
Speech Communication 124 (2020) 46–67

Available online 30 July 2020
0167-6393/© 2020 Elsevier B.V. All rights reserved.

An empirical study of the effect of acoustic-prosodic entrainment on the 
perceived trustworthiness of conversational avatars 
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A B S T R A C T   

Entrainment is the tendency of interlocutors to become more similar to each other in their way of speaking. This 
phenomenon has been repeatedly documented and is associated with multiple social aspects of human-human 
conversations. However, there is a dearth of research on the effects of spoken dialogue systems (SDSs) with 
implemented acoustic-prosodic (dis)entrainment policies. The goal of the present work is to provide further 
empirical evidence on how acoustic-prosodic (dis)entraining policies affect users. In particular, this article fo
cuses on its effects on users’ trust toward the SDSs. In the experiments reported here we analyze if and how 
different acoustic-prosodic (dis)entrainment policies affect users’ perception of a system’s ability. We collected 
data from 98 unique participants, all native speakers of Argentine Spanish. Our results suggest that acoustic- 
prosodic (dis)entrainment in spoken dialogue systems is effectively associated with the way users perceive the 
capabilities of such systems. Characterizing these effects remains a challenging task. Overall, we observe a 
positive effect on trust of entrainment on intensity and a negative effect of entrainment on pitch. Estimated effect 
sizes are far from negligible.   

1. Introduction 

Voice assistants such as Google Assistant, Amazon Alexa, Microsoft 
Cortana and Apple Siri have revolutionized the way in which humans 
and computers interact. Such has been the advance in these natural 
language user interfaces that they have been embedded not only into 
several popular operating systems (e.g. Google Assistant in Android, 
Cortana in Windows, Siri in IOS), but in what, at the time, mass-media 
called the “next big arms race in tech,”1 were also incorporated into a 
wide range of dissimilar products, such as smart speakers (e.g. Google 
Voice, Amazon Echo), cars,2 and smart appliances.3 

This rise in the usability and popularity of voice assistants was fueled 
largely by dramatic improvements in critical subsystems involved in 

their operation, such as automatic speech recognition (ASR) systems, 
natural language understanding (NLU) systems, and text-to-speech 
(TTS) synthesis. These improvements were driven mainly by advances 
in deep neural networks trained on large corpora. The development of 
these critical subsystems up to reliable production levels, leads to the 
importance of studying other complementary components of speech 
communication. 

In spoken dialogue systems (SDSs), such as voice assistants, a feature 
believed to be associated with improvement in user experience is their 
naturalness (Crumpton and Bethel, 2016). Measuring naturalness in 
dialogue involves a high degree of subjectivity (Hung et al., 2009), but, 
in the context of SDSs, it is commonly associated with the degree in 
which SDSs replicate behaviors and patterns observed in human-human 
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conversations (Marge et al., 2010). That is, it is believed that SDSs which 
replicate such human-human behaviors will lead to better interactions 
with users, and thus to better conversation outcomes as well. 

A phenomenon that has been repeatedly documented in human- 
human conversations is the tendency of interlocutors to become more 
similar to each other in the way they speak. This behavior, known in the 
literature as entrainment, accommodation or adaptation, has been shown 
to occur along several dimensions during human-human interaction, 
including: pronunciation (Pardo, 2006); choice of referring expressions 
(Brennan and Clark, 1996); syntactic structure (Reitter et al., 2011); 
turn-taking cues (Levitan et al., 2015b); choice of intonational contour 
(Gravano et al., 2015); and acoustic-prosodic behavior (Ward and Lit
man, 2007; Levitan and Hirschberg, 2011). Although prevalent in 
human-human conversations, the question of why entrainment occurs is 
still an active research topic, and several theories have been developed 
to explain it — many of which differ in the degree of control speakers 
have over the behavior (see, for example, Natale, 1975; Giles et al., 
1991; Chartrand and Bargh, 1999; Pickering and Garrod, 2004; 2013). 

Entrainment has been associated with multiple social aspects in 
human-human conversations (Beňuš, 2014), such as degree of success in 
completing tasks (Nenkova et al., 2008; Reitter and Moore, 2014), 
perception of competence and social attractiveness (Street Jr, 1984; 
Levitan et al., 2011; Beňuš et al., 2014; Michalsky and Schoormann, 
2017; Schweitzer and Lewandowski, 2014), and degree of speaker 
engagement (De Looze et al., 2014; Gravano et al., 2015). Disentrainment 
— speakers actively adapting to become more dissimilar to each other 
(Healey et al., 2014; De Looze et al., 2014; Reichel et al., 2018a) — has 
also been correlated with social aspects of conversations. Early research 
documents evidence suggesting that speakers disentrain to show dislike 
and to distance themselves from their interlocutor. For example, Welsh 
subjects broadened their Welsh accent significantly when interviewed 
by an arrogant interviewer with a strong English accent who called 
Welsh “a dying language with a dismal future” (Bourhis and Giles, 
1977). However, more recent research shows that disentrainment may 
also be related to positive social outcomes. For example, Pérez et al. 
(2016) show that metrics which consider entrainment and disentrain
ment behavior capture perceived positive and negative social outcomes 
of conversations (e.g. engagement, boredom) in a better way than 
metrics which only consider entrainment behavior. 

Even when acoustic-prosodic (dis)entrainment has consistently been 
reported to occur and correlate with social outcomes across different 
types of dialogues (e.g. competitive, cooperative), languages (see Levi
tan et al., 2015a), and tasks, previous research suggests that the phe
nomenon has many subtleties. For example, evidence suggests the 
following: (1) People generally entrain more to those with high levels of 
power than with low ones (see Danescu-Niculescu-Mizil et al., 2012), 
which might lead to asymmetrical behaviors in entrainment. (2) 
Entrainment on some features of language does not necessarily translate 
into speakers converging in all features (Giles et al., 1991; Reichel et al., 
2018a). In fact it may be the case that entrainment on an 
acoustic-prosodic feature might be associated with disentrainment on 
another. (3) Entrainment in excess may even be perceived negatively. 
For example, in an empirical study aimed at finding optimal levels of 
entrainment, Giles (1979) found that simultaneously entraining on three 
levels of language — pronunciation, speech rate, and message content — 
was found to be perceived as patronizing. (4) Entrainment may be 
stronger at the dialog-act level (see Reichel et al., 2018b; Gauder et al., 
2018), which can be taken as an indication that entrainment may not be 
an automatic process but that it may be actively controlled, at least 
partially. Subtleties like these make the characterization of 
acoustic-prosodic (dis)entrainment and its effects quite challenging. 

The effects of SDSs entraining to a user’s way of speaking is a topic 
which has been little discussed in the literature. Previous research on 
entraining SDSs focused mainly on the effects of systems which entrain 
on lexical or syntactic features (see, for example, Brockmann et al., 
2005; Buschmeier et al., 2009; Hu et al., 2016; Lopes et al., 2015) or 

high-level concepts believed to be conveyed by prosody, such as 
entraining on emotions and politeness (see, for example, Acosta and 
Ward, 2011; De Jong et al., 2008). But there is a dearth of research on 
the effects of systems which follow acoustic-prosodic (dis)entrainment 
policies. Fandrianto and Eskenazi (2012) explore, in the context of an 
information-driven spoken dialog system, ways to induce users to reduce 
two particular speaking styles: shouting and hyperarticulation. To do so, 
they test different strategies. One of these strategies involves disen
training to the way users speak (i.e. reducing the TTS volume if the user 
shouts, raising the TTS speech rate if the user hyperarticulates). Their 
results suggest that disentrainment strategies do alleviate these two 
particular speaking styles, performing better for shouting than for 
hyperarticulation. Levitan (2014) and Levitan et al. (2016) propose a 
way of integrating acoustic-prosodic (dis)entrainment into existing 
SDSs, and present results from a series of pilot studies of the effects of 
four acoustic-prosodic (dis)entrainment policies. In Lubold et al. (2015) 
a pitch-adapting dialogue system is proposed, they also study how 
different ways of matching to users’ mean pitch relate with third party 
perception of naturalness and rapport. In a follow-up study (Lubold 
et al., 2018), the authors explore how a teachable robot which entrains 
and introduces social dialogue influences rapport and learning. They 
find that a robot that entrains and speaks socially results in significantly 
more learning. Sadoughi et al. (2017) report an approach for online 
acoustic synchrony on pitch and intensity by using a dynamic Bayesian 
network learned from prior recordings of child-child play. When testing 
their system on a robot interacting with children, they report a signifi
cant order effect: children that began with a synchronous robot main
tained their own synchrony to it and achieved higher engagement than 
those that did not. Although these efforts already suggest that 
acoustic-prosodic entrainment may be related to and may even influence 
users’ behavior, results are far from conclusive. Acoustic-prosodic 
entrainment is a complex phenomenon, and how systems should adapt 
and which features they should entrain on is far from clear. This is why 
further empirical evidence on the effects of different acoustic-prosodic 
entrainment policies is still needed. 

The goal of the present work is to provide further empirical evidence 
of how acoustic-prosodic (dis)entraining SDSs policies affect users. We 
focus on studying the effects of different acoustic-prosodic entrainment 
policies on induced trust.4 

To explore this research question, we adapted, implemented, and 
carried out a large experimental study focused on analyzing if and how 
different acoustic-prosodic (dis)entrainment policies affect users’ 
perception of SDSs’ ability and, consequently, their trustworthiness (i.e. 
their quality of being trusted).5 Studies were carried out in Argentina 
over the course of two years. 

Additionally, as research on the effects of acoustic-prosodic 
entrainment is based primarily on corpus studies, this article also de
tails on the challenges and nuances of approaching the topic using an 
experimental setup. We believe these insights may also be of use for 
future research. 

The rest of this article is structured as follows. Section 2 provides 
details on the experimental task, on the dialogue system used (including 
how acoustic-prosodic entrainment was implemented), and on the way 
the data was analyzed. Section 3 presents the main results. Section 4 
discusses these results, proposes future work, and concludes. 

4 Trust is defined as the “willingness of a party to be vulnerable to the actions of 
another party based on the expectations that the other will perform a particular 
action important to the trustor, irrespective of the ability to monitor or control that 
other party” (Mayer et al., 1995, p. 712).  

5 Ability — “that group of skills, competencies, and characteristics that enable a 
party to have influence within some specific domain” (Mayer et al., 1995, p. 717) 
— is one of three factors believed to affect trust (the other two being benevo
lence and integrity). 
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2. Material and methods 

This section first describes the task chosen for making participants 
interact with virtual assistants which adapt to the users’ way of 
speaking. We then describe the procedure for experimental data 
collection, as well as the (dis)entrainment policies followed by the vir
tual assistants. Finally, we describe the statistical analyses strategy. 

2.1. Experimental task 

We tackle our research question through an experimental approach. 
In particular, we make use of an experimental setup in which partici
pants must interact with virtual helpers that entrain to their speech 
following predefined entrainment policies. 

We chose GoFishWithHelpers (Levitan, 2014; Levitan et al., 2016) as 
the experimental task for this study. GoFishWithHelpers is an adaptation 
of the canonical game of Go Fish, a multiplayer card game. In GoFish
WithHelpers, instead of playing against human opponents, each 
participant is instructed to play against a computer system. At the 
beginning of each game the player and the system are each dealt a hand 
of seven cards. The player’s goal is to acquire cards from the system’s 
hand to earn points. In the canonical Go Fish game, the player can ask 
her opponent for cards of any rank that she already has in her own deck, 
and the opponent must then give her all the cards of that same rank in 
his hand. If the opponent has no cards of the requested rank, the player 
has to “Go Fish,” selecting a card from the top of the deck. 

In GoFishWithHelpers the participant, instead of freely choosing any 
rank in her deck, must ask for advice from one of possibly multiple 
virtual helpers. The helper then suggests a rank and the user is forced to 
follow the helper’s advice. The player’s goal is to gain as many points as 

possible. The player receives 10 points for each card she gets from the 
system and 100 points for completing a “set” (a rank in all four suits). 
She loses 50 points for “Go Fish”.6 Importantly, as we will explain below, 
the more points a player earns, the higher the monetary prize she will 
receive. 

Each participant plays four games, first a practice game and then 
three non-practice games — which are relevant ones for our analysis. In 
the practice game, which consists of five requests for advice, or turns, the 
participant can only request advice from a single helper (Verónica). In 
addition, any points earned during this game do not count for the 
monetary compensation. The goal of this practice game is to introduce 
the subject to the system and the game rules, as well as measuring the 
acoustic-prosodic features’ base levels of the participant’s speech. Dur
ing this practice game the helper does not adapt its speech in any way. 

The following three games consist of fifteen turns each, and in each 
turn the participant has to choose to ask advice from one of two helpers, 
named Amanda and Eugenia. More precisely, at the beginning of each 
turn, the player’s hand is disabled and she cannot ask the system for a 
rank directly. Instead, she presses a button and verbally requests advice 
from the avatar she specifies by name. Importantly, during these games, 
helpers may adapt their speech to the way participants ask for advice. 
Once a game ends, the sum of points collected in its fifteen turns is 
recorded. In between these non-practice games, participants are shown 
on-screen the amount of points they have earned in each game. Finally, 
based on all points collected in the three non-practice games, monetary 
prizes are awarded. 

We followed the strategy presented in Levitan (2014) and Levitan 
et al. (2016) to choose what advice the helper would provide. To 
encourage participants to rely subconsciously on paralinguistic cues to 
choose their helper, it was important to prevent participants from 

Fig. 1. Screenshot of a non-practice GoFishWithHelpers game.  

6 Note that a single request for advice may lead to both “Go Fish” and a “set”, 
as the card selected from the top of the deck may eventually lead to completing 
a set. In this case the end result is that she earns 50 points. 
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deciding whom to trust based on performance. Choosing among possible 
helpers’ advice is not trivial, given that for each turn there are several 
different outcomes, depending on which rank is requested. To ensure 
that helpers behave as similarly as possible to each other, each helper is 
programmed to give advice according to an algorithm that keeps a 
“persona’s global advice score” — the overall perceived quality of the 
advice it has given so far, corresponding to the number of points earned 
by following that advice — as close to zero as possible. This is done by 
assigning each rank a score based on what its outcome would be. If the 
rank would complete a set, its score is 5; if it would result in “Go Fish,” 
its score is − 15; otherwise, its score is the number of cards the system 
has of that rank (1–3). Using this scheme, at each turn, the helper giving 
advice selects the rank whose score would bring the helper’s global 
advice score closer to zero.7 The subject’s score is reset to 0 at the 
beginning of each game. Additionally, to further obscure the quality of 
the advice received, the system is dealt a new hand after every turn, so 
that the player cannot infer the contents of a hand based on responses to 
her previous requests. 

Fig. 1 shows a screenshot of a non-practice GoFishWithHelpers 
game. The top left and bottom left corners of the screen contain the 
system’s and participant’s cards respectively. The top right corner 
contains a push-to-talk button. The bottom right corner contains the 
suggested phrases the participant may use to request advice as well as 
the helpers’ avatars and names. 

2.2. Data collection procedure 

Experiments were carried out in the city of Buenos Aires, Argentina. 
Participants were publicly recruited, and, during recruitment, were 
notified that they would be paid for participating. The payment was of 
up to roughly 9 US dollars per hour in local currency; $4.5 per hour plus 
up to $4.5 based on their performance in the proposed task. Participants 
were required to be native Argentine Spanish speakers and to be be
tween 18 and 65 years old. 

Upon arrival at the lab, participants were instructed to read and sign 
an informed consent form.8 Although all helpers a given participant 
interacts with generate their advice following exactly the same strategy 
(as reported above), they were told that they would be playing a com
puter game in which competing Artificial Intelligence (AI) algorithms 
were being tested. They then sat in front of a desktop computer wearing 
a headset with microphone (Genius HS-400A headset) and were handed 
written instructions describing GoFishWithHelpers. Importantly, the 
instructions stated that each helper was going to give advice using one of 
two particular AI algorithms, one being “more advanced” than the other, 
and that, even though both helpers tend to give good advice, they also 
make mistakes once in a while, which translates into occasional bad 
advice. Additionally, these instructions explicitly stated that, to gain 
more points during the game, their goal as participants was to discover 
which helper was driven by the “smarter” AI algorithm. Participants 
were also notified that they would receive additional money based on 
the number of points they gained. In this way participants were given 
strong incentives to search for the competent helper — even when in fact 
both behaved in the same way — and would consider it risky to delegate 
their choice to the helper perceived as “less advanced.” 

Once participants declared that they understood the rules, they 
played the practice game. In between the practice and the three non- 

practice games, the computer screen indicated that, if they had any 
doubts regarding the task rules, the lab assistant could be asked for help 
and they were also reminded that their ultimate goal was to discover 
which helper was driven by the “smarter” AI algorithm. They then 
proceeded to play the three non-practice games. Next, they were handed 
a questionnaire with questions related to the helper voices, and a second 
one with sociodemographic questions. Finally, they received payment 
for the points earned, were handed a debriefing form, were given the 
chance to ask questions regarding the experiment, and left the lab. The 
whole procedure lasted nearly an hour on average. Sessions were ran in 
groups of four participants in parallel in a quiet, large computer labo
ratory, so in an hour, data from four subjects could be acquired. 

Importantly, each participant was randomly assigned to one of two 
different types of helpers:  

1. Mirrored format: Each of the two helpers follows an opposing (dis) 
entrainment strategy — for example, if one helper entrains on pitch, 
the other one disentrains on pitch.  

2. Against-static format: One helper (dis)entrains on a given acoustic- 
prosodic feature, and the other helper does not adapt its speech at all. 

In this article we present results coming from four consecutive ses
sions of games, each consisting of around 72 games, for a total of 98 
unique participants. We adopted a strategy of running a session of games 
testing the effects of a particular (dis)entrainment policy, and, based on 
the analysis of the results obtained in it, deciding which policies to test 
in the following session. For example, as we will see below, during the 
first session of games we tested only the effects of (dis)entrainment on 
speech rate. We then analyzed the data we obtained from these exper
iments and, based on that analysis, decided to run a session of games 
allowing helpers to also (dis)entrain on pitch and intensity. 

2.3. Dialogue system 

This section describes the ways users and system interact by means of 
an acoustic-prosodic entraining dialogue system. We focus on how the 
system measures participants’ acoustic-prosodic features, and how the 
helpers entrain to participants’ speech. 

Given the task design, the way participants interact with helpers is 
limited, since they only request and receive advice from helpers. Both 
interactions are done through spoken dialogue. To ask for advice, par
ticipants use the computer mouse to select a microphone icon placed in 
the top right corner of the game screen (see Fig. 1). The button works 
using the well-known push-to-talk paradigm. Pressing the button triggers 
the recording and releasing it stops it. Once the recording is complete, it 
is sent to an ASR module and, in parallel, to an acoustic-prosodic feature 
extraction module. 

Based on the time-aligned transcription produced by the ASR mod
ule, the identity of the requested helper is identified, and, based on its 
global advice score, the requested helper provides its advice. Impor
tantly, the acoustic-prosodic feature values of this response will depend 
on the entrainment policy assigned to the helper (as will be described in 
Section 2.3.2). 

Participants are instructed and required by the system to ask for help 
using one of a fixed number of request options (which they can toggle 
freely between turns). As seen in Fig. 1, these options are shown in the 
bottom right corner of the screen. Additionally, each request for advice 
must either start or end with a helper’s name. For example, a participant 
can say “¿Amanda, qué carta pido?” (“Amanda, which card should I ask 
for?”) or “¿Qué carta pido Amanda?” (“Which card should I ask for, 
Amanda?”). Subsequently, the selected helper is highlighted and her 
advice synthesized — e.g. “Te recomiendo pedir un nueve” (“I recommend 
asking for a nine”). The player completes the turn by clicking the sug
gested card, which serves as a request for that rank of card to be pro
vided by the opponent. 

7 Scores were empirically determined in Levitan (2014) based on observing 
and discussing the game with subjects of a pilot study. There they expressed 
frustration at losing points to “Go Fish” that far outweighed their satisfaction at 
receiving cards from a successful request.  

8 Our protocol and all forms were evaluated and approved by the Research 
Ethics Committee at the Centro de Educación Médica e Investigaciones Clínicas 
(CEMIC) “Norberto Quirno”, Buenos Aires, Argentina, on July 18, 2014, valid 
through August 31, 2017. 
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2.3.1. Measuring acoustic-prosodic features and synthesizing speech with 
varying prosody 

The computer helpers implemented in our experiments either entrain 
or disentrain on three acoustic-prosodic features: speech rate (measured 
in syllables per second), pitch (measured as F0 mean in Hz) and intensity 
(measured as mean energy in dB). The proposed (dis)entrainment pol
icies rely on three processes: (1) Being able to measure and keep a record 
of the acoustic-prosodic features of the interlocutor’s speech, (2) 
determining how to adapt the acoustic-prosodic features of the synthe
sized speech to those of the participants, (3) synthesizing speech with 
the desired acoustic-prosodic features. Here we cover (1) and (3); we 
will discuss (2) in Section 2.3.2. 

Measuring acoustic-prosodic features values We use the PocketSphinx 
toolkit (Huggins-Daines et al., 2006) with a restricted grammar to obtain 
a time-aligned transcription of each utterance and then estimate its 
syllable count using a pre-defined dictionary. PocketSphinx returns an 
error when a piece of audio cannot be matched with high confidence to 
the proposed grammar — in which case the participant is asked to repeat 
their request for advice. Tests carried out before beginning data 
collection indicated that the system was quite strict when accepting an 
utterance as valid. When looking at the collected data, in 4.8% of all 

non-practice turns participants were asked to repeat their request for 
advice. (This number equals 15.7% for practice turns, suggesting that 
participants learned how to ask for advice during the training game.) 
Participants’ hesitations and (slightly) different formulations than the 
prompted text may introduce acoustic-prosodic features measurement 
errors (particularly when measuring speech rate). To get an estimate of 
the prevalence of these effects, we randomly sampled 200 audio clips 
from the collected data and checked for the presence of disfluencies and 
formulations which differ from the prompted text. We almost did not 
register disfluencies (only in 1 of all sampled clips). The prevalence of 
slight variations in the formulation was infrequent. We found slight 
variations in 6.5% of all sampled clips. We found no evidence suggesting 
that this prevalence varied across helpers with differing 
acoustic-prosodic entrainment policies. 

PocketSphinx provides timestamps at the word level in seconds. We 
define utterance duration as the time elapsed between the beginning of 
the utterance’s first word and the end of its last. We thus estimate speech 
rate as the ratio between syllable count and utterance duration, 

Fig. 3. Different types of acoustic-prosodic entrainment.  

Fig. 2. Desired vs. measured variations across acoustic-prosodic features.  
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capturing the average number of syllables per second in an utterance. 
Additionally, we use Praat (Boersma and Weenink, 2018) to estimate 
mean pitch9 (in Hz) and mean intensity10 (in dB), extracted from the 
beginning of the first word to the end of the last one. 

Speech synthesis To synthesize the helpers’ responses we use an HMM- 
based voice built with a corpus of read speech recorded by a female 
professional speaker of Argentine Spanish (further details in Violante 
et al., 2013). This TTS system uses MaryTTS as its front-end,11 which 
allows us to modify speech rate and pitch level on a percent basis using 
Speech Synthesis Markup Language (SSML) tags. SSML is a markup 
language which provides a standard way to annotate text for the gen
eration of synthetic speech. For example, when +10% is introduced in 
the pitch tag, the system is instructed to synthesize speech with a 10% 
higher pitch (in Hz) relative to the voice’s default value. We modify 
intensity using the open-source sound processing toolbox SoX.12 In this 
case, as we use decibels to measure intensity, a +4% tag indicates that 
the final audio will have a +4% higher intensity measured in decibels.13 

Before running our first session of games, we ensured that the desired 
acoustic-prosodic variations given as input to the TTS system were 
achieved accurately. We synthesized 11,978 audio files, each containing 
one of nine possible helper responses, with one of the multiple combi
nations of values for the target acoustic-prosodic features. We then 
followed the same procedure described above for measuring the values 
of such features. Fig. 2 shows the distributions of measured vs. desired 
variations for each acoustic-prosodic feature. Ideally, one would want 
the boxes to be as short as possible and to progress along a 45∘ line. 

Fig. 2 shows that, for pitch and intensity, the targets were met quite 
accurately — and in the case of pitch almost exactly. For speech rate, the 
degree of accuracy is lower, but there is a strong positive relation be
tween desired and measured variation.14 

2.3.2. Entrainment algorithm 
According to Levitan et al. (2011), three forms of acoustic-prosodic 

entrainment can be distinguished: proximity (acoustic-prosodic fea
tures having similar values across interlocutors over the entire conver
sation), convergence (acoustic-prosodic features increasing in similarity 
across interlocutors over time), and synchrony (speakers adjusting the 
values of their acoustic-prosodic features in accordance to that of their 
interlocutor). Note that synchrony may occur without proximity. Fig. 3 
illustrates these phenomena. 

In our experimental task we make use of entrainment policies 
designed to (dis)entrain according to (anti-)synchrony.15 In particular, 
the proposed (dis)entrainment policies build upon the one presented in 
Levitan et al. (2016). These policies measure how much the 
acoustic-prosodic feature values of a user utterance deviate from their 
respective base values (which depend on the user), and give a response 
in which the TTSs’ acoustic-prosodic features deviate accordingly. For 
example, in the case of an entrainment policy on acoustic-prosodic 
feature k, if the user produces an utterance with feature k 10% higher 
than his/her own base value for k, the policy instructs the TTS system to 
synthesize speech with a value of k 10% higher relative to the TTS 
default value (10% lower for the case of a policy disentraining on feature 
k). The rest of this section details how the system achieves this. 

Before calculating how to adapt to the users’ way of speaking, the 
algorithm must keep track of the changes in the user’s acoustic-prosodic 
features. To do so, and assuming g is the game being played at the 

moment, it keeps track of ϕk
g− 1: the average value of acoustic-prosodic 

feature k in game g − 1. It does so according to the following formula: 

ϕk
g− 1 =

∑

t∈g− 1

ϕk
t

|g − 1|
(1)  

where t stands for a given turn, |g − 1| for the number of turns in game 
g − 1, and ϕk

t for the value of acoustic-prosodic feature k in turn t. 

Knowing the value of ϕk
g− 1 and having processed ϕk

t for an ongoing 
turn (of game g), the desired variation in turn t of acoustic-prosodic 
feature k in the helper’s response (ψk

t ) is calculated as follows: 

ψk
t = policyk⋅

(
ϕk

t − ϕk
g− 1

ϕk
g− 1

)

% (2)  

where policyk equals 1, 0 or − 1 if the helper follows an entrainment, 
static or disentrainment policy, respectively. In other words, a helper 
entraining on acoustic-prosodic feature k adapts the value of k in syn
chrony with the subject; a static helper does not adapt in any way; and a 
disentraining helper adapts in the opposite direction. For example, as
sume that k corresponds to speech rate, g = 3 (the second non-practice 

game) and ϕk
3− 1 = 4 syl/sec. If ϕk

t = 4.8 syl/sec (i.e. the speech rate 
measured on the current request for advice), then the desired variation 
in speech rate will be +20% for an entraining helper, 0% for a static 
helper, and − 20% for a disentraining one. Note that a similar calculation 
is repeated for the remaining acoustic-prosodic features. 

During the practice game the helper’s voice is always synthesized 
using the TTS system’s default pitch, intensity, and speech rate levels (i. 
e. policy = 0). Additionally, in the three non-practice games, we 
differentiate the voices of the two helpers by means of distinct base pitch 
levels. One of the helpers uses the TTS system’s default pitch level; the 
other, a 10% lower pitch level. Speech rate and intensity had the same 
base levels across helpers. Importantly, to separate the effect of (dis) 
entrainment policies from the different base pitch levels, helper names 
and faces, these characteristics were counterbalanced for the three 
policies across participants. 

Lastly, to preserve the naturalness of the synthesized voices and 
avoid the occurrence of glitches and artifacts, we clipped maximum/ 
minimum values of ψk

t (+ 25%/− 25% for speech rate, + 5%/− 5% for 
intensity, and + 10%/− 10% for pitch). These upper and lower bounds 
were chosen perceptually by the authors. Post-hoc analyses indicate that 
these ranges were wide enough as to include subjects’ variation in nearly 
91.4%, 92.3%, 83.6% of all turns for speech rate, intensity and pitch, 
respectively. 

2.4. Data analysis 

This section details the statistical techniques used to study the data 
collected. Note that, instead of following a single approach for analyzing 
the data, we follow complementary strategies in order to verify results 
robustness. In addition, note that we focus on the way participants 
effectively chose between helpers (i.e. their actual behavior) and not on 
variables derived from subjective perceptions (such as answers to 
follow-up questionnaires). 

2.4.1. Binomial tests 
We first analyze associations between entraining policies and trust 

by running two-sided exact binomial tests. These tests take as input the 
number of successes c (the times the helper following the entrainment 
policy being studied is chosen for advise), the total number of turns 
(15*n, 15 being the number of turns in a game and n the number of 

9 http://fon.hum.uva.nl/praat/manual/Sound__To_Pitch___.html.  
10 http://fon.hum.uva.nl/praat/manual/Sound__To_Intensity___.html.  
11 http://mary.dfki.de.  
12 http://sox.sourceforge.net.  
13 Note that decibels is a logarithmic scale.  
14 During the development of the experimental task we tested alternative 

proprietary TTS systems with Spanish trained voices. Neither achieved better 
accuracy than the one used in this work.  
15 Anti-synchrony stands for the tendency of speakers to distance their speech 

from the other’s, resulting in mirrored or anti-correlated patterns (Looze and 
Rauzy, 2011) 
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games under analysis), and the null-hypothesis probability of success. 
We set this probability to 0.5 — the probability of choosing the helper of 
interest in a given turn if participants choose completely at random. 

For example, if 36 games are being analyzed (n = 36) and the helpers 
following the entrainment policy being studied were chosen 305 (c =
305) out of 540 times (15*36) — that is, in 56% of all turns, a two-sided 
exact binomial test would reject the null-hypothesis that the probability 
of choosing the helper is equal to 0.5 (random) with a significance 
inferior to 1%. This would suggest that a user is more likely to choose a 
helper carrying out a certain entrainment policy. On the other hand, if 
entraining helpers were chosen 280 times, the null-hypothesis would not 
be rejected at standard levels of significance and no claim regarding any 
effect could be made.16 

2.4.2. Regression analysis 
It is important to note that simply hearing advice coming from an 

adapting helper does not necessarily translate into listening to synthe
sized speech differing from its base acoustic-prosodic feature values. 
Take for example an extreme case, a participant who speaks in all games 
using a monotone speech with no alteration of her acoustic-prosodic 
feature values. In this case, whether the helper follows an entraining, 
static or disentraining policy, the participant will hear the same 
acoustic-prosodic dynamics during all turns. 

To better capture these subtleties, during the analysis we not only 
check for associations between trusting a helper and that helper’s 
entrainment policy, but also relate trust to a measure of exposure to 
entrainment and disentrainment in a given turn. Concretely, given a 
participant request for advice in turn t, we define exposure to entrainment 
on acoustic-prosodic feature k in that turn as: 

exp entk
t =

{
|ψk

t | if advice is given by a helper entraining on k
0 otherwise

(3) 

In parallel, we also define exposure to disentrainment on feature k as: 

exp disentk
t =

{
|ψk

t | if advice is given by a helper disentraining on k
0 otherwise

(4) 

Note that if the advice is given by a helper which entrains on feature 
k, the value of exp entk

t will differ from 0 (as long as ψk
t ∕= 0) but 

exp disentk
t will be equal to 0, whereas if the advice is given by a helper 

which disentrains on feature k the opposite will occur. Also note that, if 
the advice is given by a helper which follows a static policy on feature k, 
both exp entk

t and exp disentk
t will be equal to 0 in every turn. 

Three potential drawbacks of the binomial test analysis are that (1) it 
treats games coming from a given player as independent when they may 
not be so, (2) it completely ignores exposure to entrainment, and (3) it 
ignores other variables which may affect participant choices. An alter
native and more versatile strategy for analyzing the data consists of 
using regression analysis to model whether participants continue asking 
the same helper for advice after following its advice in a given turn. In 
doing this, we associate keeping a helper in the next turn to considering 
its advice trustworthy. 

We report results on regression models considering (dis)entrainment 
policies on the one hand, and exposure to (dis)entrainment on the other. 
When focusing simply on entrainment policies we estimate models ac
cording to the following specification: 

keeps helpert = α + β⋅policy of interestt + γ⋅Xt + ϵt, (5)  

where:  

• keeps helpert is an indicator variable which takes value 1 if a 
participant chooses the same helper after receiving and seeing the 
effects of its advice in turn t, and 0 otherwise.  

• policy of interestt takes a value of 1 if a particular entrainment policy 
being studied is selected in turn t, and 0 if another policy is selected.  

• Xt is a vector which contains a series of control variables (which may 
or not depend on the turn t). More on this below.  

• ϵt is an error term. 

The parameter of interest is β. Note that keeps helpert is undefined for 
the last turn in each game, and consequently these turns are not 
included. 

When exposure to (dis)entrainment is analyzed, the model specifi
cation varies slightly. Instead of introducing an indicator variable 
related to an entrainment policy, a series of variables reflecting exposure 
to (dis)entrainment on each acoustic-prosodic feature are introduced. 
Concretely, the estimated models have the following specification: 

keeps helpert = α +
∑

k∈AP
βent

k ⋅exp entk
t +

∑

k∈AP
βdisent

k ⋅exp disentk
t + γ⋅Xt + ϵt,

(6)  

where exp entk
t and exp disentk

t indicate exposure to entrainment and 
disentrainment on feature k in turn t respectively, and the set AP con
tains all features being analyzed. The parameters of interest are βent

k and 
βdisent

k for each feature k. Note that, for the case in which neither helper 
adapts to a given feature k (i.e. policyk = 0) both exp entk

t and exp disentk
t 

will be equal to 0 for all turns. This translates into a problem of perfect 
multicollinearity, which makes it impossible to estimate βent

k and βdisent
k 

for advice given by a helper static on feature k. For this reason, co
efficients associated to static acoustic-prosodic features are not reported. 

Before running all of the main body regressions analyzing exposure 
to (dis)entrainment, we standardize exposure to (dis)entrainment using 
z-scores. We do this to facilitate the interpretation of effect sizes. In this 
way, coefficients should be interpreted as the estimated variation 
observed in the outcome when exposure to acoustic-prosodic (dis) 
entrainment in a given feature k increases in one standard deviation. 
Appendix tables report the estimated coefficients without standardizing 
exposure metrics. 

To increase the precision of our estimates of interest, we include as 
control variables (Xt) a series of variables which may affect the proba
bility of keeping a helper in the next round but are not related to 
acoustic-prosodic (dis)entrainment policies. These are:  

• An indicator variable equal to 1 if the advice given in turn t resulted 
in Go Fish, and 0 otherwise.  

• An indicator variable equal to 1 if the advice given in turn t resulted 
in a completed deck, and 0 otherwise.  

• An indicator variable equal to 1 if the advice was requested by a 
female participant, and 0 otherwise.  

• A helper fixed effect variable equal to 1 if Eugenia (one of the two 
non-practice helpers) is selected (no matter its entrainment policy), 
and 0 otherwise. Given that the helpers’ look and base pitch level 
differ, and that entrainment policies are counterbalanced across 
helpers, this aims at controlling for helper fixed effects.  

• A continuous variable indicating the turn number in a game (i.e. t) 
which ranges from 1 to 14. This variable aims at capturing the ex
pected positive association between exploitation strategies and being 
close to a game ending. More on this in Section 3.1.  

• Two game number indicator variables, one for the second non- 
practice game (g = 3) and one for the last non-practice game (g =

4). Concretely, these variables equals 1 if the turn t belongs to game 
g = 3 or g = 4 respectively, and 0 otherwise. Note that practice game 
turns (g = 1) are not considered in the analysis and the first non- 
practice game (g = 2) is left as the base category. 16 Note that small values of c would also result in the rejection of the null- 

hypothesis, but would indicate a negative association. 
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We estimate Eqs. 5 and 6 through both ordinary least squares (OLS) 
— known as the linear probability model — and generalized linear mixed- 
effects (GLME) models. Linear mixed-effects models are commonly used 
when independence in the data cannot be guaranteed, as they allow one 
to introduce random-effects which provide a robust analytic approach 
for addressing problems associated with hierarchical data (West et al., 
2014). GLME models are an extension of the linear mixed-effects ones 
which allow to consider response variables coming from different dis
tributions. When estimating GLME models, we model the response 
variable as a dichotomous one using the “logit” link function and 
incorporate a participant random intercept. 

One disadvantage of GLME models not using the identity link func
tion is that effect sizes become hard to interpret. For this reason, in the 
main draft, instead of reporting estimated GLME coefficients, we report 
estimated average marginal effects (AMEs) (see Leeper, 2017). AMEs 
should be interpreted as the average change in probability when the 
independent variable being considered increases one unit. Estimated 
GLME coefficients are reported in the Appendix tables.17 

3. Results 

This section is structured as follows. We first provide an aggregated 
analysis of the participants behavior during the task. Then we present 
the patterns observed in each session of games. Finally, we present a 
meta-analysis considering all the against-static sessions as a whole. 

3.1. Participants high-level behavior during the task 

A total of four sessions of games testing several acoustic-prosodic 
entrainment policies were carried out from December 2015 to 
November 2017. In each session of games, emphasis was placed on 
testing different hypotheses regarding the relationship between 
acoustic-prosodic entrainment and trust. Before focusing on acoustic- 
prosodic entrainment, in this section we analyze how participants 
behaved in aggregate terms. 

Fig. 4 plots the empirical cumulative distributions of the times par
ticipants switched the helper they requested advice from.18 Cumulative 
frequencies are disaggregated by game number. As an example, this 
figure indicates that around 19.4% of all participants switched helpers 
three or less times in the first game, 45.9% in the second one, and 54.1% 
in the third one. 

Fig. 4 shows some interesting patterns. First, participants tended to 
switch helpers more in the first game relative to the second and third 
ones. In particular, nearly 49% of all participants switched helpers more 
than five times in the first game, while only 34.7% and 29.6% did so in 
the second and third games respectively. Second, many more partici
pants kept choosing the same helper for all turns in games 2 and 3 (this is 
reflected in the curves intercepts). Both of these patterns suggest that 
some participants may have perceived each successive game as a 
continuation of the preceding one.19 Finally, the most frequent behavior 
consisted in switching helpers an intermediate number of times 
(Table A1 shows this more clearly). 

These behaviors can be framed by means of an analogy between 
GoFishWithHelpers and the well-known formal mathematical optimi
zation problem known as the multi-armed bandit problem (Robbins et al., 

Fig. 4. Empirical cumulative frequency of helper switches for the 294 non-practice games, by game number. Note: Detailed information available in Table A1.  

17 We use R for all of the statistical analysis (R Core Team, 2019). For esti
mating GLME models, we use the lme4-package (Bates et al., 2015). GLMEs’ 
p-values are calculated using the Satterthwaite approximation as implemented 
in the lmerTest-package (Kuznetsova et al., 2017). GLMEs’ AMEs are calculated 
using the margins-package (Leeper, 2017). 

18 Recall that each participant plays three non-practice games and each game 
has 15 turns, so participants may switch helpers at most 14 times per game.  
19 Participants were neither informed that the assignment of AI algorithms 

varied across games, nor that it did not. 
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1952; Sutton et al., 1998; Steyvers et al., 2009). In a general N-armed 
bandit problem, there is a set of N bandits, each having some fixed but 
unknown rate of reward. On each trial, a decision-maker selects a bandit 
and receives as feedback whether or not one unit of probabilistically 
determined reward was attained. The decision-maker’s task is to make a 
sequence of bandit choices that maximizes their reward using such 
feedback. The bandit problem faces participants with a trade-off be
tween exploring (i.e. acquiring new knowledge regarding bandit payoffs) 
and exploiting (i.e. optimizing the expected total payoff based on their 
current knowledge). The way people behave in the multi-armed bandit 
problem scenario has been extensively studied in lab settings (see, for 
example, Anderson, 2012; Racey et al., 2011; Schulz et al., 2018), and 
several heuristics — as well as an optimum strategy — have been pro
posed for solving this problem and have been empirically checked for 
compliance (see, for example, Lee et al., 2011; Steyvers et al., 2009). 

Similar to the multi-armed bandit problem, in GoFishWithHelpers 
participants receive rewards as a function of choosing among helpers. 
Moreover, as they are explicitly informed that the helpers’ advice is 
generated by different AI systems, participants are primed to discover 
which helper provides advice leading to higher rewards and to eventu
ally choose the one believed to be superior. In this way the multi-armed 
bandit problem analogy provides insights regarding participant atypical 
behavior, such as having a pre-defined strategy not related to the game 
development, or not understanding the task instructions. For example, 
participants who do not explore helpers, especially in the first turns of a 
game, might be following a strategy not in compliance with the 
description given of the game. On the other end of the spectrum, a 
participant who constantly switches between helpers is also contrary to 
the expected behavior given the game description, as this behavior does 
not suggest that the participant is exploring to eventually try to earn as 
many points as possible by exploiting the advice of the helper perceived 
as less risky. 

Taking these facts into account, and with the aim of filtering out 
anomalous behaviors during our analysis, for the rest of our analysis we 
discard all games in which participants switched helpers fewer than 
three times (93 games) or in which they switched 12 or more times (5 
games). Thus, we focus on the games showing behavior in accordance to 
the given the instructions and previous literature.20 

3.2. Session of games #1: Entrainment on speech rate 

Motivation and setup With the aim of validating the proposed para
digm without testing the effects of entrainment on multiple acoustic- 
prosodic features at a time, in the first session of games we opted to 
analyze the effects of (dis)entrainment only on speech rate. In the 
mirrored format participants had to choose between two helpers, one 
following an entrainment on speech rate policy (policy of interestt = 1)
and the other following a disentrainment on speech rate policy 

(policy of interestt = 0) — pitch and intensity did not adapt in any way. 
In the against-static format, one helper followed an entrainment on 
speech rate policy (policy of interestt = 1) while the other did not 
entrain in any way (policy of interestt = 0). Participants were assigned 
randomly to each version. Within versions, the helper which followed 
the entrainment/disentrainment or entrainment/static policies 
(Amanda or Eugenia) was counterbalanced across participants. Assign
ment of policies to helpers remained static across games played by a 
given participant. 

Subjects Data from 26 participants was gathered (6 female, 20 male; 
average age = 28, sd = 8.72), 14 participants were assigned to the 
mirrored format and 12 to the against-static format. For the reasons 
described in Section 3.1, 33 games were left out of the analysis as they 
did not meet our inclusion criteria (19 in the mirrored format, 14 in the 
against-static format). The sessions were carried out during December 
2015. 

Distribution of the observed acoustic-prosodic feature variations To 
check that participants effectively varied the way they asked for advice 
across turns, Table 1 presents the distribution of measured variation of 
speech rate in both game formats. It can be seen that, although the 
median variation of speech rate in both game formats is close to zero 
(− 2% in both cases), there was indeed variation across turns. 

Two-sided exact binomial tests When analyzing the data using two- 
sided exact binomial tests, we observe that in the mirrored format 173 
out of 345 times (50.14%) the entraining helper was selected. A two- 
sided exact binomial test fails to reject the null-hypothesis at standard 
significance levels (p = 1). In the against-static format, the entraining 
helper was selected 142 out of 330 times (43.03%). In this case, a two- 
sided exact binomial test rejects at standard significance levels the null 
hypothesis that the helpers were chosen randomly (p < .01). 

Regression analysis Table 2 summarizes results from session of games 
#1 regression analysis. It reports estimates from multiple regressions, in 
all of which keeps helpert is the dependent variable. Regressions vary in 
their input data (mirrored or against-static formats), their estimation 
strategy (OLS or GLME), and the way entrainment is measured (at the 
policy level or at the exposure level). More precisely, coefficients below 
the OLS label (regressions 1, 3, 5, 7) come from ordinary least squares 
estimates, and estimates below the GLME label (regressions 2, 4, 6, 8) 
report estimated AMEs coming from generalized linear mixed effects 
model. In the top panels (regressions 1, 2, 3, 4) entrainment is intro
duced in the analysis as in Eq. 5 (at the policy level) while in the bottom 
panels (regressions 5, 6, 7, 8) as in Eq. 6 (at the exposure level). It should 

Table 2 
Estimated marginal effects for session of games #1. Notes: Exposure to 
entrainment metrics were standardized using z-scores before being introduced 
to the regressions. *p < 0.1; **p < 0.05; ***p < 0.01.  

A. Dis/Entrainment policy  

Mirrored Against-static  

OLS GLME OLS GLME  
(1) (2) (3) (4) 

entrainment policyt = 1  0.0015 0.0014 − 0.0969  − 0.0985*  

gofish=1 0.0000 0.0015 − 0.0912  − 0.0900  
Num. obs. 322 322 308 308 
Num. groups: player  13  10  

B. Dis/Entrainment exposure  

(5) (6) (7) (8) 

exp entspeech rate
t  

− 0.0341  − 0.0327  − 0.0068  − 0.0096  

exp disentspeech rate
t  

0.0196 0.0203   

gofish=1 0.0062 0.0088 − 0.0919  − 0.0908  
Num. obs. 322 322 308 308 
Num. groups: player  13  10  

Table 1 
Distribution of the observed variation of speech rate in session of games #1.  

Mirrored 

Feature Min. Q1 Median Q3 Max. Mean SD 

sp.rate -0.76 -0.11 -0.02 0.06 0.43 -0.01 0.15  

Against-static 

Feature Min. Q1 Median Q3 Max. Mean SD 

sp.rate -0.54 -0.11 -0.02 0.06 0.53 -0.02 0.14  

20 Our results are robust to other less strict limits, such as only excluding 
games in which the participant did not switch helpers at all (49 games) and 
games in which they switched 13 or more times (1 game). 
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be remembered that for all of the main body tables reporting regression 
estimates analyzing exposure to (dis)entrainment, before running them, 
exposure to (dis)entrainment metrics were standardized using z-scores. 
Finally, regressions in the left panels (1, 2, 5, 6) take as input data 
collected from participants playing under the mirrored format, and 
those in the right panels (3, 4, 7, 8), under the against-static format. To 
place our focus on the parameters of interest, this table reports estimates 
associated to the entrainment related variables and the one associated to 
“gofish=1”. Estimated coefficients for the remaining Xi covariates are 
presented in Table A2 and Table A3. Coefficients associated to 
“gofish=1” are reported to interpret the relative magnitude of effect 
sizes. 

In line with the binomial test, at the policy level, we do not find any 
significant effects of entrainment policies for games under the mirrored 
format. In against-static games, the GLME coefficient is statistically 
significant at 10%. Notably, the estimated coefficient almost equals the 
estimated one for an advice resulting in Go Fish. When focusing on es
timates considering the exposure level we find negative coefficients for 
entrainment on speech rate under both formats, but in neither case can 
these estimates be considered statistically significant at standard levels. 

Discussion This session allowed us to check the effectiveness of the 
proposed paradigm. For the mirrored format, neither the two-sided 
exact binomial tests nor the regression analysis results suggest that 
entrainment on speech rate is preferred over disentrainment on speech 
rate. For the against-static format, both analysis suggest a negative as
sociation between entrainment on speech rate and maintaining a helper. 
In other words, when participants were forced to choose advice from 
these helpers, estimates point toward a negative effect of entrainment on 
speech rate. This last results is reassuring, as it suggest that the experi
mental setup allows to affect users trust by modifying the way helpers 
adapt their speech to the users speech. 

3.3. Session of games #2: Entrainment on speech rate, pitch, and intensity 

Motivation and setup The first session of games allowed us to first test 
the viability of the proposed paradigm as well as its implementation. 
Second, it also suggested that associations with trust (as measured by 
choosing or maintaining a helper) may be induced. Building on these 
findings, in a second session of games we tested whether, in addition to 
speech rate, adapting on pitch and intensity levels is associated with 
trust. The rationale behind this setup lies in the fact that entraining only 
on a single acoustic-prosodic feature may be perceived as unnatural by 
participants, while adapting across different acoustic-prosodic features 
may be more realistic and natural. In this way, in the mirrored format, 

one helper entrained on speech rate, pitch and intensity 
(policy of interestt = 1) while the other disentrained on these features 
(policy of interestt = 0). In the against-static format one helper 
entrained on the three acoustic-prosodic features (policy of interestt =
1) while the other did not entrain in any way (policy of interestt = 0). 
Within formats, the helper that followed each acoustic-prosodic feature 
behavior was counterbalanced across participants. Assignment of pol
icies to helpers remained static across games played by a given 
participant. 

Subjects Data from 24 participants was gathered (12 female, 12 male; 
average age = 22.71, sd = 3.25), 12 participants played in the mirrored 
format, while 12 played in the against-static format. Again, for the 
reasons described in Section 3.1, 24 games were left out of the analysis 
as they did not meet our inclusion criteria (15 in the mirrored format, 9 
in the against-static format). The sessions were carried out during 
September 2016. 

Distribution of the observed acoustic-prosodic feature variations Table 3 
presents the distribution of the variation of all three acoustic-prosodic 
features across both game formats. Again, although the median of 
most acoustic-prosodic features is close to zero, they still varied across 
turns. 

Two-sided exact binomial tests In the mirrored games the entraining 
helper was selected 180 out of 315 times (57.14%). A two-sided exact 
binomial test rejects the null hypothesis that helpers were chosen 
randomly (p ≈ .01). In the against-static games the entraining helper 
was chosen 193 out of 405 times (47.65%); in this case a two-sided exact 
binomial test fails to reject the null hypothesis (p = .37). 

Regression analysis Table 4 summarizes results from session of games 
#2 regression analysis. Tables A4 and A5 present detailed information 
on each regression. When entrainment on all three acoustic-prosodic 
features is introduced in the regressions at the policy level (top 

Table 4 
Estimated marginal effects for session of games #2. Notes: Exposure to 
entrainment metrics were standardized using z-scores before being introduced 
to the regressions. *p < 0.1; **p < 0.05; ***p < 0.01.  

A. Dis/Entrainment policy  

Mirrored Against-static  

OLS GLME OLS GLME  
(1) (2) (3) (4) 

entrainment policyt = 1  0.1358** 0.1384** − 0.0174  − 0.0154  
gofish=1 0.0229 0.0193 − 0.1890***  − 0.1887***  

Num. obs. 294 294 378 378 
Num. groups: player  12  12  

B. Dis/Entrainment exposure  

(5) (6) (7) (8) 

exp entspeech rate
t  

− 0.0122  − 0.0082  − 0.0308  − 0.0280  

exp disentspeech rate
t  

0.0362 0.0380   

exp entpitch
t  

0.0439 0.0409 − 0.0565*  − 0.0556*  

exp disentpitch
t  

− 0.0267  − 0.0242    

exp entintensity
t  0.0415 0.0498 0.0701** 0.0670* 

exp disentintensity
t  − 0.0042  − 0.0020    

gofish=1 0.0226 0.0169 − 0.1885***  − 0.1882***  

Num. obs. 294 294 378 378 
Num. groups: player  12  12  

Table 3 
Distribution of the observed variation of all three acoustic-prosodic features in 
session of games #2.  

Mirrored 

Feature Min. Q1 Median Q3 Max. Mean SD 

sp.rate -0.66 -0.12 -0.04 0.06 0.38 -0.04 0.15 
pitch -0.23 -0.02 0.02 0.08 0.38 0.03 0.09 
intensity -0.13 -0.01 0.00 0.02 0.09 0.01 0.03  

Against-static 

Feature Min. Q1 Median Q3 Max. Mean SD 

sp.rate -0.45 -0.11 -0.01 0.08 0.49 -0.01 0.14 
pitch -0.34 -0.05 0.00 0.05 0.35 0.01 0.09 
intensity -0.09 -0.01 0.01 0.02 0.10 0.01 0.03  
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panels) we find a positive effect of entrainment in the mirrored format — 
i.e. players tended to maintain the helper when it followed an entrain
ment policy relative to a disentrainment one. But we do not find sta
tistically significant effects in the against-static format. 

When the focus is placed on analyzing exposure to entrainment 
(bottom panels) we do not see any significant positive effect of exposure 
to entrainment or disentrainment in the mirrored format. However, it 
should be noted that exposure to entrainment on both pitch and in
tensity have positive coefficients, while exposure to disentrainment on 
pitch and intensity have negative ones. We do find statistically signifi
cant effects in the against-static format when analyzing exposure to 
entrainment. Interestingly, these tend to go in opposite directions: the 
coefficient for pitch entrainment exposure is negative, while the one for 
intensity is positive.21 Notably, comparing these estimates to the Go Fish 
one, suggests that a one standard deviation rise in exposure to entrain
ment on pitch lowers the probability of keeping the avatar 29.5% as 
much as an advice leading to Go Fish reduces it, while a one standard 
deviation rise in exposure to entrainment on intensity rises this proba
bility 35.6% as much as an advice leading to a Go Fish reduces it. 

Discussion Taken as a whole, and, in particular, when compared to 
the results from the first session, this second session of games illustrates 
the challenges behind setting up entrainment policies which may in
fluence the player’s predisposition to choose a helper. Results from our 
first session of games suggested a negative effect of entrainment on 
speech rate in the against-static format, but results from this session of 
games suggest that, when entrainment on pitch and intensity is added to 
the entrainment policy, no effect is observed at the policy level. Notably, 
when analyzing exposure to entrainment, we find that this might be 
driven by the fact that effects of entrainment on different acoustic- 
prosodic features do not necessarily occur in the same direction. 
Moreover, estimated effect sizes are non-negligible when compared to 
the one of an advice leading to Go Fish. 

Results of the mirrored format also illustrate the complexity of 
identifying acoustic-prosodic entrainment effects. Even when a positive 
effect of entrainment is observed at the policy level, the fact that no 
single coefficient is statistically significant when analyzing exposure to 
entrainment makes it hard to pinpoint this effect to a particular behavior 
of an acoustic-prosodic feature. 

3.4. Session of games #3: Entrainment on pitch and intensity 

Motivation and setup With the aim of better isolating the effects found 
in the previous sessions, in a third session of games we experimented 
with a setup in which only pitch and intensity were adapted to the user’s 
way of speaking. Concretely, in the mirrored format one helper 
entrained on pitch and intensity (policy of interestt = 1) while the other 
one disentrained on pitch and intensity (policy of interestt = 0). In the 
against-static format, a helper entrained on these features 
(policy of interestt = 1) and the other one followed a static policy 
(policy of interestt = 0). Helpers and entrainment behaviors were 
counterbalanced as usual. Assignment of policies to helpers remained 
static across games played by a given participant. 

Subjects Data from 24 participants was gathered (6 female, 18 male; 
average age = 22.38, sd = 2.39), 12 participants played in the mirrored 
format, while 12 player in the against-static one. Again, for the reasons 
described in Section 3.1, 18 games were left out of the analysis as they 
did not meet our inclusion criteria (10 in the mirrored format, 8 in the 
against-static format). The sessions were carried out during December 
2016. 

Distribution of the observed acoustic-prosodic feature variations Table 5 
presents the distribution of the variation of pitch and intensity across 
both game formats. The patterns are almost identical to those reported 
in the session of games #2. 

Two-sided exact binomial tests When analyzing the data, we observed 
that, in the mirrored format, 204 out of 390 times the entraining helper 
was selected (52.31%). A two-sided exact binomial fails to reject the 
null-hypothesis at standard significance levels (p = .39). In the against- 
static format, the entraining helper was selected 214 out of 420 times 
(50.95%). An equivalent two-sided exact binomial test also fails to reject 
at standard significance levels the null hypothesis that the helpers were 
chosen randomly (p = .73). 

Regression analysis Table 6 summarizes results from session of games 
#3 regression analysis. Tables A6 and A7 present detailed information 
on each regression. In contrast with session of games #2, when only (dis) 
entrainment policies on pitch and intensity are effective, regressions at 
the policy level (top panels) fail to find statistically significant co
efficients under any format. Results go in the same direction for the case 

Table 6 
Estimated marginal effects for session of games #3. Notes: Exposure to 
entrainment metrics were standardized using z-scores before being introduced 
to the regressions. *p < 0.1; **p < 0.05; ***p < 0.01.  

A. Dis/Entrainment policy  

Mirrored Against-static  

OLS GLME OLS GLME  
(1) (2) (3) (4) 

entrainment policyt = 1  0.0616 0.0628 0.0153 0.0160 
gofish=1 − 0.2692***  − 0.2753***  − 0.1308*  − 0.1309*  

Num. obs. 364 364 392 392 
Num. groups: player  11  12  

B. Dis/Entrainment exposure  

(5) (6) (7) (8) 

exp entpitch
t  

0.0204 0.0210 − 0.0348  − 0.0346  

exp disentpitch
t  

0.0144 0.0110   

exp entintensity
t  0.0198 0.0167 0.0531* 0.0536* 

exp disentintensity
t  

0.0108 0.0099   

gofish=1 − 0.2600***  − 0.2666***  − 0.1271*  − 0.1269*  

Num. obs. 364 364 392 392 
Num. groups: player  11  12  

Table 5 
Distribution of the observed variation of pitch and intensity in session of games 
#3.  

Mirrored 

Feature Min. Q1 Median Q3 Max. Mean SD 

pitch -0.17 -0.03 0.01 0.05 0.35 0.01 0.07 
intensity -0.08 -0.02 0.00 0.01 0.08 0.00 0.02  

Against-static 

Feature Min. Q1 Median Q3 Max. Mean SD 

pitch -0.21 -0.04 0.00 0.05 0.65 0.01 0.09 
intensity -0.13 -0.02 0.00 0.01 0.09 0.00 0.03  

21 It should be noted that, for this session of games, in nearly half of the non- 
practice turns analyzed (48.3%) participants’ intensity and pitch variation 
relative to their base values went in the same direction (i.e. both varied 
simultaneously above or below their respective means), and in the other half it 
did not. This suggests that this result is not driven entirely by the fact that the 
these effects are constantly cancelling each other. 
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of exposure to entrainment under the mirrored format. However, for the 
case of the against-static format, we still find statistically significant 
coefficients for exposure to intensity entrainment. The ones associated 
to entrainment on pitch under this format were not found to be statis
tically significant but, as in session of games #2, remain negative. Once 
again, the estimated effect size is considerable, a one standard deviation 
rise in exposure to entrainment on intensity rises the probability of 
keeping the avatar 42.3% as much as an advice leading to Go Fish re
duces it. 

Discussion Overall, this session showed less association between the 
experimental setup and helpers’ trustworthiness. Still, these are quite 
consistent with results from the second session for the against-static 

format: Once again the effects of entrainment on pitch and intensity 
went in opposite directions. In the mirrored format, where we previ
ously found evidence of positive effects at the policy level of entrain
ment on the three acoustic-prosodic features taken altogether, we do not 
observe evidence suggesting significant effects of entraining only on 
pitch and intensity. 

3.5. Session of games #4: Disentrainment on speech rate and entrainment 
on pitch and intensity 

Motivation and setup For our last session of games we opted to 
experiment with a procedure incorporating as many insights gathered in 
previous games as possible. In particular, results from the first session of 
games suggested that entrainment on speech rate might have a negative 
effect on the players’ choice to maintain a helper, while the second 
suggested that entrainment on pitch and intensity, in addition to 
entrainment on speech rate, might have a positive effect. Results from 
the third session pointed toward a similar direction, although effects 
were much smaller. Taking all this into account, we opted to test the 
effects of a helper which disentrains on speech rate and entrains on pitch 
and intensity. 

It should be mentioned that, even when our results pointed to 
opposing effects of entrainment on intensity and pitch (the effect of 
entrainment on intensity being positive in general and the effect of 
entrainment on pitch negative or null), we decided to keep varying both 
acoustic-prosodic features in synchrony as empirical evidence points 
toward a tendency for these two features to be positively correlated (see 
Gramming et al., 1988). 

During this session of games we continued to use the mirrored and 
the against-static formats. In the mirrored format one helper, which we 
refer to as the tailored helper, disentrained on speech rate and entrained 
on pitch and intensity (policy of interestt = 1), while the other one 
entrained on speech rate and disentrained on pitch and intensity 
(policy of interestt = 0). In the against-static format a helper (the 
tailored one) disentrained on speech rate and entrained on pitch and 
intensity (policy of interestt = 1) while the other followed a static 
behavior (policy of interestt = 0). Once again, helper assignment was 
counterbalanced across participants. Assignment of policies to helpers 
remained static across games played by a given participant. 

Subjects Data from 24 participants was gathered (9 female, 15 male. 
Average age = 21.13, sd = 2.01), 12 participants played in the mirrored 
approach, while 12 player in the against-static approach. 23 games were 
excluded as they did not meet the inclusion criteria described in Section 
3.1 (14 in the mirrored approach, 9 in the against-static approach). The 

Table 8 
Estimated marginal effects for session of games #4. Notes: Exposure to 
entrainment metrics were standardized using z-scores before being introduced 
to the regressions. *p < 0.1; **p < 0.05; ***p < 0.01.  

A. Dis/Entrainment policy  

Mirrored Against-static  

OLS GLME OLS GLME  

(1) (2) (3) (4) 
tailored policyt = 1  − 0.0522  − 0.0302  − 0.0595  − 0.0608  
gofish=1 − 0.3064***  − 0.3212***  − 0.1950***  − 0.1981***  

Num. obs. 308 308 378 378 
Num. groups: player  11  11  

B. Dis/Entrainment exposure  

(5) (6) (7) (8) 

exp entspeech rate
t  

− 0.0236  − 0.0107    

exp disentspeech rate
t  

0.1064*** 0.1256*** 0.0006 0.0017 

exp entpitch
t  − 0.0639*  − 0.0713*  − 0.0065  − 0.0120  

exp disentpitch
t  

0.0410 0.0145   

exp entintensity
t  − 0.0464  − 0.0364  − 0.0089  − 0.0039  

exp disentintensity
t  0.0004 0.0140   

gofish=1 − 0.2968***  − 0.3189***  − 0.
1965***  

− 0.
1988***  

Num. obs. 308 308 378 378 
Num. groups: player  11  11  

Table 9 
Estimated average marginal effects for all against-static sessions taken as a 
whole. Notes: Exposure to entrainment metrics were standardized using z-scores 
before being introduced to the regressions. *p < 0.1; **p < 0.05; ***p < 0.01.   

OLS GLME  
(1) (2) 

exp entspeech rate
t  

− 0.0152  − 0.0157  

exp disentspeech rate
t  

− 0.0084  − 0.0079  

exp entpitch
t  − 0.0282*  − 0.0281*  

exp entintensity
t  0.0355** 0.0348** 

gofish=1 − 0.1566***  − 0.1580***  

Num. obs. 1456 1456 
Num. groups: player  45  

Table 7 
Distribution of the observed variation of all acoustic-prosodic features in session 
of games #4.  

Mirrored 

Feature Min. Q1 Median Q3 Max. Mean SD 

sp.rate -0.50 -0.13 0.00 0.10 0.63 0.00 0.17 
pitch -0.19 -0.04 0.00 0.05 0.23 0.01 0.07 
intensity -0.10 -0.02 0.00 0.02 0.09 0.00 0.03  

Against-static 

Feature Min. Q1 Median Q3 Max. Mean SD 

sp.rate -0.75 -0.10 0.00 0.09 0.77 0.00 0.16 
pitch -0.19 -0.03 0.01 0.05 0.20 0.01 0.06 
intensity -0.15 -0.02 0.00 0.02 0.10 0.00 0.03  
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sessions were carried out during November 2017. 
Distribution of the observed acoustic-prosodic feature variations Table 7 

presents the distribution of the variation of all three acoustic-prosodic 
features across both game formats. This table report statistics similar 
to the previous ones. However, when compared to the previous session 
of games, speech rate shows a much more symmetrical behavior. 

Two-sided exact binomial tests In the mirrored games the tailored 
helper was selected 156 out of 330 times (47.27%). A two-sided exact 
binomial test fails to reject the null hypothesis that the helpers were 
chosen randomly (p = .35). In the against-static games the tailored 
helper was chosen 186 out of 405 times (45.93%). A two-sided exact 
binomial fails again to reject at standard significance levels the null 
hypothesis that the helpers were chosen randomly (p = .11). 

Regression analysis Table 8 summarizes results from session of games 
#4 regression analysis. Tables A8 and A9 present detailed information 
on each regression. At the policy level, the estimated coefficients do not 
pass statistical significance tests at standard levels in both the mirrored 
and against-static formats. At the exposure level, the estimated coeffi
cient of disentrainment on speech rate under the mirrored format shows 
a significant positive effect (equal to 35.8% the estimated fall associated 
to an advice leading to Go Fish), while the one for pitch suggests a 
significant negative effect (equal to 21.5% the estimated fall associated 
to an advice leading to Go Fish). All estimated coefficients under the 
against-static format do not pass statistical significance tests at standard 
levels. 

Discussion Notably, results from this session of games are not entirely 
consistent with the ones found in session of games #2 and session of 
games #3 (although the effects of speech rate go in hand with the ones 
found in session of games #1). In this sense, these results reinforce the 
insight gathered in the second session of games, where we noted that it 
may be the case that the effects of a (dis)entrainment policy on a given 
acoustic-prosodic feature may be influenced to some extent by the 
behavior of the remaining acoustic-prosodic features. In particular, the 
case of entrainment on intensity in the against-static games is illustra
tive: In both the second and third sets, we found positive effects of 
entrainment on intensity under the against-static approach, however 
when disentrainment on speech rate is added to the mix (as it happened 
in these last games), we do not find any statistically significant effect 
associated to entrainment on intensity. 

3.6. Meta analysis 

An advantage of the against-static format relative to the mirrored 
one is that no matter which session subjects participated in, they always 
had to choose between an adapting helper versus a static one, which 
remained the same across all sessions of games. Note however that this is 
not true for the mirrored format, where no helper exhibited the same 
behavior across sessions of games. This property of the against-static 
format allowed us to run a meta analysis of the data collected across 
different sessions, as if it had been collected in a single one. Doing this 
allows us to gain statistical power and to capture more subtle 
phenomena. 

In this section we analyze the data obtained from all sessions played 
under the against-static format as a whole. Concretely, we estimated Eq. 
6 as in previous sections with the sole difference that we added session 
number indicator variables as covariates to capture any fixed effects 
which might be attributed to a particular session of games. 

Table 9 contains the obtained estimates when running the regression 
analysis on all against-static games taken as a whole. Table A10 presents 
detailed results. For the case of pitch and intensity we do find 

associations between exposure to entrainment and maintaining a helper. 
Nonetheless, we find effects in opposite directions. For the case of 
entrainment on pitch, our results suggest that higher exposure to 
entrainment impacts negatively in keeping a helper, but for the case of 
entrainment on intensity we find a positive effect. We do not find any 
association between entrainment or disentrainment on speech rate and 
participants keeping a helper. Regarding effect sizes, results suggest that 
a one standard deviation rise in exposure to entrainment on pitch lowers 
the probability of keeping the avatar 17.8% as much as an advice 
leading to Go Fish reduces it, while a one standard deviation rise in 
exposure to entrainment on intensity rises this probability 22% as much 
as an advice leading to a Go Fish reduces it. 

4. Discussion 

4.1. Summary of findings 

Across different experimental setups we found associations between 
acoustic-prosodic entrainment policies and trust (as measured by relying 
on a particular virtual helper for guidance and assistance). In this way, 
our results suggest and provide further evidence pointing toward an 
association between acoustic-prosodic (dis)entrainment in spoken dia
logue systems and the way users perceive the capabilities of such 
systems. 

Based on a meta-analysis considering data from all sessions of games, 
we observe, as overall patterns, associations between maintaining a 
helper and exposure to entrainment on pitch and intensity. But these 
effects go in opposite directions. For entrainment on pitch a negative 
association with maintaining a helper is observed, while for entrainment 
on intensity a positive one is observed. Interestingly, the estimated effect 
sizes of statistically significant coefficients are non-negligible when 
compared to the effect size of an advice leading to Go Fish. A one 
standard deviation rise in exposure to entrainment in pitch/intensity 
conveys a decrease/increase in the probability of keeping an avatar 
equivalent to 17.8%/22% the estimated fall of an advice leading to Go 
Fish. 

However, a detailed characterization of these associations stands as a 
challenging task. Our findings explicitly forefront reasons which make 
this difficult. In particular:  

• Our data show that the way entrainment on a given acoustic- 
prosodic feature affects users is not completely independent of the 
way other acoustic-prosodic features behave. For example, this was 
the case of entrainment on intensity. In sessions of games #2 and #3 
the effects found were positive, but when disentrainment on speech 
rate was added to the mix in session of games #4, we did not find 
statistically significant effects.  

• Finding a particular effect of a given entrainment policy for a 
particular acoustic-prosodic feature does not necessarily lead to 
observing the opposite effect if the system adapts in the opposite way 
(for example, seeing a negative effect of entrainment on speech rate 
does not imply that disentrainment on speech rate has a positive 
effect). In general, when significant effects of a given entrainment 
policy were found (e.g. a negative effect of pitch entrainment) the 
opposite effect of adapting in the opposite way was not found (i.e. a 
positive effect of pitch disentrainment).  

• Third, and somewhat connected to the first point, at the policy level 
one may not be seeing an effect of a given entrainment strategy, but 
this may be due to the effects of exposure to entrainment across 
acoustic-prosodic features cancelling each other. In particular, 
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results from the against-static format games played in session of 
games #2 and #3 suggest this may be the case. For these games, we 
did not find effects at the policy level, but we did find effects in 
opposite directions at the exposure level (negative for pitch 
entrainment and positive for intensity entrainment). 

4.2. Limitations and future research 

Making a system adapt to the users’ way of speaking involves the 
interaction of different sub-systems, each of them having subtleties. At 
the moment of implementation most commercial ASR systems did not 
return word time-stamps, something which is currently done by some at 
different levels of detail. This led us to use the PocketSphinx toolkit with 
a restricted grammar. Clearly, a restricted grammar limits the natural
ness of speech interaction, and this should be addressed in future work. 

TTS system limitations also impacted the task design. TTS systems 
are quite limited regarding their prosodic modification capabilities, 
especially when trained in languages other than English. As there is 
evidence showing that humans entrain on more acoustic-prosodic fea
tures than the three we studied (e.g. pause length, voice quality), and 
given that our results suggest that adapting one acoustic-prosodic 
feature may impact on the effects of another one, future research 
could also add into the analysis omitted acoustic-prosodic features and 
study their relation with conversation social outcomes. Recent de
velopments in expressive speech synthesis (e.g.  Wang et al., 2018; 
Skerry-Ryan et al., 2018) make this line of research particularly 
promising. 

There are also aspects regarding the entrainment algorithm which 
should be considered. First, as previously reported, humans may entrain 
in multiple ways (proximity, convergence, synchrony), and it may be the 
case that not all acoustic-prosodic features entrain in the same manner 
(for example, pitch entraining according to synchrony and intensity 
according to proximity). This work placed its focus on the effects of 
synchrony and anti-synchrony, but future research should also focus on 
other forms of entrainment (see, for example, Weise and Levitan, 2018). 

Second, in our experimental task, a helper entrains as it gives its 
advice to the way users request it. Given that this is a very common 
dialogue structure in current virtual assistants, understanding the effects 
of acoustic-prosodic entrainment under this type of dialogues is clearly 
important. However, recent research provides preliminary evidence 
suggesting that entrainment may emerge differently for different dialog 
acts (Reichel et al., 2018b; Gauder et al., 2018). Future research should 
also focus on the effects of incorporating dialog acts into the entrain
ment algorithms. 

In this article we followed a purely experimental approach, and, in 
this way, studied a reduced number of hypotheses which were of interest 
to us. Nevertheless, we recognize that the collected data is rich and may 
be hiding patterns that, although not explicitly tested, may guide the 
design of future acoustic-prosodic entrainment algorithms. In this way, 
future research should study this data following a corpus study 
approach. 

Regarding the complexity of characterizing this kind of effects, we 
believe this study, by making explicit how complex the problem is, 
provides an important indirect methodological result. Well-designed 
experimental paradigms are regarded as a “gold standard” for charac
terizing the impact of speech related behavior on social outcomes; 
however, speech behavior is a very complex phenomenon, and charac
terizing complex phenomena requires large amounts of data in order to 
gain statistical power. This poses a dilemma, as collecting in-lab speech 
data under experimental paradigms is quite costly. Future research 

should focus on assessing and validating online formats for running 
these experiments. One first step in this direction could be to replicate 
well-known and established in-lab speech related experiments and test if 
their results are robust to an online setup. 
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Appendix  

Table A1 
Frequency of helper switches in a game for the 294 non-practice games. Note: 
Frequencies are disaggregated by game number. For example, the third row 
indicates that three participants switched helpers twice in the first game, 13 
switched twice in the second one, and 11 switched twice in the third one.   

Game number 

# switches 1 2 3 

0 4 19 26 
1 5 5 7 
2 3 13 11 
3 7 8 9 
4 16 9 8 
5 15 10 8 
6 12 7 12 
7 12 8 5 
8 9 7 7 
9 6 6 2 
10 4 4 2 
11 2 1 0 
12 2 1 1 
13 1 0 0 
14 0 0 0  
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Table A2 
Detailed regression analysis of dis/entrainment setup for session of games #1.   

Mirrored Against-static  

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects 

constant 0.6419*** 0.5861*  0.5524*** 0.2324   
(0.0742) (0.3246)  (0.0817) (0.3484)  

entrainmentpolicyt = 1  0.0015 0.0060 0.0014 − 0.0969  − 0.4084*  − 0.0985   

(0.0563) (0.2448)  (0.0600) (0.2475)  
deck=1 − 0.0693  − 0.2915  − 0.0679  − 0.0163  − 0.0697  − 0.0166   

(0.0722) (0.3086)  (0.0814) (0.3386)  
gofish=1 0.0000 0.0065 0.0015 − 0.0912  − 0.3736  − 0.0900   

(0.0794) (0.3450)  (0.0863) (0.3562)  
Eugenia=1 − 0.0492  − 0.2119  − 0.0484  0.0676 0.2764 0.0664  

(0.0548) (0.2380)  (0.0595) (0.2456)  
female=1 0.1197* 0.5410* 0.1192 − 0.0732  − 0.3583  − 0.0863   

(0.0628) (0.2935)  (0.0657) (0.3372)  
turn number − 0.0046  − 0.0203  − 0.0046  0.0077 0.0321 0.0077  

(0.0071) (0.0309)  (0.0079) (0.0327)  
game number=3 0.0750 0.3433 0.0772 − 0.0243  − 0.0838  − 0.0200   

(0.0668) (0.3005)  (0.0641) (0.2690)  
game number=4 0.0363 0.1648 0.0379 0.0009 0.1048 0.0247  

(0.0711) (0.3127)  (0.0816) (0.3633)  
R2 0.0225   0.0278   
Adj. R2 -0.0025   0.0018   
Num. obs. 322 322  308 308  
RMSE 0.4840   0.4965   
AIC  436.8280   433.0272  
BIC  474.5735   470.3282  
Log Likelihood  -208.4140   -206.5136  
Num. groups: player  13   10  
Var: player constant  0.0149   0.0557  

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01 

Table A3 
Detailed regression analysis of dis/entrainment exposure for session of games #1.   

Mirrored Against-static  

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects 

constant 0.6429*** 0.5899  0.5055*** 0.0420   
(0.0870) (0.3831)  (0.0784) (0.3327)  

exp entspeech rate
t  

− 0.0045  − 0.0192  − 0.0043  − 0.0010  − 0.0057  − 0.0014   

(0.0041) (0.0179)  (0.0042) (0.0173)  
exp disentspeech rate

t  
0.0026 0.0119 0.0027     

(0.0043) (0.0192)     
deck=1 − 0.0652  − 0.2716  − 0.0626  − 0.0183  − 0.0781  − 0.0188   

(0.0720) (0.3105)  (0.0818) (0.3375)  
gofish=1 0.0062 0.0391 0.0088 − 0.0919  − 0.3735  − 0.0908   

(0.0794) (0.3484)  (0.0866) (0.3548)  
Eugenia=1 − 0.0449  − 0.1905  − 0.0431  0.0896 0.3637 0.0881  

(0.0542) (0.2372)  (0.0581) (0.2392)  
female=1 0.1175* 0.5361* 0.1171 − 0.0790  − 0.3773  − 0.0917   

(0.0626) (0.2975)  (0.0659) (0.3347)  
turn number − 0.0049  − 0.0222  − 0.0050  0.0074 0.0310 0.0074  

(0.0071) (0.0311)  (0.0079) (0.0327)  
game number=3 0.0893 0.4088 0.0910 − 0.0158  − 0.0519  − 0.0125   

(0.0679) (0.3074)  (0.0651) (0.2703)  
game number=4 0.0564 0.2580 0.0586 − 0.0040  0.0793 0.0189  

(0.0710) (0.3168)  (0.0824) (0.3622)  
R2 0.0315   0.0195   
Adj. R2 0.0035   -0.0067   
Num. obs. 322 322  308 308  
RMSE 0.4826   0.4987   
AIC  435.8939   435.6518  
BIC  477.4140   472.9528  
Log Likelihood  -206.9470   -207.8259  
Num. groups: player  13   10  
Var: player constant  0.0183   0.0542  

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01 
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Table A4 
Detailed regression analysis of dis/entrainment setup for session of games #2.   

Mirrored Against-static  

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects 

constant 0.5116*** 0.0103  0.5574*** 0.2276   
(0.0891) (0.3872)  (0.0752) (0.3337)  

entrainment policyt = 1  0.1358** 0.5743** 0.1384 − 0.0174  − 0.0666  − 0.0154   
(0.0599) (0.2506)  (0.0513) (0.2211)  

deck=1 0.1585* 0.6531* 0.1501 0.0991 0.4739 0.1074  
(0.0836) (0.3687)  (0.0697) (0.3131)  

gofish=1 0.0229 0.0817 0.0193 − 0.1890***  − 0.7925***  − 0.1887   

(0.0836) (0.3463)  (0.0716) (0.3035)  
Eugenia=1 − 0.0068  − 0.0304  − 0.0072  − 0.0418  − 0.1930  − 0.0447   

(0.0582) (0.2434)  (0.0514) (0.2219)  
female=1 − 0.0355  − 0.1202  − 0.0285  − 0.0466  − 0.1776  − 0.0412   

(0.0660) (0.3048)  (0.0525) (0.2727)  
turn number − 0.0045  − 0.0183  − 0.0043  0.0123* 0.0533* 0.0123  

(0.0078) (0.0325)  (0.0069) (0.0294)  
game number=3 0.0341 0.1660 0.0389 − 0.0102  − 0.0237  − 0.0055   

(0.0679) (0.2930)  (0.0589) (0.2578)  
game number=4 − 0.0683  − 0.2479  − 0.0593  − 0.0165  − 0.0063  − 0.0014   

(0.0894) (0.3812)  (0.0648) (0.2911)  
R2 0.0359   0.0426   
Adj. R2 0.0088   0.0219   
Num. obs. 294 294  378 378  
RMSE 0.4949   0.4880   
AIC  412.1100   515.7234  
BIC  448.9458   555.0723  
Log Likelihood  -196.0550   -247.8617  
Num. groups: player  12   12  
Var: player constant  0.0402   0.0606  

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01 
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Table A5 
Detailed regression analysis of dis/entrainment exposure for session of games #2.   

Mirrored Against-static  

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects 

constant 0.5123*** − 0.0589   0.5403*** 0.1722   
(0.1118) (0.5001)  (0.0746) (0.3264)  

exp entspeech rate
t  

− 0.0015  − 0.0042  − 0.0010  − 0.0043  − 0.0171  − 0.0039   

(0.0047) (0.0200)  (0.0047) (0.0205)  
exp disentspeech rate

t  
0.0052 0.0230 0.0054     

(0.0056) (0.0236)     
exp entpitch

t  
0.0114 0.0452 0.0106 − 0.0156*  − 0.0672*  − 0.0154   

(0.0108) (0.0458)  (0.0093) (0.0408)  
exp disentpitch

t  
− 0.0077  − 0.0298  − 0.0070      

(0.0116) (0.0484)     
exp entintensity

t  0.0246 0.1253 0.0295 0.0477** 0.1997* 0.0456  

(0.0229) (0.1013)  (0.0233) (0.1082)  
exp disentintensity

t  − 0.0029  − 0.0059  − 0.0014      

(0.0289) (0.1192)     
deck=1 0.1590* 0.6437* 0.1473 0.0926 0.4409 0.0990  

(0.0849) (0.3717)  (0.0695) (0.3146)  
gofish=1 0.0226 0.0719 0.0169 − 0.1885***  − 0.8000***  − 0.1882   

(0.0848) (0.3515)  (0.0713) (0.3057)  
Eugenia=1 − 0.0106  − 0.0368  − 0.0087  − 0.0159  − 0.0825  − 0.0189   

(0.0619) (0.2579)  (0.0518) (0.2243)  
female=1 − 0.0247  − 0.0600  − 0.0141  − 0.0309  − 0.1323  − 0.0303   

(0.0674) (0.3236)  (0.0527) (0.2504)  
turn number − 0.0038  − 0.0151  − 0.0036  0.0124* 0.0543* 0.0124  

(0.0079) (0.0327)  (0.0068) (0.0296)  
game number=3 0.0459 0.2401 0.0560 − 0.0010  − 0.0094  − 0.0022   

(0.0700) (0.3077)  (0.0590) (0.2575)  
game number=4 − 0.0487  − 0.1303  − 0.0310  − 0.0068  − 0.0104  − 0.0024   

(0.0924) (0.3998)  (0.0651) (0.2890)  
R2 0.0394   0.0575   
Adj. R2 -0.0052   0.0318   
Num. obs. 294 294  378 378  
RMSE 0.4984   0.4855   
AIC  420.7816   514.5521  
BIC  476.0353   561.7708  
Log Likelihood  -195.3908   -245.2760  
Num. groups: player  12   12  
Var: player constant  0.0630   0.0285  

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01 
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Table A6 
Detailed regression analysis of dis/entrainment setup for session of games #3.   

Mirrored Against-static  

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects 

constant 0.4454*** − 0.2588   0.4318*** − 0.2923    
(0.0737) (0.3277)  (0.0713) (0.2971)  

entrainment policyt = 1  0.0616 0.2714 0.0628 0.0153 0.0679 0.0160  
(0.0514) (0.2213)  (0.0499) (0.2095)  

deck=1 − 0.0432  − 0.1963  − 0.0455  0.1306* 0.5743** 0.1339  
(0.0689) (0.2977)  (0.0666) (0.2900)  

gofish=1 − 0.2692***  − 1.1731***  − 0.2753  − 0.1308*  − 0.5541*  − 0.1309   

(0.0750) (0.3283)  (0.0723) (0.3053)  
Eugenia=1 − 0.0158  − 0.0669  − 0.0154  0.0279 0.1202 0.0283  

(0.0514) (0.2209)  (0.0502) (0.2110)  
female=1 0.0691 0.3040 0.0689 − 0.0378  − 0.1598  − 0.0376   

(0.0727) (0.3999)  (0.0539) (0.2262)  
turn number 0.0149** 0.0659** 0.0152 0.0159** 0.0673** 0.0158  

(0.0070) (0.0305)  (0.0066) (0.0279)  
game number=3 0.0313 0.1668 0.0390 − 0.1119*  − 0.4750*  − 0.1129   

(0.0625) (0.2699)  (0.0612) (0.2576)  
game number=4 0.0838 0.3188 0.0737 0.0098 0.0399 0.0094  

(0.0631) (0.2801)  (0.0602) (0.2536)  
R2 0.0474   0.0546   
Adj. R2 0.0259   0.0349   
Num. obs. 364 364  392 392  
RMSE 0.4883   0.4904   
AIC  497.3185   539.0358  
BIC  536.2900   578.7484  
Log Likelihood  -238.6592   -259.5179  
Num. groups: player  11   12  
Var: player constant  0.0809   0.0000  

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01 

Table A7 
Detailed regression analysis of dis/entrainment exposure for session of games #3.   

Mirrored Against-static  

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects 

constant 0.4314*** − 0.2994   0.4266*** − 0.3137    
(0.0855) (0.3756)  (0.0694) (0.2903)  

exp entpitch
t  

0.0064 0.0285 0.0066 − 0.0106  − 0.0454  − 0.0106   

(0.0104) (0.0449)  (0.0088) (0.0372)  
exp disentpitch

t  
0.0044 0.0147 0.0034     

(0.0111) (0.0478)     
exp entintensity

t  0.0165 0.0601 0.0139 0.0343* 0.1487* 0.0346  

(0.0261) (0.1165)  (0.0182) (0.0792)  
exp disentintensity

t  0.0091 0.0365 0.0084     

(0.0284) (0.1215)     
deck=1 − 0.0383  − 0.1820  − 0.0423  0.1273* 0.5657* 0.1308  

(0.0697) (0.2997)  (0.0664) (0.2909)  
gofish=1 − 0.2600***  − 1.1306***  − 0.2666  − 0.1271*  − 0.5421*  − 0.1269   

(0.0755) (0.3279)  (0.0721) (0.3058)  
Eugenia=1 − 0.0197  − 0.0823  − 0.0190  0.0342 0.1508 0.0351  

(0.0519) (0.2218)  (0.0503) (0.2135)  
female=1 0.0689 0.3060 0.0695 − 0.0494  − 0.2148  − 0.0501   

(0.0749) (0.3972)  (0.0542) (0.2299)  
turn number 0.0145** 0.0644** 0.0149 0.0161** 0.0686** 0.0160  

(0.0071) (0.0307)  (0.0066) (0.0280)  
game number=3 0.0331 0.1721 0.0404 − 0.1111*  − 0.4759*  − 0.1121   

(0.0629) (0.2702)  (0.0611) (0.2594)  
game number=4 0.0942 0.3626 0.0839 0.0167 0.0657 0.0152  

(0.0646) (0.2848)  (0.0600) (0.2546)  
R2 0.0465   0.0634   
Adj. R2 0.0167   0.0413   
Num. obs. 364 364  392 392  
RMSE 0.4906   0.4887   
AIC  503.8718   537.3820  
BIC  554.5348   581.0659  
Log Likelihood  -238.9359   -257.6910  
Num. groups: player  11   12  
Var: player constant  0.0717   0.0000  

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01 
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Table A8 
Detailed regression analysis of dis/entrainment setup for session of games #4.   

Mirrored Against-static  

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects 

constant 0.4649*** − 0.3236   0.5069*** − 0.0040    
(0.0795) (0.4060)  (0.0746) (0.3438)  

tailored policyt = 1  − 0.0522  − 0.1407  − 0.0302  − 0.0595  − 0.2676  − 0.0608   
(0.0547) (0.2580)  (0.0501) (0.2209)  

deck=1 0.0428 0.1179 0.0253 0.0784 0.3606 0.0803  
(0.0713) (0.3268)  (0.0651) (0.2966)  

gofish=1 − 0.3064***  − 1.5281***  − 0.3212  − 0.1950***  − 0.8387***  − 0.1981   

(0.0783) (0.3936)  (0.0710) (0.3075)  
Eugenia=1 − 0.0666  − 0.2383  − 0.0512  − 0.0221  − 0.0796  − 0.0180   

(0.0554) (0.2586)  (0.0503) (0.2218)  
female=1 0.0052 0.0526 0.0113 0.0744 0.3450 0.0776  

(0.0562) (0.3790)  (0.0510) (0.2843)  
turn number 0.0214*** 0.1019*** 0.0218 0.0115* 0.0512* 0.0116  

(0.0071) (0.0332)  (0.0065) (0.0287)  
game number=3 − 0.1434**  − 0.5939*  − 0.1309  0.0605 0.3398 0.0768  

(0.0692) (0.3326)  (0.0606) (0.2765)  
game number=4 0.0799 0.4476 0.0970 0.0419 0.2164 0.0495  

(0.0647) (0.3223)  (0.0604) (0.2683)  
R2 0.1180   0.0511   
Adj. R2 0.0944   0.0305   
Num. obs. 308 308  378 378  
RMSE 0.4761   0.4829   
AIC  403.5155   507.8694  
BIC  440.8165   547.2184  
Log Likelihood  -191.7578   -243.9347  
Num. groups: player  11   11  
Var: player constant  0.1810   0.0772  

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01 
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Table A9 
Detailed regression analysis of dis/entrainment exposure for session of games #4.   

Mirrored Against-static  

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects 

constant 0.4430*** − 0.4836   0.4890*** − 0.0863    
(0.1038) (0.5396)  (0.0749) (0.3433)  

exp entspeech rate
t  

− 0.0029  − 0.0066  − 0.0013      

(0.0047) (0.0226)     
exp disentspeech rate

t  
0.0129*** 0.0747*** 0.0152 0.0001 0.0010 0.0002  

(0.0048) (0.0251)  (0.0043) (0.0189)  
exp entpitch

t  − 0.0212*  − 0.1158*  − 0.0236  − 0.0020  − 0.0167  − 0.0038   

(0.0118) (0.0595)  (0.0104) (0.0458)  
exp disentpitch

t  
0.0113 0.0196 0.0040     

(0.0103) (0.0505)     
exp entintensity

t  − 0.0275  − 0.1057  − 0.0216  − 0.0055  − 0.0108  − 0.0024   

(0.0236) (0.1170)  (0.0198) (0.0871)  
exp disentintensity

t  0.0002 0.0446 0.0091     

(0.0241) (0.1167)     
deck=1 0.0345 0.0593 0.0121 0.0803 0.3674 0.0821  

(0.0714) (0.3391)  (0.0658) (0.2983)  
gofish=1 − 0.2968***  − 1.5809***  − 0.3189  − 0.1965***  − 0.8393***  − 0.1988   

(0.0781) (0.4065)  (0.0716) (0.3080)  
Eugenia=1 − 0.0567  − 0.1778  − 0.0364  − 0.0235  − 0.0875  − 0.0198   

(0.0553) (0.2692)  (0.0505) (0.2216)  
female=1 − 0.0019  0.0483 0.0099 0.0765 0.3526 0.0795  

(0.0564) (0.4232)  (0.0520) (0.2864)  
turn number 0.0196*** 0.0985*** 0.0201 0.0117* 0.0522* 0.0118  

(0.0070) (0.0343)  (0.0066) (0.0288)  
game number=3 − 0.1468**  − 0.6430*  − 0.1352  0.0587 0.3338 0.0757  

(0.0689) (0.3461)  (0.0618) (0.2806)  
game number=4 0.0767 0.4210 0.0870 0.0374 0.1929 0.0443  

(0.0649) (0.3332)  (0.0609) (0.2684)  
R2 0.1481   0.0481   
Adj. R2 0.1105   0.0222   
Num. obs. 308 308  378 378  
RMSE 0.4719   0.4850   
AIC  400.9959   513.0576  
BIC  456.9474   560.2763  
Log Likelihood  -185.4980   -244.5288  
Num. groups: player  11   11  
Var: player constant  0.2497   0.0761  

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01 
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Table A10 
Detailed regression analysis results for all against-static sessions taken as a 
whole.   

OLS Generalized linear 
mixed-effects 

Average marginal 
effects 

constant 0.4893*** − 0.0383    
(0.0446) (0.2025)  

exp entspeech rate
t  

− 0.0028  − 0.0123  − 0.0029   

(0.0028) (0.0118)  
exp disentspeech rate

t  
− 0.0019  − 0.0076  − 0.0018   

(0.0036) (0.0155)  
exp entpitch

t  − 0.0090*  − 0.0382*  − 0.0090   

(0.0053) (0.0226)  
exp entintensity

t  0.0248** 0.1033** 0.0243  

(0.0113) (0.0495)  
deck=1 0.0736** 0.3317** 0.0773  

(0.0348) (0.1525)  
gofish=1 − 0.

1566***  
− 0.6580***  − 0.1580   

(0.0372) (0.1569)  
Eugenia=1 0.0184 0.0680 0.0160  

(0.0258) (0.1102)  
female=1 − 0.0239  − 0.1011  − 0.0238   

(0.0271) (0.1365)  
turn number 0.0124*** 0.0529*** 0.0124  

(0.0034) (0.0146)  
game number=3 − 0.0140  − 0.0347  − 0.0082   

(0.0305) (0.1315)  
game number=4 0.0075 0.0727 0.0170  

(0.0322) (0.1413)  
session=2 0.0299 0.1226 0.0287  

(0.0399) (0.1972)  
session=3 − 0.0388  − 0.1724  − 0.0411   

(0.0424) (0.2058)  
session=4 0.0328 0.1334 0.0312  

(0.0439) (0.2138)  
R2 0.0357   
Adj. R2 0.0264   
Num. obs. 1456 1456  
RMSE 0.4885   
AIC  1965.2753  
BIC  2049.8105  
Log Likelihood  -966.6377  
Num. groups: 

player  
45  

Var: player 
constant  

0.0496  

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01 
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