Applications of Deep Learning to Deception Detection in Speech Kai-Zhan Lee (kl2792@columbia.edu), Sarah Ita Levitan, Julia Hirschberg Spoken Language Processing (SLP) Group – Columbia University in the City of New York

Background **Deception** is the deliberate choice to mislead, in order to achieve personal gain or to avoid a penalty. The Columbia Cross-culture Deception Corpus (CxD) is a

- collection of transcribed and recorded interviews, each consisting of 24 questions; interviewees lie in response to exactly 12 of these questions, indicating truthfulness with a set of keys, and are rewarded monetarily for successful lies.
- Previous papers have attained attained accuracies up to **9.95%** above majority-class baseline by using random forest classifiers. (Levitan, et al.)
- **Deep learning**, which uses neural networks as classifiers, is a machine learning method that was made possible by the recent rise in computational power.

Experimental setup

foreground		
OH THA LONG TIME THA LIK U silent	SO WORD (1195)	
OF	LONG _W ORI (47)	
	LONG _I PUs (6)	
OH THAT'S A LONG TIME THAT'S LIKE silent	UM (395)	
	LAUGHTER (16)	

Transcript segment

Choice of optimizer was critical in determining the performance of neural nets. Activation function plays a large role as well in rate of convergence.

Results

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	
90 80 70 60 50 40 30 10 0	100	
80 70 60 50 40 30 20 10	90	
 70 60 50 40 30 20 10 0 	80	
 60 50 40 30 20 10 0 	70	
 50 40 30 20 10 0 	60	
40 — 30 — 20 — 10 —	50	
 30 20 10 0 	40	
20 — 10 —	30	
10	20	
0	10	
0	0	

- Notes:

Research Question

How can we optimize neural networks with CxD to best improve on the accuracy of previously-used deception detection classifiers?

Methodology

- Interviews were recorded in a sound-proof box and sourced to Amazon Mechanical Turk (MTurk) for transcripts. Transcripts consist of time-stamped intonational phrase units (IPU) for both interview participants. Participants also completed the NEO Five-Factor Inventory personality test and a demographics form.
- These IPUs were merged into 'turns', IPU sequences that are uninterrupted by another speaker. A question-matching script was created to identify questions from the interviewer and extract the turn from the interviewee directly after. Keypresses were used to determine each turn's truthfulness.
- The acoustic feature extractor openSMILE was used to extract 6373 features from each turn, and these were combined with language, gender, and 5 personality scores to form a 6380feature data set.
- Finally, testing on this data set was performed with ensemble classifiers and neural networks, using various optimizers.

AdaBoost Iterations

Methodology (cont.)

% Accuracy Scores of Various Classifiers on CxD

Majority-class baseline is 51.62% for the training set and 51.15% for the test set. When using Nesterov-accelerated AdaDelta, accuracy fluctuated wildly, even at a glac learning rate of 10⁻⁸.

The neural net was optimized with a Nesterov-accelerated stochastic gradient descer optimizer at a learning rate of 10⁻⁶.

Corroborating the results of Krizhevsky et al., PReLU was the activation layer that resu fastest convergence.

Neural net optimization for CxD is a work in progress. Test accuracies are coming soon!

Summary of Results

- Normalization tends to increase accuracy, regardless of classifier.
- The best ensemble classifier performs at 15.64% above baseline, while the best neural net performs at 18.49% above baseline.
- The neural net's improvement from the random forest classifier is 18.22%.

Discussion

- Neural networks are more than capable of outperforming the best ensemble classifiers.
- openSMILE acoustic features are very effective for determining the veracity of a segment of audio
- Clearly, there is great potential for neural networks in SLP, and in the field of deception detection overall.
- There were only 2160 train samples and 648 test samples; more samples are needed for more robust results; need to improve script for identifying interviewer questions.
- Next step: adding lexical (text) features with word embeddings, multidimensional feature-vectors (sets of numerical values) that represent words.

Simplified depiction of word embeddings

Relationship	Example 1	Example 2
France - Paris	Italy: Rome	Japan: Tokyo
big - bigger	small: larger	cold: colder
Miami - Florida	Baltimore: Maryland	Dallas: Texas
Einstein - scientist	Messi: midfielder	Mozart: violinist
Sarkozy - France	Berlusconi: Italy	Merkel: Germany
copper - Cu	zinc: Zn	gold: Au
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev
Microsoft - Windows	Google: Android	IBM: Linux
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy
Japan - sushi	Germany: bratwurst	France: tapas

Examples of relational equivalence

References

ork	Introduction:
	Levitan et al., Cross-Cultural Production and Detection of Deception from Speech
	Methodology (left to right):
	R. Meir and G. Rätsch. An introduction to Boosting and Leveraging
	http://www.iis.ee.ic.ac.uk/icvl/iccv09 tutorial files/random forest new2.png
	Methodology (cont.):
	http://www.extremetech.com/wp-content/uploads/2015/07/NeuralNetwork.png
	http://cs231n.github.io/neural-networks-1/
	Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks
	http://sebastianruder.com/content/images/2016/01/contours_evaluation_optimizers.gif
cial	
Ciui	Discussion (left to right):
	https://media.licdn.com/mpr/mpr/AAEAAQAAAAAAAAAAAAAJDA5NWZIMWFILTQzZjEtNDVmOS1hMWIyLTNiOGU2YTc3NTY3Nw.pr
	http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/img/Mikolov-AnalogyTable.png
nt	
ulted in	

