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Abstract
Building on previous work in subset selection of training data
for text-to-speech (TTS), this work compares speaker-level and
utterance-level selection of TTS training data, using acoustic
features to guide selection. We find that speaker-based selec-
tion is more effective than utterance-based selection, regardless
of whether selection is guided by a single feature or a com-
bination of features. We use US English telephone data col-
lected for automatic speech recognition to simulate the condi-
tions of TTS training on low-resource languages. Our best voice
achieves a human-evaluated WER of 29.0% on semantically-
unpredictable sentences. This constitutes a significant improve-
ment over our baseline voice trained on the same amount of
randomly selected utterances, which performed at 42.4% WER.
In addition to subjective human voice evaluations with Amazon
Mechanical Turk, we also explored objective voice evaluation
using mel-cepstral distortion. We found that this measure cor-
relates strongly with human evaluations of intelligibility, indi-
cating that it may be a useful method to evaluate or pre-select
voices in future work.
Index Terms: speech synthesis, deep learning, parametric syn-
thesis, data selection, intelligibility, found data, crowdsourcing

1. Introduction
Text-to-speech (TTS) synthesis is a crucial component in mod-
ern technology such as virtual personal assistants and home de-
vices, GPS navigation, and speech-to-speech translation. There
are close to 7,000 languages in the world, however only a few
have received the research attention and data collection efforts
required to create a TTS system. Data collection for TTS typi-
cally entails recording a single professional speaker reading for
many hours in as even and neutral a style as possible using a
high-quality microphone in an anechoic chamber. Building a
high-quality, commercial-grade TTS voice for a new language
costs around one million dollars, and thus this is usually only
an effort that is undertaken with major economic motivation.
However, with recent advances in statistical parametric speech
synthesis (SPSS) such as neural network based synthesis, it is
possible to build voices using more heterogeneous data. Thus, it
may be possible to make use of other sources of data which have
already been created or collected for other purposes to build
voices in new languages.

In our prior work [1], we explored the use of speech in the
form of short utterances read by many speakers over the tele-
phone, a type of data which is typically collected for training au-
tomatic speech recognition (ASR) systems and which is readily
available in many languages that do not necessarily have a pro-
fessional TTS corpus. We experimented with a data selection
approach in which we attempted to identify a subset of utter-
ances out of the entire corpus which would be the most suitable
for building TTS voice models. In this work, we extend those

experiments by investigating data selection at the speaker level
in addition to the utterance level; we want to determine whether
speech from certain speakers in the corpus is better suited to
building voice models, and also to test whether the consistency
gained by training on more data from each speaker and using
fewer speakers improves synthesis output.

2. Related Work
Previous work on selecting the best data from a noisy or inho-
mogeneous corpus has typically involved removing the noisi-
est utterances and choosing the most neutrally-spoken portions
of the data. Audiobooks and radio broadcast news have been
popular sources of found data [2, 3, 4, 5] due to their rela-
tively clean recording conditions and the fact that they typi-
cally contain large amounts of speech from a single speaker.
Corpora designed for automatic speech recognition have also
been explored for building HMM-based TTS voices; in partic-
ular, [6] built TTS voices on various ASR corpora containing
cleanly-recorded read speech, as well as some corpora contain-
ing speech in a noisy environment, with the goal of being able
to create “thousands of voices” from the many speakers in each
corpus. They examined the tradeoffs between amount of data
and voice quality, finding that it is better to train on data from
multiple speakers and adapt to target speaker data when less
than an hour of target speaker is available, and it is better to
train a speaker-specific voice if more than two hours of speaker
data is available. [7] identified noisy and misaligned utterances
in a corpus of conversational telephone speech by measuring
mel cepstral distance (MCD) between original utterances and
utterances synthesized by a model trained on all of the data, in
order to find utterances that are outliers with respect to the over-
all data.

Most work on building TTS from found data focuses on
utterance-level selection. There has however been some work
in selecting the best speakers for building a voice. [8] identified
speakers that were acoustically similar for building a Bangla
voice. They auditioned 15 speakers, did a crowdsourced eval-
uation to identify the speaker most preferred by listeners, and
then picked 5 additional speakers from the original 15 who
had similar vocal characteristics. [9] used human judgments of
perceptually-similar source speakers, as well as objective mea-
sures, for building an average voice model (AVM) to build a
better adapted voice than one based on an AVM trained on all
the source speakers. Similarly, [10] aimed to select the best
adult source speakers for building an AVM to adapt to child
speech based on the objective measures of MCD and RMSE of
log f0, finding that these measures also correlated well with hu-
man judgments of intelligibility for the adapted voices. In our
work, we aim to identify speakers in ASR data that are both
similar to each other and suitable for TTS, by selecting speak-
ers based on a number of novel acoustic and prosodic features.



We also aim to compare speaker-level training data selection to
utterance-level training data selection to determine which pro-
duces better voices, with the hypothesis that speaker-level se-
lection, by using more data from fewer speakers, will produce
more consistent and thus more intelligible-sounding models.

3. Tools and Corpora
We used the 160-hour Macrophone corpus of “approximately
200000 [transcribed telephone speech] utterances by 5000
[American English] speakers.” [11] The majority demographic
of Macrophone are adult, female speakers, comprising 83.5
hours of speech. The Macrophone corpus was designed for
the development of ASR for telephone-based dialogue systems
such as travel booking and other database-related tasks, and
consists of short phrases and queries related to these types of
tasks. There are 4005 female speakers in the corpus. The mean
number of utterances per speaker is 40.7, with a standard devi-
ation of 4.27. The minimum number of utterances per speaker
is 1, the maximum is 44, and the median is 42.

We used the University of Edinburgh’s deep-learning-based
speech synthesis model (“voice”) toolkit, Merlin [12], to train
all of our voices. Each voice has two associated deep-learning-
based models, both trained on time-aligned context-dependent
label files containing phonetic and linguistic features generated
from raw text using Festival [13] with EHMM alignment [14],
and acoustic features (frame-level log f0, mel-generalized cep-
stra, and band aperiodicity features) extracted by the WORLD
vocoder from the original audio. With a final goal of map-
ping phoneme sequences to acoustic features, the trained du-
ration model predicts the duration of each phoneme for synthe-
sis and the acoustic model generates acoustic features for each
phoneme, which are ultimately converted to audio. We based
our training on the “build your own voice” recipe from Merlin.
These models consist of 6 TANH layers each of size 1024, with
a linear activation function at the output layer, and a batch size
of 64 for the duration model and 256 for the acoustic model.
Learning rate was fixed at 0.002, momentum was 0.3, and num-
ber of training epochs was 25. We performed a standard 10:1:1
train/development/test set split for all voices trained.

Praat [15], a toolkit for phonetic and acoustic analysis and
labeling of audio files, was used to extract standard acoustic
features from each utterance for the purpose of intelligent train-
ing data subset selection. The set of features we extracted for
each utterance and for each speaker’s combined data were f0
(min, max, mean, median, standard deviation), mean absolute
f0 slope (MAS), energy (min, max, mean, and standard devia-
tion), and ratio of voiced to total frames.

For preliminary objective evaluation, we used the IBM Wat-
son Speech to Text service [16] to achieve a rough measure of
a voice’s intelligibility in terms of word error rate (WER). Syn-
thesized utterances were sent to Watson ASR servers via the
API for transcription, from which text transcriptions were re-
turned. For subjective evaluation, we used Amazon Mechani-
cal Turk (MTurk), a popular crowdsourcing platform, to eval-
uate a voice’s intelligibility with human listeners. We used
the Python library mcd [17] to explore the robustness of mel-
cepstral distance (MCD) as an objective voice evaluation metric
as well. The editdistance package [18] was used to effi-
ciently compute Levenshtein distance for WER.

GNU Parallel [19] was used throughout our work to paral-
lelize computation when possible. SoX [20] was used through-
out for direct manipulation of audio files such as concatenating
all utterances from a single speaker.

4. Experiments and Results
4.1. Single-feature Speaker and Utterance Selection

In our first set of experiments, we examined one feature at a
time as selectors for choosing training speakers and utterances.
We extracted the 11 aforementioned Praat acoustic features for
all of the data from each speaker. We also calculated speaking
rate in syllables per second based on the syllable information in
the label files obtained with Festival, and level of articulation,
which we defined as mean energy divided by speaking rate, to
encode the loud and slow speech that characterizes hyperartic-
ulation. Furthermore, we obtained an approximate measure of
which speakers were most intelligible, by running their speech
through the Watson ASR API and calculating a WER for each
speaker. We also computed the same features at the utterance
level as well, in order to compare speaker- vs. utterance-level
data selection. Our baseline voice was the first 10 hours of fe-
male Macrophone data, with no feature-based data selection.
Our test voices were trained on 2-, 4-, and 10-hour subsets cho-
sen by these features and selected out of the entire 83.5 hours of
female data. For example, for the 4-hour high-clustered mean
f0 speaker-selected voice, we sorted all female speakers by their
mean f0 and accumulated data from the speakers by their dis-
tance from the highest mean f0 speaker one by one until we had
a training set containing 4 hours of data. We trained voices for
low, median, mean, and high-clustered values of each of our 14
features for both speaker-selected and utterance-selected sub-
sets. After observing that our best speaker-selected voices were
all trained on 10 hours of data as opposed to smaller amounts,
we then only trained 10-hour voices for utterance selection.

Due to the slow turnaround time for evaluating synthetic
voices for intelligibility by human transcription, we did an ini-
tial automatic evaluation of all of our voices using the Watson
ASR API, which we have found in our prior work to corre-
late well with human judgments for intelligibility of synthetic
voices [1]. Synthesized test utterances consisted of eleven 7-
word semantically-unpredictable sentences (SUS) of the stan-
dard form det adj noun verb det adj noun, in or-
der to prevent contextual recognition of words. After ob-
taining a set of hypothesized transcriptions for each voice,
we computed the Levenshtein distance between each utter-
ance’s highest-confidence transcription and the corresponding
true sentence; taking the average of the Levenshtein distances
yielded a WER for each voice. Our baseline voice had a WER
of 82.9%. 74 out of the 168 total speaker-selected voices, and
28 out of the 56 total utterance-selected voices, had smaller
WERs than the baseline voice. For brevity, the top 5 voices
for each selection method, with their WERs from Watson, are
in Tables 1 and 2. All of these voices were trained on subsets of
10 hours of data.

Table 1: Watson WERs for 5 Best Speaker-Selected Voices

Speaker feature Cluster WER

WER Low 58.4%
Voiced vs. total High 59.7%
Mean energy Low 61.0%
F0 MAS Avg 61.0%
Min energy Low 62.3%

Next, it was necessary to corroborate our automatic eval-
uation with human judgment. This is especially important for
the voices trained on subsets selected based on low ASR WER;



Table 2: Watson WERs for 5 Best Utterance-Selected Voices

Utterance feature Cluster WER

Mean energy High 67.5%
Mean F0 Median 68.8%
Mean energy Median 71.4%
Max F0 High 74.0%
Speaking rate Low 74.0%

we would expect those voices to do well when evaluated by
the same ASR, as they did, but we need to verify whether hu-
mans perceived the best automatically-rated voices as being
high quality as well. We created an MTurk HIT (human intelli-
gence task) using our baseline voice, our 5 best speaker-selected
voices, and our 5 best utterance-selected voices, as well as one
semantically-predictable sentence spoken clearly by one of the
authors, intended as an attention check for MTurk workers. We
synthesized the same set of 11 SUS with each of these 11 voices,
and we presented them to workers in a Latin-square configura-
tion so that each worker would be presented with each sentence
once, each spoken by a different voice, so that any listener dif-
ferences or bias would be averaged out over all of the voices.
We restricted our task visibility to the United States, and in-
cluded a qualifier that asked which languages each participant
had spoken since birth, to select for native English speakers.
Workers were permitted to play each audio file only twice, and
were requested to transcribe what they heard. Our 11 tasks were
completed by 5 workers each, and no worker was permitted to
do more than one task, since they all used the same sentences
and we wanted to eliminate bias that would arise from having
previously heard the sentences. We compared the transcriptions
to the actual text of the sentences to obtain a WER for each
voice, averaging over the 5 transcriptions for each sentences.
Results as well as p-values from a two-tailed t-test in compari-
son with the baseline are reported in Table 3.

Table 3: MTurk Results for Single-Feature Utterance- and
Speaker-Selected Voices

Unit Selection Feature Cluster WER p-value

Spkr WER Low 41.8% 0.0145
Spkr Voiced vs. total High 43.4% 0.0175
Spkr Mean energy Low 43.4% 0.0216
Spkr Minimum energy Low 43.6% 0.0275
Spkr F0 MAS Average 46.2% 0.1037
Utt Mean F0 Median 54.3% 0.9618

[Baseline] 54.5%
Utt Mean energy Median 55.3% 0.8793
Utt Mean energy High 57.7% 0.5354
Utt Speaking rate Low 62.9% 0.0882
Utt Max F0 High 63.1% 0.0971

We observed that our 5 best speaker-selected voices were
all rated as more intelligible than all 5 of our best utterance-
selected voices. Furthermore, all speaker-selected voices were
rated as more intelligible than the baseline, with the top four ob-
taining significance at p < 0.05. The best performing voice was
trained on the 10 hours of data from the speakers with lowest
WER as determined automatically by Watson ASR, indicating
that this ASR matches well with human perception of speech for
intelligibility, and that selecting more intelligible speakers for

training data does produce more intelligible voices. Training on
speech with a greater proportion of voiced data also produced a
more intelligible voice, and lower energy levels appeared to be
a useful selector as well.

Comparing the features that did well for utterance selection
to features that did well for speaker selection, it is interesting to
note that they are different. For instance, Watson WER was not
in the top 5 features for utterance selection. This indicates that
selecting training data based on which speakers are most intel-
ligible is a good approach, but training on only the most intel-
ligible utterances regardless of speaker perhaps does not result
in as cohesive a training set. Looking at which best features are
common across utterance and speaker selection, mean energy
stands out as appearing in both sets, with low mean energy be-
ing a good selector for speakers, and both middle and high mean
energy appearing to be good selectors for utterances. This in-
dicates that perhaps the actual energy level is not so important,
but that having a similar energy level across your training data
will produce a better voice.

4.2. Joint-feature Speaker and Utterance Selection

Next, we investigated whether combining features would be
better than using individual features. We tested combinations
of the top 2 to 7 features, using them to assign each utterance a
heuristic score and selecting 10 hours worth of highest-scoring
data (utterances or speakers) for training. We took z-scores of
the negated absolute difference between each feature and its
cluster statistic (maximum, median, mean, or minimum), then
tested 5 different methods to combine these z-scores in a heuris-
tic: sum, product (after normalizing the minimum value to 0),
sigmoid product, log sum, log product. These heuristics were
also computed at both the speaker and utterance level. After
voice training, we used IBM Watson once again to evaluate
them, identifying the top 5 speaker-selected and top 5 utterance-
selected voices. We then posted another MTurk HIT in the same
format using the same check question and newly-generated SUS
utterances for evaluating 13 selected voices in total: the afore-
mentioned 10 voices, the baseline voice, the best voice from the
previous HIT, and a human voice reading the same sentences.
We added a human voice to this iteration to determine a lower
bound for WER, relative to the other voices. Results are located
in Table 4.

Table 4: MTurk Results for Joint-Feature-Based Voices

Unit N ftrs Combination WER p-value

[Human] 5.3% P < 0.0001
Spkr 4 Sum 29.0% 0.0004
Spkr 2 Sum 31.9% 0.0030
Spkr 4 Sigmoid 32.7% 0.0079
Spkr 2 Sigmoid 33.8% 0.0153
Utt 2 Product 38.2% 0.1249
Utt 2 Sum 40.4% 0.3176
Utt 3 Sigmoid 40.7% 0.3466
Spkr 3 Log Product 41.3% 0.3751

[Previous Best] 42.4% 0.5624
Utt 7 Log Product 44.4% 0.8785

[Baseline] 45.1%
Utt 5 Log Product 46.8% 0.7084

We found that selecting a subset based on the top four fea-
tures combined by summation of z-scores led to the most in-



telligible voice. Four out of five of the speaker-selected voices
outperformed all of the utterance-selected voices. We also gen-
erally find that it is possible to substantially improve intelligibil-
ity by selecting based on a combination of our features, rather
than just a single feature – most of our new best joint-feature-
based voices outperformed our best single-feature voice from
the previous set of experiments.

4.3. Subset Characteristics

We were interested in exploring the characteristics of our dif-
ferent training data subsets, in addition to their original selec-
tion features; thus, we examined subsets’ utterance counts. Two
subsets that both add up to the same total amount of time may
have a different number of utterances. Fewer utterances in a
subset means that the average utterance length is larger than the
average utterance length of another subset with the same total
amount of time and a higher utterance count.

Table 5: Subset Statistics: Utterance Counts

Set Mean Std Min Med Max

2hr utt 2000.9 519.1 1084 1931.5 3527
2hr spkr 2034.8 185.8 1441 2066.5 2376

4hr utt 4007.6 835.8 2736 3895 6361
4hr spkr 4068 329.1 2880 4112.5 4766

10hr utt 9985.5 1620.7 7448 9706.5 14238
10hr spkr 10202.5 668.6 7673 10294.5 11640

Joint utt 8520.5 1162.8 6862 8547.5 10568
Joint spkr 10927.2 632 9484 11071.5 11532

We observed that utterance-selected subsets tend to have
a comparatively higher variance and wider range in the num-
ber of utterances per subset compared to speaker-selected sub-
sets, for the same total amount of audio. On average, utterance-
selected subsets have a 140% greater standard deviation than the
comparable speaker-selected subsets (e.g. 2-hour utterance- vs.
speaker-selected subsets). We also observe that the mean num-
ber of utterances per subset is consistently lower for utterance
vs. speaker selection, most notably for the joint-feature-based
voices, which sees an increase of 22% in mean utterance count
from speaker- to utterance-selected subsets. When computing
correlations between utterance count and Watson WER for the
voice trained on that subset, we found strong -64.5% correla-
tion among all speaker-selected voices and -17.2% correlation
among utterance-selected voices; with joint selection, correla-
tions strengthen to -78.2% and -28.1%, respectively. These re-
sults suggest that, especially in the case of speaker selection,
that training on more short utterances is better than training on
fewer, longer utterances, and that utterance length may be a se-
lection criterion that we should explore in the future.

4.4. MCD for Evaluation

Because low-resource languages do not necessarily have high-
quality or reliable ASR, we experimented with the mel-cepstral
distortion (MCD) objective function [21]. This function mea-
sures the difference between two time-aligned mel-cepstral se-
quences and is commonly used as an objective evaluation metric
for TTS. For unaligned sequences, dynamic time warping may
be performed to align the sequences before comparing them.

We computed average MCD on the validation set of each

voice and found a 70.1% correlation between MCD and IBM
Watson WER among all voices; correlation increased to 75.6%
when considering only the top ten MCD-ranked voices.

Among voices selected for MTurk HITs, there was strong
correlation of 80% to 90% between MTurk WER and Wat-
son WER. MCD and MTurk WER had a moderate correla-
tion of 43.0% for single-feature voices; however, among the
higher quality joint-feature-based voices, correlation increased
to 91.2%, which is quite promising for future objective voice
evaluation. Results are located in Table 6.

Table 6: Evaluation Method Correlations

Comparison Single-Feature Joint-Feature

Watson, MCD 0.312 0.748
Watson, MTurk 0.814 0.899
MCD, MTurk 0.430 0.912

5. Conclusions and Future Work
We have generally found that selecting training data based on
speaker features rather than on separate utterance features leads
to the creation of overall more intelligible voices. We have also
found that an even more substantial improvement in intelligibil-
ity can be made by selecting training speakers based on a num-
ber of acoustic features combined. The significant improve-
ments over the baseline obtained by more intelligently selecting
training data indicates that some parts of a larger corpus, and in
fact some speakers, are better suited for TTS than others.

In future work, we plan to extend our methods to similar
corpora in low-resource languages. We have begun experiment-
ing with data from the IARPA BABEL project [22], which con-
sists of read and conversational telephone speech in 25 different
low-resource languages, collected for the purpose of developing
spoken keyword search systems. Although we will not have the
benefit of a high-quality ASR system like Watson to do prelim-
inary voice evaluation in all of these languages, we have nev-
ertheless been experimenting with using ASR systems trained
on the Babel data to evaluate intelligibility of trained voices in
these languages. While it may seem circular to evaluate TTS
systems using an ASR trained on the same data, it may never-
theless tell us which voices best match the bulk of the available
spoken data. Furthermore, since we have determined that MCD
correlates well with human judgments of intelligibility for TTS
voices, we plan to use this as an objective measure of intelligi-
bility for TTS voices for low-resource languages as well. Also,
now that we have a number of voices trained on different sub-
sets of the Macrophone corpus, along with human judgments of
which voices produced from those subsets are most intelligible,
we would like to further explore what characteristics define the
best training subsets, in addition to the feature(s) on which they
were selected. In addition to exploring the tradeoffs around ut-
terance number and length, we would also like to further exam-
ine the tradeoffs around using more data from fewer speakers or
less data from more different speakers. Finally, having a sense
of what characterizes a “good” TTS training set will enable us
to develop more automatic, machine learning based methods of
choosing those subsets from large, heterogeneous corpora.
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