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How	can	we	optimize	neural	networks	with	CxD to	best	improve	on	
the	accuracy	of		previously-used	deception	detection	classifiers?

Research	Question

• Deception is	the	deliberate	choice	to	mislead,	in	order	to	
achieve	personal	gain	or	to	avoid	a	penalty.

• The	Columbia	Cross-culture	Deception	Corpus	(CxD)	is	a	
collection	of	transcribed	and	recorded	interviews,	each	
consisting	of	24	questions;	interviewees	lie	in	response	to	
exactly	12	of	these	questions,	indicating	truthfulness	with	a	set	
of	keys,	and	are	rewarded	monetarily	for	successful	lies.

• Previous	papers	have	attained	attained	accuracies	up	to	9.95%	
above	majority-class	baseline	by	using	random	forest	classifiers.	
(Levitan,	et	al.)

• Deep	learning,	which	uses	neural	networks	as	classifiers,	is	a	
machine	learning	method	that	was	made	possible	by	the	recent	
rise	in	computational	power.

Background

Experimental	setupExperimental	setupExperimental	setup Transcript	segment

• Interviews	were	recorded	in	a	sound-proof	box	and	sourced	to	
Amazon	Mechanical	Turk	(MTurk)	for	transcripts.	Transcripts	
consist	of	time-stamped	intonational phrase	units	(IPU)	for	both	
interview	participants.	Participants	 	also	completed	the	NEO	Five-
Factor	Inventory	personality	test	and	a	demographics	form.

• These	IPUs	were	merged	into	‘turns’,	IPU	sequences	that	are	
uninterrupted	by	another	speaker.	A	question-matching	script	
was	created	to	identify	questions	from	the	interviewer	and	
extract	the	turn	from	the	interviewee	directly	after.	Keypresses	
were	used	to	determine	each	turn’s	truthfulness.

• The	acoustic	feature	extractor	openSMILE was	used	to	extract	
6373	features	from	each	turn,	and	these	were	combined	with	
language,	gender,	and	5	personality	scores	to	form	a	6380-
feature	data	set.

• Finally,	testing	on	this	data	set	was	performed	with	ensemble	
classifiers	and	neural	networks,	using	various	optimizers.

Methodology
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Notes:
• Majority-class	baseline	is	51.62%	for	the	training	set	and	51.15%	for	the	test	set.
• When	using	Nesterov-accelerated	AdaDelta,	accuracy	fluctuated	wildly,	even	at	a	glacial	

learning	rate	of	10-8.
• The	neural	net	was	optimized	with	a	Nesterov-accelerated	stochastic	gradient	descent	

optimizer	at	a	learning	rate	of	10-6.	
• Corroborating	the	results	of	Krizhevsky et	al.,	PReLU was	the	activation	layer	that	resulted	in	

fastest	convergence.
• Neural	net	optimization	for	CxD is	a	work	in	progress.	Test	accuracies	are	coming	soon!

Methodology	(cont.)
• Choice	of	optimizer	was	critical	in	determining	the	performance	of	neural	nets.
• Activation	function	plays	a	large	role	as	well	in	rate	of	convergence.
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Summary	of	Results
• Normalization	tends	to	increase	accuracy,	regardless	of	classifier.
• The	best	ensemble	classifier	performs	at	15.64%	above	baseline,	

while	the	best	neural	net	performs	at	18.49%	above	baseline.
• The	neural	net’s	improvement	from	the	random	forest	classifier	is	

18.22%.

Discussion
• Neural	networks	are	more	than	capable	of	outperforming	the	

best	ensemble	classifiers.
• openSMILE acoustic	features	are	very	effective	for	determining	

the	veracity	of	a	segment	of	audio
• Clearly,	there	is	great	potential	for	neural	networks	in	SLP,	and	in	

the	field	of	deception	detection	overall.
• There	were	only	2160	train	samples	and	648	test	samples;	more	

samples	are	needed	for	more	robust	results;	need	to	improve	
script	for	identifying	interviewer	questions.

• Next	step:	adding	lexical	(text)	features	with	word	embeddings,	
multidimensional	feature-vectors	(sets	of	numerical	values)	that	
represent	words.

Simplified	depiction	of	word	embeddings Examples	of	relational	equivalence
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