] and passed through

a Dropout layer [Srivastava et al., 2014] with a 0.497 probability. Our model has many

parameters and a high dropout rate reduces the risk of over-fitting. Additionally, we added

L2 regularization on the weights with a value of 0.2. We trained our model using stochastic

gradient descent with a learning rate of 0.00134 that reduced by 50% for every 10 epochs

with no improvement on training loss. The above hyper parameters were obtained using

the Bayesian Optimization method implemented by the Spearmint library [Group, 2017].

Hybrid: LSTM + DNN

One of the advantages of neural networks is the ability to tailor the architecture to the

task and combine sequential and discrete features in a single model. In our final model, we

combined our LSTM-lexical and DNN-openSMILE models. Unlike most ensemble methods,

our hybrid model was trained jointly without explicit voting between the acoustic and lexical

based areas. We first experimented with merging the two models by taking the output of the

last hidden layer in our DNN model and concatenating it with the output of LSTM, using

the softmax function to normalize the last layer’s output and generate class probabilities.

However, this architecture failed to improve on the original DNN model, which led us

to the hypothesis that during back-propagation, the acoustic-based area of the network

was being penalized more than the lexical area. To test our hypothesis, we attached an

auxiliary softmax prediction layer to the LSTM output and used it to predict the test set.

We observed that this area of the network achieved lower performance than the original

LSTM-lexical model. This result confirmed our hypothesis that although the overall loss

seemed to converge, the lexical area of the network was not optimized. Although it is

possible to freeze the weights of the acoustic area and continue training the lexical area,

that approach is not preferred due the manual intervention required. Instead, we computed
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the loss of the network twice: once for the main softmax and once for the auxiliary softmax.

Using a parameter λ we computed a weighted sum of the two error matrices. This approach

allowed us to train the network without manual intervention. We treated λ as a hyper-

parameter and using Bayesian optimization found an optimal value of 0.67 which doubles

the significance of the loss computed from the auxiliary softmax compared to the main

softmax. The architecture of this hybrid model is illustrated in Figure 14.1.

Figure 14.1: Hybrid acoustic lexical model architecture.

14.2 Neural Network Deception Classification

In this section we present the classification results using the three neural network models.

We first present the speaker-independent evaluation, which uses speaker-split data, and

then we present the speaker dependent evaluation, which uses the random-split data. For

both speaker-split and random-split conditions, the data was partitioned into 80% training

data and 20% test data. 5% of the training data was used as a validation set for selecting

model parameters.

14.2.1 Speaker-Independent Evaluation

This section presents the results of the speaker-independent classification experiments. For

each of the three neural network architectures, DNN, LSTM, and hybrid, we trained and

evaluated the classifier using the speaker split data, with train and test data from non-



CHAPTER 14. SPEAKER-DEPENDENT DECEPTION CLASSIFICATION USING
NEURAL NETWORK MODELS 169

overlapping sets of speakers. The classifiers were trained and evaluated for each of the four

segmentation units: IPU, turn, question response, and question chunk. The results are

shown in Table 14.1.

Model Segmentation P R F

DNN IPU 52.55 52.54 52.51

Turn 54.04 54.00 53.91

Question Response 58.23 58.23 58.23

Question Chunk 56.93 56.93 56.93

LSTM IPU 53.44 53.43 53.40

Turn 55.54 55.44 55.26

Question Response 58.81 58.79 58.77

Question Chunk 59.76 59.48 59.19

Hybrid IPU 55.43 55.03 54.33

Turn 54.92 54.50 53.75

Question Response 59.60 59.43 59.18

Question Chunk 59.21 59.04 58.83

Table 14.1: Speaker-independent classification results for DNN, LSTM and hybrid neural

network classifiers.

The results for the DNN model were almost the same as the results for the statistical

machine learning models trained with openSMILE features, reported in Chapter 6. The

results here ranged from 52.51 F1 for IPUs to 58.23 for question responses. Similarly,

the LSTM results using embeddings were very similar to our previous results from models

trained with n-gram features. The LSTM results ranged from 53.4 F1 for IPUs to 59.19

F1 for question chunks. As with other classification experiments, we found that classifica-

tion performance improved as the size of the segmentation units increased, with question

responses and question chunks performing better than IPUs and turns.

The hybrid model achieved the best performance for IPUs (54.33 F1) and question

responses (59.18 F1), but not for turns or question chunks. It seems that training the
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hybrid model from acoustic-prosodic and lexical feature streams jointly was not a very

useful approach for speaker-independent deception classification. Unlike many other speech

classification tasks, where large improvements are achieved by using a neural network model

instead of a statistical machine learning model, here we did not see large improvements

from using neural network models. However, these classifiers were trained using a subset

of the features that we explored for deception detection, and it is possible that neural

networks trained using additional feature sets (such as syntactic features) would achieve

better performance.

14.2.2 Speaker-Dependent Evaluation

This section presents the results of the speaker-dependent classification experiments. For

each of the three neural network architectures, DNN, LSTM, and hybrid, we trained and

evaluated the classifier using the random split data, with train and test data from the same

speakers. The classifiers were trained and evaluated for each of the four segmentation units:

IPU, turn, question response, and question chunk. The results are shown in Table 14.2.
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Model Segmentation P R F

DNN IPU 60.59 60.54 60.49

Turn 62.94 62.65 62.37

Question Response 63.50 63.50 63.50

Question Chunk 70.92 70.93 70.93

LSTM IPU 60.98 60.94 60.89

Turn 61.26 60.87 60.60

Question Response 67.44 67.44 67.44

Question Chunk 68.22 68.23 68.21

Hybrid IPU 62.93 62.94 62.94

Turn 62.41 62.41 62.41

Question Response 71.14 71.14 71.14

Question Chunk 68.89 68.89 68.89

Table 14.2: Speaker-dependent classification results for DNN, LSTM and hybrid neural

network classifiers.

The speaker-dependent classification results were substantially better than the speaker-

independent results, for all three neural network models and across the four segmentation

units. The DNN trained on openSMILE features produced strong results, ranging from

60.49 F1 for IPUs to 70.93 F1 for question chunks. These results are the best performance

obtained using only acoustic-prosodic features. Using statistical machine learning models

trained with openSMILE features, we previously obtained F1 scores ranging from 52.03 for

IPUs to 56.06 for question chunks (as reported in Chapter 6. It seems that the DNN was

able to accurately model speaker-specific patterns of deceptive speech using only acoustic-

prosodic features.

The LSTM trained on word embeddings also produced strong results, ranging from

60.89 F1 for IPUs to 68.21 F1 for question chunks. Using statistical machine learning

models trained with n-gram features, we previously obtained F1 scores ranging from 53.28

for IPUs to 60.92 for question chunks (as reported in Chapter 6). The LSTM model trained

on word embeddings was able to accurately model speaker-specific patterns of deceptive
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word usage.

The hybrid model, which combined the DNN and LSTM models trained with openS-

MILE features and embeddings, resulted in the best performance for all segmentations

except for question chunks (which were best classified by the DNN model). It achieved

62.94 F1 for IPUs, 62.41 F1 for turns, 71.14 F1 for question responses, and 68.89 F1 for

question chunks. It seems that training the hybrid model from acoustic-prosodic and lexical

feature streams jointly was a useful approach for speaker-dependent deception classification.

As with other classification experiments, we found that classification performance im-

proved as the size of the segmentation units increased, with question responses and question

chunks performing better than IPUs and turns.

14.3 Discussion

We developed three neural network models for deception classification: a DNN trained on

openSMILE features, an LSTM trained on word embeddings, and a hybrid model that

combined the DNN and LSTM. These models were motivated by our experimental results

with statistical machine learning classifiers reported in Chapter 6, that showed that acoustic-

prosodic and lexical features were discriminative between truthful and deceptive speech.

A possible reason for the lack of strong performance of the speaker-independent models

is that neural network models require a lot of training data. Although the CXD corpus

is relatively large for deception research, the number of training samples varies with the

segmentation units, and there only 8,092 question response and question chunk segments.

Training with 80% of the data resulted in only 6,473 training instances, which is small for

training a neural network model.

IPUs and turns have more segments: 111,428 IPUs (89,142 for training) and 43,673

turns (34,938 for training). However, our previous experiments showed that despite the

increased number of training samples, IPUs and turns were more difficult to classify –

possibly because they include segments with ambiguous veracity labels.

We found that speaker-dependent models performed strongly for all segmentations. The

best results for IPUs (62.9 F1), turns (62.4 F1), and question responses (71.1 F1), were ob-
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tained with the hybrid model, and the best result for question chunks (70.9) was obtained

with the DNN model. On average, the speaker-dependent models performed 8.8% better

than the speaker-independent models. Speaker-independent models performed similarly to

statistical machine learning models. The results suggest that the speaker-independent mod-

els were not optimized for deception classification, perhaps because of the lack of quantity

of the training data for question responses and chunks, or the lack of quality of the training

data for IPUs and turns. On the other hand, the speaker-dependent models performed

very well, with large improvements in the DNN-openSMILE model over the statistical re-

sults using openSMILE features. This suggests that the DNN was able to accurately learn

speaker-specific patterns of deceptive speech.

Although this speaker-dependent training paradigm is difficult to replicate in a real-

world scenario, and training and evaluating classifiers with data from the same speakers is

generally a poor practice, these experiments suggest that this might be a fruitful area of

research to pursue. If there are large performance gains from leveraging a small amount

of training data from a target speaker, perhaps we should invest in training classifiers that

can be easily optimized for a target speaker. This can be useful in a scenario where ver-

ifiable language samples of a potential deceiver, such as a politician or other high-profile

individual, can be obtained. The hybrid model requires speech features along with embed-

dings extracted from the transcription of the speech, while DNN model only requires speech

samples, without any transcription or annotation. Further research can explore how much

training data per speaker is needed to obtain good performance. In addition, experiments

can be conducted using “found” data, such as recordings of political speeches, to study the

utility of these models on real-world data in the wild.
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Chapter 15

Identification of Speaker Traits

In this chapter we present approaches to identifying speaker traits including gender, na-

tive language, and personality from short samples of speech. Identifying speaker attributes

is useful for many computational applications, including speaker identification and per-

sonalization of human-machine interactions. In particular, we are interested in leveraging

individual information about a speaker in order to improve deception detection approaches.

In Chapter 13 we showed that the speaker traits of gender, native language, and personality

can be leveraged, along with acoustic-prosodic and linguistic features, to improve automatic

deception detection. Such work is promising, but requires ground-truth knowledge of these

speaker traits. For example, it requires NEO-FFI personality scores, which may be imprac-

tical to collect in a real-world deception situation.

We address this problem in this chapter. Specifically, we aimed to answer the following

question: How much information can be automatically learned from a short dialogue with a

subject? We use a portion of the CXD corpus for this study. This part is an initial dialogue

between an experimenter and each subject, a 3-4 minute truthful conversation in which the

subject answered simple, open-ended questions. There are an average of about 550 words

per baseline sample of speech. Using this subset, we extracted acoustic-prosodic and lexical

features, and trained classifiers to identify gender, native language (American English or

Chinese), and personality. All of this information can be useful for downstream deception

detection.

We used three feature sets for the machine learning experiments:
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1. Acoustic

2. Lexical

3. Syntactic

Acoustic features include Praat and openSMILE (IS09) feature sets, lexical features are a

combination of LIWC and LDI features, and syntactic features include measures of syntactic

complexity and part-of-speech (POS) tag ngrams. These feature sets are described in detail

in Chapter 4, Section 4.4. A list of the tags and their descriptions is found in Appendix

B. These features were extracted from IPUs and features were aggregated per speaker by

computing the averaging of each feature across all speaker IPUs in the baseline session. We

used n-gram features and word+POS features in our initial set of experiments. However,

we found that the results were inflated because of domain-specific n-grams. For example,

the token “Barnard” was a very strong indicator that the speaker was female. Therefore, we

decided to exclude n-gram and word+POS features for our trait identification experiments.

For the machine learning experiments, we used 10-fold cross validation to train and

evaluate the models. Each training example consisted of a feature vector for a single speaker,

and each fold contained features from unique speakers. We compared the performance of

three classification models: Random Forest (RF), Support Vector Machines (SVM), and

Naive Bayes (NB). We used the scikit-learn implementation for these models, and the

default parameters.

Some of this work was published in Levitan et al. [2016]; An et al. [2016], and was done

in collaboration with my co-authors.

15.1 Gender Identification

The problem of gender identification was framed as a binary classification problem: given a

feature vector extracted from a speaker’s baseline speech sample, can we determine whether

the speaker is male or female? We used the self-identified gender labels provided by each

participant in the demographic survey at the start of the experiment. Table 15.1 shows the

gender classification performance, measured by accuracy, precision, recall, and F1-score.
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The baseline performance, obtained by always predicting the majority class (Female) is

54.41% accuracy.

Feature CLF A P R F1

Acoustic SVM 95.88 95.91 95.85 95.85

Lexical NB 66.47 68.32 67.52 66.28

Syntactic NB 69.71 72.07 70.75 69.26

Lexical+Syntactic NB 71.47 72.8 72.27 71.37

All NB 95.29 95.3 95.31 95.26

Majority Baseline - 54.41 27.21 50 35.24

Table 15.1: Gender classification with combined feature sets. (SVM=Support Vector Ma-

chine, NB=Naive Bayes)

Intuitively, the acoustic-prosodic features were highly predictive of gender, with an SVM

classifier achieving 95.88% accuracy. It is interesting that the text-based lexical and syntac-

tic feature sets were also somewhat predictive of gender. A Naive Bayes classifier trained

with a combination of lexical and syntactic features achieved 71.47% accuracy, about 17%

better than the baseline performance. This was despite the fact that all subjects answered

almost the same questions in the baseline session.

Having demonstrated that acoustic-prosodic, lexical, and syntactic features are highly

effective at gender classification, we were interested in analyzing which features were most

useful at discriminating between male and female speakers. For each of three main fea-

ture groups – acoustic-prosodic, lexical, and syntactic, we ranked the features using the

SelectKBest function in scikit-learn. We used a score function which scores features using

the ANOVA F-value between the class label and each feature. Below we show the top 20

features and their F-values for each group of features. The top 20 ranked acoustic-prosodic

features are shown in Figure 15.1.
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Figure 15.1: Top 20 acoustic features for gender classification, ranked by ANOVA F-values.

There were two Praat features (median-f0 and mean-f0) in the top 20 acoustic-prosodic

features, and the rest were from the openSMILE feature set. Interestingly, 10 of the top

features were functionals computed over the probability of voicing, which indicates how

close the signal is to an ideal harmonic signal (high probability) or to a noise-like signal

(low probability).

All top 20 acoustic features were significantly different with p < 0.05 (after FDR correc-

tion for multiple comparisons). However, an SVM trained with only the top single feature

– F0-sma-stddev – yielded an accuracy of 93.16%. This feature alone was highly discrim-

inative between male and female speakers: the mean value was 29.35 for male speakers,

and 80.70 for female speakers. Voice probability features were also significantly higher on

average for female speakers than for male speakers.

A more challenging problem than gender identification from acoustic-prosodic features

is gender identification from text-based features. The top 20 ranked lexical features are

shown in Figure 15.2.
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Figure 15.2: Top 20 lexical features for gender classification, ranked by ANOVA F-values.

Five of the top 20 lexical features were from the LDI feature set (hasAbsolutelyReally,

numCuePhrases, hasCuePhrase, hasI and numHedgePhrases), and the rest were from the

LIWC feature set. Female speakers tended to use “absolutely” and “really” more frequently

than male speakers, used more first person singular pronouns (e.g. I, me, my), and also used

more cue phrases and hedge phrases. Intuitively, the LIWC dimension of “female,” which

captures references to females (e.g. girl, her, mom) was more frequent in female language.

All top 20 lexical features were significantly different with p < 0.05 (after FDR correction

for multiple comparisons). A Naive Bayes classifier trained on only lexical features achieved

an accuracy of 66.47%.

We also examined the top 20 syntactic features, shown in Figure 15.3.
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Figure 15.3: Top 20 syntactic features for gender classification, ranked by ANOVA F-values.

Interestingly, the top ranked syntactic feature was “cc prp” – a coordinating conjunction

(e.g. and, but, not) followed by a personal pronoun (e.g. I, we, they). This syntactic pattern

was used significantly more frequently by female speakers than male speakers. Past tense

verbs (“vbd”) were also used more frequently by female speakers, while interjections (“uh”)

were used more frequently by male speakers. 17 of the top 20 complexity features were

significantly different with p < 0.05 (after FDR correction for multiple comparisons). A

Naive Bayes classifier trained on only syntactic features achieved an accuracy of 69.71%

The best performance of 71.47% accuracy was achieved using a combination of syntactic

and lexical features.

As expected, acoustic-prosodic features were very predictive of speaker gender. More

surprisingly, we were able to automatically identify speaker gender using a combination

of syntactic and lexical features extracted from short samples of transcribed speech. This

suggests that not only are there acoustic-prosodic markers of gender, but there are significant

differences in syntactic and lexical patterns across gender, which we can leverage to classify

gender from transcribed speech.
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15.2 Native Language Identification

Having successfully classified gender from short samples of speech, we used the same feature

sets to classify native language. The problem of native language identification was framed

as a binary classification problem: given a feature vector extracted from a speaker’s baseline

speech sample, can we determine whether the speaker is a native English speaker or a native

speaker of Mandarin Chinese? Nativeness was determined from the language background

survey that each participant filled out at the start of the experiment.

Table 15.1 shows the gender classification performance, measured by accuracy, precision,

recall, and F1-score. The baseline performance, obtained by always predicting the majority

class (Female) is 54.12% accuracy.

Feature CLF A P R F1

Acoustic RF 74.99 75.21 74.39 74.49

Lexical RF 85.29 86.15 85.03 85.02

Syntactic RF 86.16 86.78 85.7 85.93

Lexical+Syntactic RF 87.05 87.47 86.73 86.86

All RF 87.04 87.65 86.71 86.86

Majority Baseline - 54.12 27.06 50 35.11

Table 15.2: Native language classification with combined feature sets. (RF=Random Forest)

Random Forest was the best classification algorithm for native language identification.

An RF classifier trained on acoustic-prosodic features achieved an accuracy of 74.99%, over

20% better than the majority class baseline. Unlike the results for gender classification,

here we found that text-based features performed better than acoustic-prosodic features. A

classifier trained on lexical features achieved an accuracy of 85.29%, and a classifier trained

on syntactic features resulted in 86.16% accuracy. The best performance of 87.05% accuracy

was obtained using a combination of lexical and syntactic feature sets.

Next, we examined which features were most useful at discriminating between native

English and native Chinese speakers. For each of three main feature groups – acoustic-

prosodic, lexical, and syntactic, we ranked the features using the SelectKBest function in
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scikit-learn. We used a score function which scores features using the ANOVA F-value

between the class label and each feature. Below we show the top 20 features and their

F-values for each group of features.

The top 20 ranked acoustic-prosodic features are shown in Figure 15.4.

Figure 15.4: Top 20 acoustic features for lang classification, ranked by ANOVA F-values.

All top 20 acoustic-prosodic features were MFCC features from the openSMILE feature

set. These top 20 acoustic features were significantly different with p < 0.05 (after FDR

correction for multiple comparisons). It seems that MFCC features, which are commonly

used for speech recognition and speaker recognition, are useful for distinguishing between

native speakers of English and native speakers of Chinese.

Next, we examined text-based features that were predictive of native language. The top

20 ranked lexical features are shown in Figure 15.5.
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Figure 15.5: Top 20 lexical features for native language classification, ranked by ANOVA

F-values.

Eight of the top 20 lexical features were from the LDI feature set (e.g. hasContraction,

hasHedgePhrase), and the rest were from the LIWC feature set. The top ranked feature was

verb usage: native Chinese speakers use fewer verbs on average than native English speakers.

In particular, past tense verbs, captured by the LIWC dimension “focuspast,” were used

significantly more frequently by native English speakers. Another useful feature for native

language identification was “hasContraction” – native English speakers were much more

likely to use contractions in their baseline speech than native Chinese speakers. All top 20

lexical features were significantly different with p < 0.05 (after FDR correction for multiple

comparisons). An RF classifier trained on only lexical features achieved an accuracy of

85.29%

We also examined the top 20 syntactic features, shown in Figure 15.6.
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Figure 15.6: Top 20 syntactic features for native language classification, ranked by ANOVA

F-values.

11 of the 20 features came from the syntactic complexity feature set (e.g. MLS–mean

length of sentence, C/S–clauses per sentence), and the remaining 9 features were part of

speech ngram features. The complexity features are described in detail in Chapter 4, Section

4.4. Consistent with our analysis of lexical features, the top ranked syntactic feature was

“vbd” – the part of speech representing past tense verbs. Interestingly, particle usage (“rp”)

was higher for native speakers of English. All 11 measures of syntactic complexity that were

ranked in the top 20 features were increased for native speakers of English. All of the top

20 complexity features were significantly different with p < 0.05 (after FDR correction for

multiple comparisons). An RF classifier trained on only syntactic features achieved 86.16%

accuracy. It seems that these syntactic features were highly predictive of native language.

The best native language classification results – 87.05% accuracy – were achieved using a

combination of lexical and syntactic features.

Our analysis of useful features for native language identification highlighted interesting

trends. We found that MFCC features were the most useful acoustic-prosodic feature set.

Verb usage, contractions, particles, and several measures of syntactic complexity were the

most useful text-based features. We were able to train Random Forest classifiers to leverage
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these differences and distinguish between native speakers of English and native speakers of

Chinese with high accuracy. In future work, it will be interesting to test whether these

differences that we observed between native speakers of English and native speakers of

Chinese hold true for other L2 speakers of English, who are not native Chinese speakers.

15.3 Personality Identification

In this final set of trait identification experiments, we aimed to automatically identify

speaker personality traits from short samples of speech. Unlike gender and native lan-

guage classification, which we modeled as binary classification tasks, personality cannot be

easily modeled as a binary classification problem. Personality labels in the CXD corpus were

defined using the NEO-FFI personality inventory, which was administered to each partici-

pant at the beginning of each experimental session. A psychologist scored the personality

tests, giving each participant five numeric scores, one for each of the Big Five personality

dimensions: Neuroticism (N), Extroversion (E), Openness to Experience (O), Agreeableness

(A), and Conscientiousness (C). The NEO scores are on a continuous scale for each of the

five dimensions.

As described previously in Chapter 12, we partitioned speakers into personality groups

by binning the numeric personality scores to “high,” “average,” or “low” for each dimension.

The thresholds for each bin were obtained from a prior study of population norms from a

large sample of administered NEO-FFI, and are different for males and females Locke [2015].

Table 12.1 shows the mapping of numeric NEO scores to the three categorical labels. As

expected, the personality bins are highly unbalanced. Table 12.2 shows the distribution of

participants in the high, average, and low personality bins for each of the 5 NEO dimensions.

We framed the personality identification task as a 3-way classification problem for each

personality dimension. That is, we aimed to identify whether a speaker scored high, average,

or low for each personality trait. Because of the unbalanced distribution of personality bins,

we evaluated the performance of our classifiers using average F1 across the three classes.

Table 15.3 shows the classifier performance for personality classification, measured by

average F1-score. The baseline performance was obtained by always predicting the majority
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class. The majority class was “High” the dimensions of N, E, and O; “Average” for the A

dimension; and “Low” for the C dimension.

Feature CLF N E O A C

Acoustic SVM 34.43 39.01 35.21 37.06 34.42

Lexical SVM 35.06 34.25 43.64 38.74 34.36

Syntactic NB 50.62 78.32 52.14 70.80 64.96

Lexical+Syntactic NB 56.84 78.51 40.86 73.38 69.45

All NB 32.61 78.69 43.60 63.95 63.95

Majority Baseline - 22.66 18.64 23.24 19.93 20.11

Improvement - 34.18 60.05 28.90 53.45 49.34

Table 15.3: Personality bin classification with combined feature sets. (SVM=Support Vector

Machine, NB=Naive Bayes)

As shown in Table 15.3, SVM models performed best using acoustic and lexical feature

sets, and the NB models performed best using the syntactic, lexical+syntactic, and all

features combined. For each of the five factors, our classifiers obtained performance well

above the majority baseline. The best performance was achieved for Extroversion – a NB

model trained with acoustic, lexical, and syntactic features combined achieved an F1-score

of 78.69, an improvement of 60.05 over the majority baseline. Agreeableness classification

also performed very strongly – a NB classifier trained on a combination of lexical and

syntactic features achieved an F1-score of 73.38, an improvement of 53.45 over the baseline.

Classification of Conscientiousness also achieved strong performance. A NB classifier trained

on lexical and syntactic features achieved an F1-score of 69.45, an improvement of 49.34

over the majority baseline. We achieved more moderate improvements for classification of

Neuroticism and Openness to Experience. The best classifier for Neuroticism identification

was a NB classifier trained with lexical and syntactic features, which achieved an F1-score

of 56.84, 34.18 points above the baseline. Openness to Experience was the most difficult

to classify. The best performance of 52.14 F1 was obtained with a NB classifier trained on

syntactic features. This result was 28.9 points above the baseline.
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Overall, we observed that text-based features were much more effective for personality

identification than acoustic-prosodic features. In particular, the best individual feature set

was syntactic. However, the SVM classifiers trained using acoustic features all achieved

performance above the baseline.

Next, we examined which features were most useful at discriminating between speakers

who scored high, average, or low for each personality dimension. For each personality trait,

we ranked the features of the best performing classifier using the SelectKBest function in

scikit-learn. The score function scores features using the ANOVA F-value between the class

label and each feature. In the figures below, we show the top 20 features and their F-values

for the acoustic+lexical+syntactic feature set for each of the five trait classification tasks.

Figure 15.7 shows the top 20 acoustic+lexical+syntactic features for classification of

Neuroticism.

Figure 15.7: Top 20 acoustic+lexical+syntactic features for Neuroticism classification,

ranked by ANOVA F-values.

16 of the top 20 features came from the syntactic feature set, and specifically the POS

tag n-grams. The remaining four features were from the acoustic-prosodic feature set. The

top ranked feature was “nns cc ex” – the POS tag trigram of a plural noun followed by

a coordinating conjunction and then an existential there. “nnp cc pdt” was also highly

ranked, and it represents a proper noun followed by a coordinating conjunction and then

a predeterminer. The third ranked feature, “jjr nn prp,” indicates an adjective followed
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by a singular noun and then a preposition. All three sequences of POS tags were most

frequently used in individuals who scored low on Neuroticism. A trend that we observed

is that plural nouns (“nns”) and proper singular nouns (“nnp”) appear in six of the top

features, all of which appeared more frequently in the speech of individuals who scored low

on Neuroticism. These findings support previous work by Gill [2003], which found that

individuals who scored low on Neuroticism tended to use more plural nouns and proper

singular nouns than individuals who scored high on Neuroticism.

All of the top 20 complexity features were significantly different with p < 0.05 (after

FDR correction for multiple comparisons). An SVM classifier trained on lexical+syntactic

features achieved an F1-score of 56.84. Syntactic features were the most useful for Neuroti-

cism classification.

Figure 15.8 shows the top 20 acoustic+lexical+syntactic features for classification of

Extroversion.

Figure 15.8: Top 20 acoustic+lexical+syntactic features for Extroversion classification,

ranked by ANOVA F-values.

16 of the top 20 features came from the syntactic feature set, and the remaining four

features were from the lexical feature set. The top ranked feature was “nns in vbg” – the

POS tag trigram of a singular noun followed by a preposition and then a present tense verb.
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This formulation was used more frequently by individuals who scored low for Extroversion.

“DAL-imagery” was another highly ranked feature. It captures words that are used to

create vivid descriptions. Individuals who were highly extroverted used these words more

frequently than those who were introverted. “focuspast” is a LIWC category that captures

past tense verbs. This feature was most frequent in individuals who were in the average

Extroversion bin, followed by those who were in the high Extroversion bin, and it was

the least frequently used by individuals who scored low on Extroversion. Interestingly,

“hasFalseStart” and “Dash” (which was used by transcribers to indicate false starts) were

most frequent in speech of highly Extroverted individuals. False starts are a type of speech

disfluency where the speaker begins an utterance and then stops it prematurely. This

sometimes occurs when the speaker changes their mind about what they are saying. Another

trend in the feature analysis is that verb usage seems to be important for Extroversion

identification; various verb forms appear in 9 of the top features.

Extroversion classification using all of the features achieved an F1-score of 78.69, which

was an improvement of 60.05 over the majority class baseline. This was the “easiest” trait

to predict in our classification experiments, and suggests that there are salient lexical and

syntactic markers of Extroversion that are present in spontaneous speech.

Figure 15.9 shows the top 20 acoustic+lexical+syntactic features for classification of

Openness.
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Figure 15.9: Top 20 acoustic+lexical+syntactic features for Openness classification, ranked

by ANOVA F-values.

15 of the top 20 features came from the syntactic feature set, and the remaining five

features were from the lexical feature set. The LIWC dimension “focuspast” was the top

ranked feature for Openness, and words in this dimension were most frequently used by

speakers who scored high for Openness. Function words and cue phrases were used most

frequently by speakers who scored high for Openness. “WPS” (words per sentence) was

significantly higher for speakers in the high bin for Openness. Prepositions (“prep”) were

also used most frequently be speakers in the high Openness bin. For syntactic features,

past tense verbs (“vbd”) and past participle verbs (“vbn”) were most frequently used by

speakers who were high on the Openness scale. The n-grams containing these verbs (e.g.

“prp vbd”) were also most frequently used by individuals who scored high for Openness. N-

grams containing proper nouns (“nnp” and “nnps”) were most frequently used by speakers

who were low in Openness.

We found that Openness to Experience was the most difficult trait to classify; the best

result of 52.14 F1-score was obtained using a Naive Bayes classifier trained on syntactic

features. Of the five personality dimensions, the distribution of subjects was the most

skewed for Openness. Only 6% of subjects scored low for Openness, 42% were average, and
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52% were high. Perhaps there were fewer differences between the speaking styles of subjects

in average vs. high bins, making it more difficult to classify subjects in this dimension.

Figure 15.10 shows the top 20 acoustic+lexical+syntactic features for classification of

Agreeableness.

Figure 15.10: Top 20 acoustic+lexical+syntactic features for Agreeableness classification,

ranked by ANOVA F-values.

19 of the top 20 ranked features were POS n-grams. The n-grams that contained inter-

jections (“uh”) were used more frequently by individuals who scored high for Agreeableness.

N-grams that contained prepositions (“in”) were also used more frequently by highly agree-

able speakers. N-grams that contained personal pronouns (“prp”) and adverbs (“rb”), such

as “rb to prp” and “rb to prp” were most frequent in speakers with low Agreeableness.

Adjectives (“jj”) appeared in n-grams that were most frequently used by speakers with

high Agreeableness (e.g. “jj nns”). The best performance for Agreeableness classification

was 73.38 F1-score; it was achieved using a Naive Bayes classifier trained with a combina-

tion of lexical and syntactic features. It seems that there are strong linguistic markers of

Agreeableness.

Figure 15.11 shows the top 20 acoustic+lexical+syntactic features for classification of

Conscientiousness.
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Figure 15.11: Top 20 acoustic+lexical+syntactic features for Conscientiousness classifica-

tion, ranked by ANOVA F-values.

19 of the top 20 ranked features were from the POS n-gram feature set. Only one POS

n-gram (“vbn to”) was most frequent for speakers in the low bin for Conscientiousness,

and two POS n-grams were most frequently used by speakers who were in the average bin.

All of the other POS n-grams were used most frequently by speakers who scored high for

Conscientiousness. The best performance for Conscientiousness classification was obtained

using a Naive Bayes classifier trained on a combination of lexical and syntactic features.

This model achieved an F1-score of 69.45, which was an improvement of 49.34 above the

majority baseline.

It is difficult to draw strong conclusions from the syntactic feature analysis for person-

ality trait identification. First, the dependency parses from which the syntactic features

were derived were noisy, due to the nature of the corpus (transcribed speech, including non-

native speakers, no capitalization or punctuation). In addition, we excluded word n-grams

because we found that there were many corpus-specific tokens that would not generalize to

other domains. However, it is also possible that some of the POS n-grams that were useful

for personality trait classification captured specific patterns for this corpus. Many of the

POS n-grams were very sparse. It remains to be seen whether these same syntactic patterns
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are predictive of personality traits in other corpora.

There are also some limitations of this paradigm for personality trait classification. In

our experiments we treated each personality dimension as independent, and attempted to

classify each speaker as high, average, or low for each trait. This independence assumption

is questionable – it is intuitive that a speakers personality traits are related to each other.

In our ongoing work we have explored identifying clusters of personality traits and then

classifying speakers into personality clusters. The high, average, and low bins that were

used for this analysis were defined using thresholds from a large and diverse population. It

is possible that these thresholds were not a good fit for the population studied in the CXD

corpus, which was mostly college students.

An open question in personality identification is how to define ground truth person-

ality labels. This work used self-identified personality labels derived from the NEO-FFI

personality test taken by each subject. Others have used observer-identified personality

labels, by having people annotate speech or language samples for perceived personality

traits. Mairesse et al. [2007] compared personality classification results for self-reported vs.

observer-reported personality traits, and found that they were able to accurately identify

observer labeled personality scores, but the results were much lower for self-labeled scores.

Although there are inherent biases when a person assesses their own personality traits,

self-reported personality labels are likely more representative of an individual’s personality

than observer-reported labels, since it is questionable whether personality can be accurately

labeled by others, especially strangers. Modeling personality is a difficult problem, and how

it is modeled has important ramifications for automatic personality identification.

15.3.1 Discussion

This chapter aimed to answer the question: How much information can be automatically

learned from a short dialogue with a subject? In this chapter we presented the results of

several speaker trait classification experiments. These experiments aimed to automatically

identify the gender, native language, and personality of a speaker, using a short sample

of speech. The data used was the initial baseline interview that was conducted with each

subject, where subjects were instructed to answer truthfully to the questions. There was
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3-4 minutes of subject speech collected per speaker in the baseline session.

We obtained strong gender classification performance. As expected, we achieved as high

as 95.88% accuracy using acoustic-prosodic features. We also obtained strong performance

using only text-based features derived from the transcribed speech. A Naive Bayes classifier

trained using a combination of lexical and syntactic features achieved 71.47% accuracy – well

above a majority class baseline of 54.41% accuracy. In addition to the gender classification

experiments, we identified the best acoustic, lexical, and syntactic features for distinguishing

between male and female speakers.

We presented classification results for native language identification – specifically, distin-

guishing between native speakers of Standard American English (SAE) and native speakers

of Mandarin Chinese (MC). The best performance of 87.05% was achieved using a Random

Forest classifier trained with a combination of lexical and syntactic features. We also trained

a speech-based classifier that achieved an accuracy of 74.99% using only acoustic-prosodic

features. In addition to the classification experiments, we identified the best acoustic, lexi-

cal, and syntactic features for distinguishing between native speakers of SAE and MC. For

example, use of contractions was an indicator of SAE speakers. Further experiments are

needed to determine whether these differences are specific to non-native speakers of SAE

who are native speakers of MC, or whether they generalize to all non-native speakers of

SAE.

Finally, we presented classification results for personality trait identification. We mod-

eled this task as five independent 3three-way classification tasks, where we classified each

speaker as falling into the high, average, or low bin for each of the Big Five personal-

ity traits. We obtained results well above a majority class baseline for all five personality

traits: N-score 56.84 (+34.18 from baseline), E-score 78.69 (+60.05), O-score 52.14 (+28.9),

A-score 73.38 (+53.45), and C-score 69.45 (+49.34). We also analyzed the features that

discriminated between the high, average, and low bins for each trait. Finally, we discussed

limitations of this approach of modeling personality and ways to overcome these limitations.

Although these experiments were conducted for the purpose of providing speaker trait

information for deception detection, this work has implications beyond deception detection.

For example, speaker trait identification can be very useful for speech analytics and person-
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alization of human-machine interactions. Our results show that gender, native language,

and to some degree, personality, can be inferred from a short sample of speech. Our feature

analysis provides insight into the acoustic-prosodic, lexical, and syntactic characteristics

that help distinguish between groups of speakers, and can help further research in speaker

trait identification.
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Chapter 16

Conclusions and Future Work

Part II of this thesis provides a comprehensive framework for identifying individual dif-

ferences in deceptive speech and leveraging those differences for classification of deceptive

speech. Most previous research on deceptive communication has identified cues to decep-

tion across all speakers. Some previous studies have observed individual differences in how

people lie, but there have not been significant efforts to empirically identify these differ-

ences, understand the factors that affect these differences, and leverage these differences for

automatic deception detection.

Using the CXD corpus, which is annotated with speaker traits, we carefully analyzed

differences in cues to deception across gender, native language, and personality type. We

compared several approaches to leverage speaker differences in deception classification, in-

cluding speaker-dependent neural network models. We also trained models to automatically

identify speaker gender, native language, and personality from short samples of speech, with

the goal of using this information for downstream deception detection.

We systematically analyzed over 150 acoustic-prosodic, lexical, and syntactic cues to

deception and truth, and identified many differences between male and female speakers,

between native speakers of Standard American English (SAE) and Mandarin Chinese (MC),

and between speakers who scored high, average, or low for each of the Big Five personality

traits. In some cases, we found that previously identified cues to deception across all

speakers were not present when we examined particular groups of speakers. In other cases,

we discovered new cues to deception for groups of speakers with shared traits, which were
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not present when we analyzed all speakers. These findings suggest that gender, native

language, and personality all play a role in how people produce deceptive speech. This work

is the first comprehensive analysis of gender, native language, and personality differences in

acoustic-prosodic and linguistic cues to deception, and is an important contribution of this

thesis.

We compared three approaches to leverage speaker-dependent information in deception

classification: adding traits as features, training models using homogenous data, and using

speaker-dependent features. The largest improvements were obtained from adding speaker-

dependent features. These features were computed by subtracting baseline features, where

subjects spoke truthfully, from interview session features, in order to capture deviations from

their baseline speaking behavior. Practitioners have advocated for interviewing practices

that establish baseline behavior of subjects while telling the truth, and then looking for

differences from the baseline to detect deception. Baseline behavior is often elicited by first

asking neutral questions that the subject is expected to answer truthfully. In this work we

operationalized a method to automatically capture deviations from the baseline, instead

of relying on human judgment to determine deviation from the baseline. Future work can

explore modeling speaker traits in additional ways. For example, there has been promising

work modeling personality with deception in a multi-task learning framework [An et al.,

2018]; this idea can be extended to learn gender and native language as well.

We developed three neural network models for deception classification: a DNN trained

on openSMILE features, an LSTM trained on word embeddings, and a hybrid model that

combined the DNN and LSTM. We found that these models performed similarly to the

statistical models when trained and evaluated on distinct speaker sets, but were able to

accurately model speaker-dependent patterns of deceptive behavior. These results suggest

that under conditions where training data can be obtained for a target speaker, neural

network models can be used to achieve strong speaker-dependent deception detection per-

formance. Further research can explore how much training data per speaker is needed to

obtain good performance. In addition, experiments can be conducted using “found” data,

such as recordings of political speeches, to study the utility of these models on real-world

data in the wild.
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We conducted a series of speaker trait classification experiments, aimed at automat-

ically identifying gender, native language, and personality traits from a short sample of

speech. Our results show that gender, native language, and to some degree, personality,

can be inferred from a short sample of speech. We also conducted feature ranking analyses,

providing insight into the acoustic-prosodic, lexical, and syntactic characteristics that help

distinguish between groups of speakers. These can help further research in speaker trait

identification. An area for further research is modeling the five personality traits jointly

instead of treating each trait independently. Although these experiments were conducted

for the purpose of providing speaker trait information for deception detection, this work

has implications beyond deception detection. For example, speaker trait identification can

be very useful for speech analytics and personalization of human-machine interactions.

Part II of this thesis provides a framework for identifying speaker differences in cues

to deception, and explores ways to leverage speaker differences in deception classification.

Hopefully this work will lay the groundwork for continued research on individual differ-

ences in deceptive speech, which will lead to further improvements of automatic deception

detection.
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Conclusions
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Chapter 17

Conclusions

Despite much research, deception remains a problem that is not well understood. Human

performance at deception detection is about chance level, and current deception detection

technologies are not much better. A challenging problem in deception research is that

different people exhibit different cues when lying. In order to develop technologies that

can accurately identify deception, we need a better understanding of deceptive communica-

tion. Furthermore, it is important to study the individual and cultural factors that affect

deception production and perception.

In this thesis, we presented a comprehensive framework for studying deceptive commu-

nication and developing automated technologies for deception detection. In addition, we

presented a study of individual differences in cues to deception, with methods to leverage

individual differences for automatic deception detection.

This thesis contains the following six major contributions:

• A large-scale corpus of deceptive speech. We created the Columbia X-Cultural

Deception (CXD) Corpus, with over 122 hours of subject speech. This corpus enabled

studies of deceptive speech on a scale that was not previously possible. The cross-

cultural nature of the corpus and the personality trait information that was collected

enabled a study of individual differences in deceptive speech.

• Acoustic-prosodic and linguistic cues to deception. Our systematic analysis

of over 150 speech- and text-based features in a large-scale corpus of deceptive speech
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identified many significant differences between truthful and deceptive responses. This

furthers our scientific understanding of deceptive language.

• Automatic deception classification. We trained classifiers to automatically iden-

tify deceptive speech using a variety of acoustic-prosodic and linguistic features, for

four segmentation units. Our best classifier was a Naive Bayes classifier trained with

a combination of lexical and syntactic features extracted from question chunks, and

achieved an accuracy of almost 70% – well above human performance of 56.75%. In

addition to the contribution of strong performing deception classifiers, our work pro-

vides useful insights for future experiments with automatic language-based deception

detection.

• A study of entrainment in deceptive dialogue.Our study of acoustic-prosodic

and lexical entrainment in the CXD corpus is, to our knowledge, the first to inves-

tigate entrainment in those dimensions in deceptive dialogues. We found evidence

of global and local entrainment in deceptive speech, and some differences in entrain-

ment between truthful and deceptive speech. This motivates modeling entrainment

behavior in future work on automatic deception detection.

• Individual differences in cues to deception. We present the first comprehensive

analysis of gender, native language, and personality differences in acoustic-prosodic

and linguistic cues to deception. This work identified many differences in cues to

deception between male and female speakers, between native speakers of Standard

American English (SAE) and Mandarin Chinese (MC), and between speakers who

scored high, average, or low for each of the Big Five personality traits. These findings

suggest that gender, native language, and personality all play a role in how people

produce deceptive speech.

• Deception classification leveraging speaker differences. We introduced speaker-

dependent features that capture a speaker’s deviation from their natural speaking

style, in order to improve deception classification. We also developed neural net-

work models that accurately modeled speaker-specific patterns of deceptive speech.
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These features and models are novel approaches for modeling individual differences

in deceptive speech.

17.1 Future Work

Throughout the thesis we discussed suggestions for future work. Here we describe future

research directions that arise from this thesis.

• Real-world data. All of the experiments in this thesis were conducted using the

CXD corpus. An important next step is to evaluate the classifiers on real-world de-

ception, which can be substantially different from deception produced in a laboratory

environment. Aside from the problem of data quality (e.g. poor audio recording con-

ditions), real-world deception is often high-stakes, and therefore the cues to deception

might differ from low stakes deception in a lab environment.

• Dialogue features. This work, along with almost all other studies of deception,

focused on the speech produced by the deceiver. However, as our study of entrainment

in deceptive speech suggests, it might be useful to also consider the speech produced

by the interlocutor. The CXD corpus is unique in that it includes both the interviewer

and interviewee channels. Future work should explore deception classification using

features from both dialogue partners, such as acoustic-prosodic entrainment measures,

or measures of linguistic similarity between interlocutors.

• Trustworthy speech. This thesis focused on identifying verbal indicators of decep-

tive speech. A less-studied, complementary phenomenon, is the task of identifying

verbal indicators of trust. Trust is a fundamental component of human communica-

tion, and understanding the characteristics of trustworthy speech is useful for improv-

ing human-computer interactions. The framework that was introduced in this thesis

for studying deceptive speech and individual differences can be applied to the study

of trustworthy speech. The CXD corpus is well-suited for the study of trustworthy

speech, as it includes interviewer judgments of deception which can be used as trust

annotations.
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17.2 Epilogue

In Part I of this thesis, we introduced the CXD corpus, identified verbal indicators of

deception across all speakers in the corpus, and developed machine learning classifiers to

automatically identify deceptive speech. In Part II of this thesis, we analyzed gender,

native language, and personality differences in deceptive speech, and introduced methods

to leverage these differences to improve automatic deception detection. The contributions

of this work add substantially to our scientific understanding of deceptive speech, and have

practical implications for human practitioners and automatic deception detection.
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Appendix A

CXD Corpus Forms

A.1 Questions for Baseline Data Collection

Tell me how you decided to come to Columbia.

What do you like most about living in New York City?

What do you like least about living in New York City?

Describe a typical weekend for you, from Friday night through Sunday night.

What was the best food you ever ate. Where did you have it? What made it so good?

Where was the last place you traveled? What are some things you did while you were there?

What was the last movie you saw and what was the plot?

Besides work or school, what do you do with your time?

What did you do this past summer?
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A.2 Participant Information

SUBJ #: EXPER: DATE:

PARTICIPANT INFORMATION

[Your responses on this sheet are intended only to provide background information
about our participants, and do not in any way affect your status as a participant
in this study. All information will be kept strictly confidential, and will
not have your name attached to it.]

1. Male Female

2. Approximate age (circle one): 20 25 30 35 40 45 50

3. Which hand do you use for writing? Right Left

Language Background:
4. Were you born and raised in the United States? Yes No (if no, list country)

5. What is the first language/dialect you learned to speak fluently?

6. What language(s) did your mother speak at home to you while growing up?

7. What language(s) did your father speak at home to you while growing up?

8. What language(s) did your mother and father speak to each other at home while you were growing up?

9. Do you speak more than one language fluently? Yes No

If yes, please list all languages/dialects you speak (including English), noting in each case whether you first
acquired that language through instruction in school (SCH), or due to hearing and using the language while
immersed in an everyday social environment (ENV) where it was spoken. Please note also the approximate
age from which you acquired the language.

a. SCH ENV (from age: )
b. SCH ENV (from age: )
c. SCH ENV (from age: )

1
IRB-AAAJ5512

     for use until: 01/05/2016
IRB Approval Date: 01/06/2015
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A.3 Gender and Minority Information

SUBJ #: EXPER: DATE:

GENDER AND MINORITY INFORMATION

[Our funding agencies (National Institutes of Health, National Science Foun-
dation, etc.) require that all studies maintain records of the gender, race,
and ethnicity of all participants. If you decline to provide this infor-
mation, it will in no way affect your status as a participant in this study.
Your cooperation is appreciated. All information will be kept strictly con-
fidential, and will not have your name attached to it.]

Sex/Gender: Please select one of the following:

Female Male No Report

Ethnicity:

Do you consider yourself to be Hispanic or Latino? (see definition below) Please select one.

Hispanic or Latino: A person of Mexican, Puerto Rican, Cuban, South or Central American, or other
Spanish culture or origin, regardless of race.

Hispanic or Latino Not Hispanic or Latino Unknown/No Report

Race:

What race do you consider yourself to be? Please select all that apply.

American Indian or Alaska Native. A person having origins in any of the original peoples of
North, Central, or South America, and who maintains tribal affiliation or community attachment.

Asian. A person having origins in any of the original peoples of the Far East, Southeast Asia, or
the Indian subcontinent.

Native Hawaiian or Other Pacific Islander. A person having origins in any of the original peoples
of Hawaii, Guam, Samoa, or other Pacific Islands.

Black or African American. A person having origins in any of the black racial groups of Africa.

White. A person having origins in any of the original peoples of Europe, the Middle East, or North
Africa.

Other.

Unknown/No Report.

1

IRB-AAAJ5512

     for use until: 01/05/2016
IRB Approval Date: 01/06/2015
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A.4 Sample Biographical Questionnaire
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A.5 Biographical Questionnaire Guidelines

Biographical Questionnaire Guidelines

Instructions
Please use these guidelines to come up with a false answer that is sufficiently different from your true 
answer.  You only need to make up false answers for the questions indicated on the questionnaire.

No. Questions Guidelines for False Answers

1  Where were you born? Not a place you have ever been

2 How many years did you live in your first home? Add or subtract at least 5 years

3 What is your mother's job? Pick a field you are not familiar with

4 What is your father's job? Pick a field you are not familiar with

5 Have your parents divorced? If Yes, say No.  If No, say Yes

6 Have you ever broken a bone? If Yes, say No.  If No, say Yes

7 Do you have allergies to any foods? If Yes, say No.  If No, say Yes

8 Have you ever stayed overnight in a hospital as a patient? If Yes, say No.  If No, say Yes

9 Have you ever tweeted? (posted a message on twitter) If Yes, say No.  If No, say Yes

10 Have you ever bought anything on eBay? If Yes, say No.  If No, say Yes

11 Do you own an e-reader of any kind? Choose the opposite answer

12 Who was the last person you were in a physical fight with? Pick someone you haven't fought with

13 Have you ever gotten into trouble with the police? If Yes, say No.  If No, say Yes

14 Who ended your last romantic relationship? Choose the opposite answer

15 Whom do you love more, your mother or father? Choose the opposite answer

16 What is the most you have ever spent on a pair of shoes? Add or subtract at least $200

17 What is the last movie you saw that you really hated? Pick a movie you have recommended

18 Have you ever gone ice-skating? If Yes, say No.  If No, say Yes

19 Do you currently own a tennis racket? If Yes, say No.  If No, say Yes

20 How many roommates do you have? Add or subtract at least 2 roommates

21 If you attended college, what was your major? Pick a subject you have not studied

22 Did you ever have a cat? If Yes, say No.  If No, say Yes

23 Have you ever watched a person or pet die? If Yes, say No.  If No, say Yes

24 Did you ever cheat on a test in high school? If Yes, say No.  If No, say Yes
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A.6 Participant Instructions

 Participant Instructions

Aim
In this experiment, our goal is to 

(a.1)Evaluate how well different people can deceive others 
(a.2)Evaluate how well different people can detect when others are being deceptive. 

 
Instructions
Step 1: Please fill out the following 'Biographical Questionnaire'.  Answer each question truthfully for 
each question in the 'True Answer' column.  In the 'False Answer' column some rows will be blacked 
out and others will be blank.   For the questions that are blank, and these questions only, you should 
make up a lie.  Please check the 'Biographical Questionnaire Guidelines' when coming up with the lies 
for these questions.

Step 2: Take a few minutes when you are done to remind yourself of the answers that you just wrote.  
You want to be able to convince your partner that your answers are true, so greater familiarity is 
helpful. When you feel comfortable with your modified biography, let the experimenter know. You will 
be able to look at your answers during your interview. 

Step 3: You and your partner will play a game where you take turns playing the role of the interviewer 
and interviewee. 

As Interviewer: 
Your aim is to find out when the other person is telling the truth and when they are lying.   
Each time you guess correctly, you will earn $1. For every time that you guess incorrectly, you will 
lose $1. You may ask as many follow up or probing questions as you need to, to help you make each 
decision. 

As Interviewee: 
Your aim is to convince the Interviewer that everything in your (modified) biography is true. When you 
are being interviewed, there will be a keyboard in front of you, which your interviewer cannot see.  
During each sentence, you must press the 'T' key if what you are saying is true, and the 'F' key if what 
you are saying is false.  While answering a question with a false answer, some of the things you say to 
justify your answer may still be true.  You should press the 'T' key during these sentences.  While 
answering a question truthfully, you should only press the 'T' key and tell no lies.  
For every question the interviewer’s guesses to be true, you earn $1. For every question that the 
interviewer guesses to be a lie, you lose $1. 
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A.7 Interviewer Report

Interviewer Report

Participant No. _____    Date ___________ 

Instructions
Please ask your partner the following questions and listen to his or her answer to each question carefully.    
You must decide whether you think your partner is lying or not.  In order to do this you may ask as many 
questions as you want about their answers, as well as ask them to provide details.
Mark each row of the “True or False” column with a “T” or “F” indicating whether you think your partner's 
answer to the question is true or a lie.  Indicate your confidence in the correctness of your decision in the 
“Confidence” column with a number 1-5, with 1 being extremely uncertain and 5 being extremely certain.  

No. Questions True or False Confidence

1 Where were you born?

2 How many years did you live in your first home?

3 What is your mother's job?

4 What is your father's job?

5 Have your parents divorced?

6 Have you ever broken a bone?

7 Do you have allergies to any foods?

8 Have you ever stayed overnight in a hospital as a patient?

9 Have you ever tweeted? (posted a message on twitter)

10 Have you ever bought anything on eBay?

11 Do you own an e-reader of any kind?

12 Who was the last person you were in a physical fight with?

13 Have you ever gotten into trouble with the police?

14 Who ended your last romantic relationship?

15 Whom do you love more, your mother or father?

16 What is the most you have ever spent on a pair of shoes?

17 What is the last movie you saw that you really hated?

18 Have you ever gone ice-skating?

19 Do you currently own a tennis racket?

20 How many roommates do you have?

21 If you attended college, what was your major?

22 Did you ever have a cat?

23 Have you ever watched a person or pet die?

24 Did you ever cheat on a test in high school?
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A.8 Post Experiment Survey

Post	  Experiment	  Survey	  
Participant	  ID:	  _____	  
	  
	  

1. In	  your	  opinion,	  how	  many	  of	  the	  judgments	  that	  you	  made	  today	  
are	  correct?	  (Choose	  the	  answer	  that	  best	  describes	  your	  opinion.)	  
	  
	  

1	   	   2	   	   3	   	   4	   	   5	  
	  

	   almost	  none	  	  	  	  	  	  	  	  a	  few	   	  	  	  	  	  about	  half	  	  	  	  	  	  	  	  most	   	  	  	  	  	  almost	  all	  
	  

2. In	  your	  opinion,	  how	  many	  of	  the	  lies	  that	  you	  told	  today	  do	  you	  
think	  your	  interviewer	  believed?	  
	  
	  

1	   	   2	   	   3	   	   4	   	   5	  
	  

	   almost	  none	  	  	  	  	  	  	  	  a	  few	   	  	  	  	  	  about	  half	  	  	  	  	  	  	  	  most	   	  	  	  	  	  almost	  all	  
	  

	  
3. What	  strategy	  did	  you	  use	  in	  making	  judgments?	  
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Appendix B

Penn Treebank POS Tag Set

POS Tag Description Example

CC coordinating conjunction and

CD cardinal number 1, third

DT determiner the

EX existential there there is

FW foreign word d’hoevre

IN preposition/subordinating conjunction in, of, like

JJ adjective big

JJR adjective, comparative bigger

JJS adjective, superlative biggest

LS list marker 1)

MD modal could, will

NN noun, singular or mass door

NNS noun plural doors

NNP proper noun, singular John

NNPS proper noun, plural Vikings

PDT predeterminer both the boys

POS possessive ending friend’s

PRP personal pronoun I, he, it
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PRP$ possessive pronoun my, his

RB adverb however, usually, naturally, here, good

RBR adverb, comparative better

RBS adverb, superlative best

RP particle give up

TO to to go, to him

UH interjection uhhuhhuhh

VB verb, base form take

VBD verb, past tense took

VBG verb, gerund/present participle taking

VBN verb, past participle taken

VBP verb, sing. present, non-3d take

VBZ verb, 3rd person sing. present takes

WDT wh-determiner which

WP wh-pronoun who, what

WP$ possessive wh-pronoun whose

WRB wh-abverb where, when

Table B.1: Note: This table is from https://www.winwaed.com/blog/2011/11/08/

part-of-speech-tags/.

https://www.winwaed.com/blog/2011/11/08/part-of-speech-tags/
https://www.winwaed.com/blog/2011/11/08/part-of-speech-tags/
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Appendix C

Linguistic Deception Indicator

Feature Lexicons

C.1 Hedge Words

completely hear likes estimates seem

expect hears liked estimated seemingly

expected heard might fairly seldom

expects somebody general frequently several

recall could likely generally somewhat

recalls somewhere sure guess speculate

recalled know think guesses suggest

somehow knows thought guessed suggests

totally knew thinks largely suggested

remember much may maybe suppose

remembers most almost mostly supposed

remembered some apparently nearly supposes

should someone appear necessarily technically

understand really appears occasionally unlikely

understands find appeared often unsure
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understood finds approximately partial usually

about found arguably perhaps virtually

read imagine assume possibly

reads imagines assumes practically

sometimes imagined assumed probable

fair basic basically probably

possible believe consider propose

feel believes considers rarely

feels believed considered rough

felt like estimate roughly



APPENDIX C. LINGUISTIC DECEPTION INDICATOR FEATURE LEXICONS 230

C.2 Hedge Phrases

my thinking sound like

they say sounds like

they said sounded like

kind of the like

sort of their impression

look like and the rest

looks like i would say

looked like a whole bunch

a little and all that

a couple and so forth

a bunch and so on

a bit and such like

a few in my mind

among other in my opinion

it’s say in my understanding

my understanding in my view

pretty much more or less

so far something or other

somebody says to be honest

somebody said
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C.3 Cue Phrases

actually next

also no

although now

and ok

basically or

because otherwise

but right

essentially say

except second

finally see

first similarly

further since

generally so

however then

indeed therefore

like well

look yes
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