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Abstract

Acoustic word embeddings have been proven to be useful in
query-by-example keyword search. Such embeddings are typ-
ically trained to distinguish the same word from a different
word using exact orthographic representations; so, two differ-
ent words will have dissimilar embeddings even if they are
pronounced similarly or share the same stem. However, in
real-world applications such as keyword search in low-resource
languages, models are expected to find all derived and in-
flected forms for a certain keyword. In this paper, we address
this mismatch by incorporating linguistic information when
training neural acoustic word embeddings. We propose two
linguistically-informed methods for training these embeddings,
both of which, when we use metrics that consider non-exact
matches, outperform state-of-the-art models on the Switchboard
dataset. We also present results on Sinhala to show that models
trained on English can be directly transferred to embed spoken
words in a very different language with high accuracy.
Index Terms: acoustic word embeddings, Siamese neural net-
works, low-resource languages

1. Introduction

There are more than 7,000 languages in the world, but human
language technology, especially speech processing technology,
exists only for a few of them. Building an automated speech
processing system for a new language requires extensive time
and effort to collect, transcribe, and translate data. However, a
crucial real-world application for low-resource language speech
processing systems is to support a rapid and effective response
to emerging incidents, given limited language resources. In
this scenario, rather than building automatic speech recognition
and machine translation systems with insufficient accuracy, it
may be more helpful to provide situational awareness by simply
identifying critical elements of information, such as incident-
related topics, names, and events. This corresponds to query-
by-example keyword search, where spoken keyword queries are
used to retrieve information from speech utterances. In the work
presented here, our goal is to obtain acoustic word embeddings
that can be easily applied to query-by-example keyword search
in languages with minimal resources.

The idea of acoustic word embeddings is to represent
variable-length speech segments with fixed-dimensional fea-
ture vectors [1]. With the advance in neural networks, re-
searchers [2, 3, 4, 5] have shown that neural acoustic word
embeddings trained on word-pair information can better dis-
criminate words than dynamic time warping (DTW) based ap-
proaches. A common method for obtaining acoustic word em-
beddings is to train a Siamese neural network [6] which has
parameter-sharing components that take in pairs of spoken word
as inputs and minimize or maximize the output distance depend-
ing on whether the pair comes from the same or different word

class. All existing works use exact orthographic representation
to distinguish whether two speech samples are from the same
or different words, no matter how close or far they actually are.
For example, a model trained in such a method will learn to
maximize the embedding distance of a spoken sample of “ter-
rorist” and a sample of “terrorism”, even if they share the same
stem and are phonetically similar. However, in real-world ap-
plications, keyword search models are expected to find all the
derived and inflected forms for a certain keyword, which means
that these embeddings should be as close to one another as pos-
sible. To address the mismatch between the standard training
and this different use of acoustic word embeddings, we pro-
pose two linguistically-informed methods: (1) Group words by
stems during training and treat words with the same stem as
being from the same word class. (2) Instead of minimizing or
maximizing output distance for the same or different word pairs,
calculate the pronunciation distance of each word pair and try
to make the output distance equal to the pronunciation distance.
We evaluate these methods on two different experimental set-
tings: (1) a low-resource setting, where training data is avail-
able but limited; (2) a zero-resource setting, where no training
data is available for the target language.

The remainder of the paper is organized as follows. In Sec-
tion 2, we describe related work on keyword search in low-
resource languages and acoustic word embeddings. We intro-
duce our linguistically-informed training methods for neural
acoustic word embeddings in Section 3. Experimental settings
and results are presented in Sections 4 and 5. We conclude in
Section 6 and present directions for future work.

2. Related work

For keyword search in low-resource languages, Jansen and
Durme [7] mapped frame-level feature vectors to a sortable-bit
signature and used DTW-inspired methods to identify frame-
level matches. Levin et al. [8] extended previous work to embed
speech segments in an unsupervised way and performed search
directly at the segment level. Chen et al. [9] built a keyword
search system using word-morph interpolated language mod-
els to mitigate the data sparsity issue of the morphologically-
rich vocabulary in Tamil. Another work of Chen et al. [10]
added phonological and prosodic features for keyword search
in Swahili, including the duration, speaking rate, and number of
vowels and consonants of keyword queries. In the 2014 Query-
by-Example Speech Search Task (QUESST) [11], one task was
non-exact matching, in which test occurrences could contain
small morphological variations with regard to the lexical form
of the query. To solve this problem, Xu et al. [12] proposed a
partial matching strategy in which all partial phone sequences of
a query were used to search for matching instances; Proenga et
al. [13] modified the DTW algorithm using posteriorgrams and
extracted intricate paths to account for special cases. Although



some of these works attempted to solve the non-exact match-
ing problem, they all used DTW-based matching on frame-level
representations, which has been shown to be outperformed by
distance-based matching on acoustic word embeddings [2, 3, 4].

Most research on acoustic word embeddings has used
Siamese neural networks with orthographic word-pair informa-
tion. Kamper et al. [2] built such models using convolutional
neural networks (CNNs), and Settle and Livescu [3] used re-
current neural networks (RNNs) to learn embeddings. Settle
et al. [4] also found that these embeddings could be used for
query-by-example search with substantial improvements in per-
formance over DTW-based approaches. Yuan et al. [5] used
temporal context padding instead of zero padding on each train-
ing word to better match the sliding window with context at test
time. Yuan et al. [14] trained a bottleneck feature (BNF) ex-
tractor and fed BNFs instead of cepstral features into Siamese
networks. Gundogdu and Saraclar [15, 16] learned frame-level
distance metrics automatically for similarity measurement.

For autoencoder-based unsupervised acoustic word embed-
dings, Chung at al. [17] and Holzenberger et al. [18] used a
recurrent autoencoder to learn embeddings without using word-
pair information as supervision. However, both research ef-
forts assumed that training utterances are already segmented
into words while learning embeddings in an unsupervised way.
Kamper [19] solved this mismatch by using an unsupervised
term discovery system to find sample same-word pairs. For
evaluating acoustic word embeddings, Ghannay et al. [20, 21]
proposed to evaluate the intrinsic performances of acoustic
word embeddings by comparing embedding similarity with
the orthographic and phonetic similarity of the original words.
There is also work on embedding phonetic information and
orthographic representation jointly [22, 23]. However, these
methods require a considerable amount of speech data with
word-aligned transcripts in the target language which may not
be possible in a low-resource setting.

3. Our approaches

In this section, we describe our approach to acoustic word em-
beddings using Siamese neural networks and two linguistically-
informed training methods. In the first method, we modify the
definition of word class in traditional methods by treating words
with the same stem as belonging to the same word class. In the
second method, we propose a new loss function to directly train
acoustic embeddings that retain the phonetic distance of the or-
thographic representations.

3.1. Siamese neural network with triplet loss function

A Siamese neural network usually consists of two or three
parameter-sharing components which accept distinct inputs but
are joined by a loss function at the top. The loss function is used
to compute a metric between the highest-level feature represen-
tation of each component. One commonly used loss function
for learning embeddings is triplet loss, which accepts a triplet
of embedding vectors from the three components. Each triplet
consists of three embedded samples (xa, xp, xn), and the loss
over the embeddings is defined as:

Loss(xa, xp, xn) = max{0,m+d(xa, xp)�d(xa, xn)} (1)

where xa is the embedding of the current sample (anchor), xp is
the embedding of a positive sample from the same word class,
and xn is the embedding of a negative sample from a differ-
ent word class. By optimizing triplet loss with margin m, the

Figure 1: Siamese neural network with triplet loss.

embeddings of samples in the same word class will be close to
each other, while the embeddings of samples in different word
classes will be far apart. The distance metric d(x1, x2) can be
any function mapping two same-dimensional vectors to a dis-
tance score. Figure 1 shows a Siamese neural network with
triplet loss, where the inputs are processed by the components
from bottom to top and joined by the triplet loss function.

3.2. Linguistically-informed training methods

Clustering words by their stems. As described in Sec-
tion 1, keyword search models in real applications are often
expected to find morphological variants of keywords, which
means these embeddings should be as close as possible. In
this method, we address this by clustering all words with the
same stem into a single class. We use the same triplet loss func-
tion as in Equation 1 but with a different strategy for retrieving
triplets. For each anchor sample, a positive sample is another
word with the same stem, and a negative sample is drawn from
words with different stems. By training the Siamese neural net-
work on stems, we expect the model to focus on the stems of
the words instead of the full words.

Learning pronunciation distance. This method is moti-
vated by another limitation of a triplet loss function using word-
pair information. For each anchor, the model treats all negative
samples similarly and attempts to make all the embeddings of
negative samples far from the anchor’s embedding. However,
for homophones or other words pronounced similarly, we do
not want these embeddings to be far apart. Thus our goal here
is to obtain acoustic embeddings that retain the phonetic dis-
tance over word pairs. The loss is defined as

Loss(x1, x2) = (d(x1, x2)� dedit(phone1, phone2))
2 (2)

where x1 and x2 are the embeddings of two randomly chosen
words, d can be any distance metric, and dedit is the phonetic
edit distance of the two words. By minimizing the mean squared
error (MSE) between the embedding distance and the pronunci-
ation distance of all word pairs, these embeddings can capture
phonetic information more accurately.

4. Experiments

We conducted experiments in both low-resource and zero-
resource settings using our baseline Siamese network model and
the two proposed models described above. We evaluated the
models on various metrics, measuring different characteristics
of the embeddings.



4.1. Low-resource setting: English Switchboard

To simulate a low-resource setting, we performed experiments
on a very limited subset of the Switchboard [24] corpus. We
used the same train/dev/test file partitions as Settle et al. [4] and
segmented the conversation into words according to the word-
aligned transcripts. Following existing research [3, 4], we used
only words with 0.5s to 2.0s duration and with a minimum of
6 characters. In order to use triplet loss function, the minimum
occurrence of each word was set at 2 for the training set and 0
for the dev and test sets. After preprocessing, we obtained 10k,
11k and 11k samples on the train, dev, and test set respectively.
There is less than 2 hours of speech for training, which corre-
sponds to a low-resource setting. To use our proposed methods,
we assumed that a stemmer and a dictionary with pronunciation
information were available for the training language. In our ex-
periments, we used the NLTK Snowball stemmer [25] and the
CMU Pronouncing Dictionary for English.

4.2. Zero-resource setting: Sinhala

In a zero-resource setting, we assume that there is no transcribed
speech data available in the target language, but that we can ac-
cess native speakers of the target language for a limited time
to obtain spoken keywords. We used Sinhala, one of the offi-
cial languages in Sri Lanka. Sinhala is a morphologically rich
language belonging to the Indo-European language family and
is written using the Sinhalese script. We collected spoken key-
words in Sinhala as part of the 2018 DARPA LORELEI (Low
Resource Languages for Emergent Incidents) Evaluation [26].
Our goal was to identify Situation Frames, which are incidents
that first responders are asked to help with, often in countries
where they do not know the language, but will have an urgent
need to know where aid is most needed and what kind of aid
is required. Their main sources will be text and speech re-
sources in the target language, such as social media posts and
news broadcasts. Since there may be many of these in an emer-
gency situation, they need to screen the data to discover critical
information.

To tackle this low-resource language problem, we followed
this process: first, we produced a list of 75 English keywords
related to Situation Frames we were asked to identify, such
as “medicine” for “Medical Assistance Frame”, “terrorist” for
“Terrorism or other Extreme Violence Frame”, and “collapse”
for “Infrastructure Frame”. We were given online access for 2
hours to non-linguist native speakers of Sinhala, in which we
asked them to translate each English keyword into 1 to 3 differ-
ent words in the target language, which we then recorded. Af-
ter this 2-hour meeting, we manually segmented the recorded
words, obtaining 121 unique incident-related Sinhalese words
and 610 spoken samples. All speech segments were then con-
verted to single-channel audio with 8kHz sampling rate.

For a potential zero-resource setting, we believe that trans-
ferring knowledge directly from other high-resource languages
is the most efficient method. In this scenario, we trained models
on the full Switchboard English dataset and tested on the Sin-
hala spoken words. Since the training in this case did not use
any Sinhala data, neither a Sinhalese stemmer nor a Sinhalese
pronunciation dictionary was used.

4.3. Siamese neural network model details

We extracted Mel Frequency Cepstral Coefficients (MFCCs)
for each word to use as input to our Siamese neural network
models. The frame length for extracting MFCCs was 25ms

and the stride was 10ms. For each frame, we computed a 39-
dimensional feature vector composed of the first 13 MFCCs,
their corresponding 13 deltas, and 13 delta-deltas. First, we
used a set of recurrent layers to embed the input sequences
while taking the frame-level temporal context into considera-
tion. Recurrent layers are commonly used in learning acoustic
embeddings, and RNN-based models have proven to be better
than their CNN counterparts [3]. After the recurrent layers, an
attention layer was used to focus on frames with potentially use-
ful information and a set of fully connected layers was used to
compute the final output. To our knowledge, this is the first
work to use an attention mechanism in learning acoustic word
embeddings. This mechanism helps our models focus on differ-
ent parts of words dynamically and it suits our goal of learning
robust embeddings with regard to small phonetic and morpho-
logical variations. Since the focus of our work is not to find
the set of hyperparameters that performs the best on a certain
dataset, we followed the optimal model configuration in Settle
and Livescu [3] and Settle et al. [4]. For the recurrent layers, we
used 3 bidirectional long short-term memory layers (BLSTMs)
with 256 hidden cells in each direction and 0.3 dropout between
layers. The fully connected layers have 1024 cells with Recti-
fied linear unit (ReLU) non-linearities and 0.5 dropout between
layers, and the final embeddings produced by the model have
1024 dimensions. We used the Adam optimization algorithm
[27] with a learning rate of 0.001. The batch size was 32 and
zero-padding was used. We used 1.0 as the margin of the triplet
loss and Euclidean distance as similarity measurement. We ran-
domly selected 5 negative samples for each anchor and only
used the negative sample that most violated the marginal con-
straint to compute the triplet loss. For the low-resource setting
experiments, we saved the checkpoint with the highest average
precision on the dev set. For the zero-resource setting experi-
ments, we trained all models for 500 epochs.

We trained three models for each setting using the same
structure for the Siamese components in each model. “Word
Triplet” is a baseline Siamese network optimized on triplet loss
with word-pair information; “Stem Triplet” is the first proposed
model optimized on triplet loss with stem-clustered word-pair
information; “Pronunciation Dist” is the second model trained
to learn the pronunciation distance of word pairs.

4.4. Evaluation metrics

Models were evaluated based on an acoustic word discrimina-
tion task, often used as a proxy for query-by-example keyword
search [2, 3, 14, 22]. In this task, the models need to embed
all test words and retrieve same-word pairs according to the
distance between embeddings. Given a certain threshold, each
word pair can be classified as the same or different if its dis-
tance is below or above the threshold. By varying the thresh-
old, we can obtain a precision-recall curve and calculate aver-
age precision (Word AP) accordingly. However, in our scenar-
ios, we are also interested in retrieving words with small mor-
phological variation. To evaluate the performance of models
on non-exact matching, we calculated another version of aver-
age precision (Stem AP) in which all words with the same stem
are treated as coming from the same word class. In addition to
precision-recall-curve-based metrics, we also used a phonetic-
similarity based metric (Phonetic Sim) proposed by Ghannay et
al. [20, 21] to evaluate whether embeddings capture phonetic
similarity. In this metric, average embedding distances between
each test word and other words are compared to the words’ pho-
netic distances using Pearson correlation. For the evaluation in



Table 1: Results on Switchboard test set.

Model Word AP Stem AP Phonetic Sim

Word Triplet 44.5 47.8 23.3
Stem Triplet 42.3 54.1 21.7

Pronunciation Dist 26.8 27.3 38.8

Table 2: Results from training on English words, stems, and
pronunciation distance but testing on Sinhala spoken keywords.

Model Word AP Word P@4

Word Triplet 57.2 81.6

Stem Triplet 60.3 81.1
Pronunciation Dist 24.4 76.1

the zero-resource setting, since we did not have a stemmer or
pronunciation dictionary for Sinhala, we used precision at k as
an alternative evaluation metric. Each Sinhala word was spoken
5-6 times, so each sample has at least 4 other samples with the
same word class and k is set at 4 for the metric (P@4).

5. Results and analysis

5.1. Low-resource setting: Switchboard

In Table 1 we present evaluation results on the Switchboard
test set measured with word pair average precision (Word AP),
average precision when clustering words by stems (Stem AP),
and embedding phonetic similarity (Phonetic Sim). From these
results, we see that the model trained using orthographic rep-
resentations of words achieves the highest AP when the test
words are represented by their full spellings; the model trained
on word stems outperforms other models when test words are
clustered by their stems; the model learning pronunciation dis-
tance best captures the phonetic information of words. We also
note that the “Stem Triplet” model only performs 2.2 lower
than the baseline model in Word AP, but is 6.3 higher in Stem
AP. This means that the “Stem Triplet” model only sacrifices a
small amount in exact word matching, but is better able to find
words with some morphological variation. Moreover, although
the “Pronunciation Dist” model is not as useful as other mod-
els at clustering same words together, it is significantly better
at measuring the pronunciation distance of word pairs. These
results suggest that we should choose the model to use depend-
ing on the problem we want to solve. Note that the best AP on
the same train/dev/test set was achieved at 67.1 [3]. However,
all conversations (59 hours) were used for data normalization
in that work, which we cannot use in our low-resource scenario
in which only 2 hours of training data are available. We match
the work as much as possible by using the same neural network
architecture and hyperparameters in all three models.

5.2. Zero-resource setting: Sinhala

For our zero-resource experiment on Sinhala, we used average
precision (Word AP) and precision at 4 (Word P@4) as metrics.
All models were trained on English Switchboard and tested on
Sinhala spoken keywords without using any Sinhalese-specific
adaptation. From Table 2, we observe that the model trained
on triplet loss with English stems performs best on embedding
Sinhala spoken words. All models achieve P@4 around 80 per-
cents, meaning that we can retrieve other samples of the same

Figure 2: t-SNE visualization of Sinhala spoken keywords.

word with high accuracy. Note that both AP and P@4 treat
words with the same stem as different words, since we do not
have an accurate stemmer in Sinhala. In order to check whether
the embeddings can cluster words that are semantically and
phonetically similar with each other, we visualize the embed-
dings of “Stem Triplet” model using t-Distributed Stochastic
Neighbor Embedding (t-SNE) [28] as shown in Figure 2. Each
word corresponds to 5 to 6 points in the figure, with different
colors for different words. In order to demonstrate the cluster-
ing effect, we manually assigned similar colors to words with
similar meanings. We used boxes to highlight some of the clus-
ters with semantically and phonetically similar words: the green
box contains Sinhala words for {destroy, destroyed, destruc-
tion}; the red box contains {attack, attacker}; the yellow box
contains {crime, criminal, criminal (another translation in Sin-
hala)}; the blue box contains {hospital, hospitalize}; the pink
box contains {terrorist, terrorism}. The boxes show that words
with morphological variations can be embedded closely, which
makes non-exact matching keyword search possible.

6. Conclusions

In this paper, we have proposed two linguistically-informed
training methods for generating acoustic word embeddings that
better suit real-world information retrieval applications. From
the experimental results on Switchboard with a low-resource
setting, we find that the traditional model trained with word-
pair information is only useful for finding exact word matches,
while the model trained with stem information can retrieve non-
exact matches of words with small morphological variations,
and the model learning pronunciation distance is best at mea-
suring similarity between random words. We suggest that dif-
ferent training methods should be chosen depending on the pur-
pose they are used for. The zero-source experiments in Sinhala
demonstrate that we can generate embeddings that cluster sim-
ilar words together without any training data in the target lan-
guage. In future, we will explore whether the proposed training
methods can be combined together to obtain embeddings that
perform well in both clustering words and measuring distance.
We will also perform query-by-example keyword search in low-
resource and zero-resource settings with these methods.
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