

Data Selection for Naturalness in HMM-based Speech Synthesis Erica Cooper, Yocheved Levitan, Julia Hirschberg Columbia University

Research Questions

- Can we identify which utterances in a corpus are the **best** to use for voice training, based on acoustic/prosodic features, and which utterances should be **excluded** because they will introduce noise, artifacts, or inconsistency into the voice?
- Can we use **found** data such as radio broadcast news to build HMM-based synthesized voices?
- Can we select a subset of training utterances from a corpus of found data to produce a **better** voice than one trained on all of the data?
- Which voice training and modeling approaches work best for this type of data?

Data and Tools

Boston University Radio News Corpus (BURNC): 7+ hours of professionally-read radio broadcast news from 3 female and 4 male speakers

Challenges: Multiple speakers, non-TTS speaking style

- Hidden Markov Model Based Speech Synthesis System **(HTS):** Toolkit for training HMM-based statistical parametric voices
- Amazon Mechanical Turk (AMT): A popular crowdsourcing platform

Experiments

- Baselines: Voices trained speaker-independently on al female data (4hrs 40min) or all of the male data (5hrs
- 1-hour Subsets of female or male utterances based or
 - Mean/stdv of energy/f0 (high, middle, low)
 - Speaking rate (fast, middle, slow)
 - Hyperarticulation and hypoarticulation
 - Utterance length (long, medium, short)
- Voice Modeling Approaches compared to SI:
 - Speaker adaptively trained average voice model (SA⁻
 - Voices for individual speakers (speaker-dependent)
 - Monotone f0 contour and interpolated f0 contour

Female Voices: Mean Opinion Score

ll of the 15min) n features:	Voice	Rating	Voice	Rating
	Robotic	1.03	Low mean energy	2.41
	High mean f0	1.97	Mid mean energy	2.41
	Hyperarticulated	2.08	Longest utts	2.5
	High mean energy	2.08	Fast rate	2.55
	Mid length utts	2.08	Mid mean f0	2.55
	Slow rate	2.13	Mid sdev f0	2.6
	High sdev energy	2.13	Low sdev f0	2.6
	Mid sdev energy	2.28	Baseline	2.68
	Shortest utts	2.33	Hypoarticulated	2.7
T AVM)	High sdev f0	2.37	Low mean f0	2.7
	Low sdev energy	2.37	Natural speech	4.95
	Mid rate	2.4		

Score	Female Voices: Pairwis
	Monotone
23 voices.	Speaker f2b
ted below the clip.	Mid sdev f0
	Speaker f1a
	Speaker f3a
	Hypoarticulated
	Low sdev f0
	Low mean f0
ural 🔘 somewhat natural 🔘 very natural	SAT AVM
Nevt	Interpolated
arison	Male Voices: Pairwise
	Monotone
	Low mean f0
	Mid mean energy
	Mid mean f0
	Slow rate
	Long utts
0:01 ◀୬) ●	Low sdev energy
O Voice B	Speaker m2b
	SAT AVM

Conclusions and Future Work

prosody needed in the future

Interpolated

se Preferences

Preferences

Interpolation reduced "choppiness" – more direct modeling of

Not enough single-speaker data to train on just one speaker SAT AVM did not produce a better voice with our data Voices that do badly (hyperarticulation, slow speaking rate) ► Future work: removal of outliers, combination of approaches Additional sources of found data: audiobooks, podcasts, course lecture videos, radio shows, speech recognition corpora Build voices for low-resource languages using found data