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                      Abstract 

 

Hybrid System Combination for Machine Translation: 

An Integration of Phrase-level and Sentence-level Combination Approaches 

 

Wei-Yun Ma 

 

 

Given the wide range of successful statistical MT approaches that have emerged recently, it 

would be beneficial to take advantage of their individual strengths and avoid their individual 

weaknesses. Multi-Engine Machine Translation (MEMT) attempts to do so by either fusing the 

output of multiple translation engines or selecting the best translation among them, aiming to 

improve the overall translation quality. In this thesis, we propose to use the phrase or the 

sentence as our combination unit instead of the word; three new phrase-level models and one 

sentence-level model with novel features are proposed. This contrasts with the most popular 

system combination technique to date which relies on word-level confusion network decoding.  

Among the three new phrase-level models, the first one utilizes source sentences and target 

translation hypotheses to learn hierarchical phrases — phrases that contain subphrases (Chiang 

2007). It then re-decodes the source sentences using the hierarchical phrases to combine the 

results of multiple MT systems. The other two models we propose view combination as a 

paraphrasing process and use paraphrasing rules. The paraphrasing rules are composed of either 

string-to-string paraphrases or hierarchical paraphrases, learned from monolingual word 

alignments between a selected best translation hypothesis and other hypotheses. Our 

experimental results show that all of the three phrase-level models give superior performance in 

BLEU compared with the best single translation engine. The two paraphrasing models 

outperform the re-decoding model and the confusion network baseline model. 



 

  The sentence-level model exploits more complex syntactic and semantic information than the 

phrase-level models. It uses consensus, argument alignment, a supertag-based structural language 

model and a syntactic error detector. We use our sentence-level model in two ways: the first 

selects a translated sentence from multiple MT systems as the best translation to serve as a 

backbone for paraphrasing process; the second makes the final decision among all fused 

translations generated by the phrase-level models and all translated sentences of multiple MT 

systems. We proposed two novel hybrid combination structures for the integration of 

phrase-level and sentence-level combination frameworks in order to utilize the advantages of 

both frameworks and provide a more diverse set of plausible fused translations to consider. 
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Chapter 1 

 

Introduction 

 

 

A wide range of successful machine translation (MT) approaches have emerged recently, 

including phrase-based MT (Koehn et al 2007), hierarchical phrase-based MT (Chiang 2007) and 

syntax-oriented MT (Galley et al 2006, DeNeefe and Knight 2009). Different MT approaches 

have their strengths and weaknesses. Multi-Engine Machine Translation (MEMT) attempts to 

take advantage of strengths and avoid weaknesses by either fusing the output of multiple 

translation engines or by selecting the best translation among them, aiming to improve the 

overall translation quality. Recently, many MEMT approaches have been developed in parallel 

with the rapid development of MT. They play an important role in improving translation quality 

given the wide range of MT techniques that have emerged. 

  Figure 1.1 shows an example of selection of the best translation and fusion of the output of 

multiple translation engines. Given a source sentence in Figure 1.1 (a), we can obtain its different 

translations from some well-known online translation engines, shown in Figure 1.1 (b), i.e, 

Google Translate, Bing and Systrans Translate. Different translation engines have their own 

strengths in some parts of the translation, which are printed in bold and in different colors.  
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皮埃里还表示,虽然意大利法庭可以进行缺席审判, 但意大利警方也不可能到国外把派列娃

抓回来服刑. 

(Piaili also said that although the Italian court can hold a trial in absentia, the Italian police will 

not be able to go abroad to catch Pyleva and bring her back for serving the sentence.)           

 

              Figure 1.1 (a): A source sentence and its reference translation.              

 

 

  (https://translate.google.com/) 

Piai Li also said that the Italian court in absentia, but the Italian police also impossible to send 

Leva caught serving abroad. 

   (http://www.bing.com/translator/) 

Alvaro pierri, Italy court trials in absentia, but Italy police is unlikely to back Vera Zvonareva 

served abroad. 

  (http://www.systransoft.com/) 

Pieri also said that although the Italian court can carry on the trial by default, but Italian 

Police as impossible to grasp to serve a prison sentence Pailiewa as the overseas. 

 

Figure 1.1 (b): Translations of the source sentence in Figure 1.1 (a) by Google Translate, Bing  

              Translate and Systran Translate. 

 

 

Ideal selection (Select translation of ): 

Pieri also said that although the Italian court can carry on the trial by default, but Italian Police as 

impossible to grasp to serve a prison sentence Pailiewa as the overseas. 

 

Ideal fusion: 

Pieri also said that although the Italian court can carry on the trial in absentia, but Italy 

police is unlikely to grasp Leva abroad back serving a prison sentence 

 

     Figure 1.1 (c): Ideal selection and Ideal fusion given the translations in Figure 1.1 (b) 
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  Assume our task is to select the best translation among the three translation engines for this 

sentence. Although all of the three translations are very poor translations for this sentence, the 

translation by Systran Translate is relatively closer to the original meaning of the source sentence 

and more understandable than the other two engines. So the ideal selection could be the 

translation by Systran Translate, shown in Figure 1.1 (c). And at least the first clause of the 

translation by Systran Translate has a verb, while the other two engines have no verb in their first 

clauses at all. 

  If our task is to fuse the translations by the three translation engines for this sentence, the ideal 

fusion result could be the translation in Figure 1.1 (c), where the better parts of the three 

translation engines, shown in different colors, are fused to form a new translation. Although it is 

still not a perfect grammatical translation, it is already very close to an understandable translation, 

where every word comes from the three very poor translations. Taking a closer look at the second 

clause of the fusion translation, we can find the ideal fusion actually requires some word 

reordering, shown in Figure 1.2. This observation suggests that a good fusion model is not only 

responsible for interleaving strings, but also for dealing with word reordering that can involve 

transposing words. 

        

    Figure 1.2: The need of word reordering of translations for the task of translation fusion. 

 

  The translations provided by the three online systems in Figure 1.1 are actually pretty poor 

translations. The ideal fusion shows that there is a possibility to improve them and thus provide a 

relatively acceptable, but still far from perfect translation. In the next example, shown in Figure 

grasp Leva  abroad  back serving a  prison  sentence

grasp Leva  serving abroad  back a  prison  sentence
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1.3, the translations provided by the three online systems are close to perfect translations. The 

ideal fusion shows that there is a possibility to produce a perfect translation based on fusing these 

systems’ translations. 

 

69歲的莫迪亞諾在法國是知名作家,但在他國較鮮為人知。 

(69-year-old Modiano is a famous writer in France, but less well known in other countries.)        

    

              Figure 1.3 (a): A source sentence and its reference translation.              

 

 

  (https://translate.google.com/) 

69-year-old Modiano is well-known writer in France, but relatively little-known in his country. 

 

   (http://www.bing.com/translator/) 

69 Modiano in France is a famous writer, but less well known in other countries. 

 

  (http://www.systransoft.com/) 

69-year-old Modiano in France is noted author, but is rarely known in other country. 

 

Figure 1.3 (b): Translations of the source sentence in Figure 1.3 (a) by Google Translate, Bing  

              Translate and Systran Translate. 

 

 

Ideal selection (Select translation of ): 

69 Modiano in France is a famous writer, but less well known in other countries. 

 

Ideal fusion: 

69-year-old Modiano is a famous writer in France, but less well known in other countries. 

 

     Figure 1.3 (c): Ideal selection and Ideal fusion given the translations in Figure 1.3 (b) 

https://translate.google.com/
http://www.bing.com/translator/
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  Assume our task is to select the best translation among the three translation engines for this 

sentence. The translation by Bing Translate is relatively closer to the original meaning of the 

source sentence and more understandable than the other two engines. So the ideal selection could 

be the translation by Bing Translate, shown in Figure 1.3 (c). If our task is to fuse the translations 

by the three translation engines for this sentence, the ideal fusion result could be the translation 

in Figure 1.3 (c), where the better parts of the three translation engines, shown in different colors, 

are fused to form a new translation, which turns out to be a perfect translation. In fact, the 

translation by Bing Translate is already very close to the reference except it makes the translation 

mistake of “69-year-old”. By using that part of “69-year-old” provided by Google Translate, the 

mistake can be fully fixed. 

 

1.1 MT background 

Initially, MT systems were built by computational linguists. These rule-based MT systems relied 

on hand-built translation rules to do the translation. However, in recent years, as parallel corpora 

and monolingual corpora became more and more available, statistical machine translation (SMT) 

models became the state-of-the-art in MT. They use machine learning techniques to 

automatically learn translation rules from parallel corpora and monolingual corpora. 

  SMT models range widely, and they can be divided into three categories based on their 

translation models, including phrase-based MT (Koehn et al 2003), hierarchical phrase-based 

MT (Chiang 2007) and syntax-based MT (Galley et al 2006, DeNeefe and Knight 2009). 

 

Phrase-based MT: The term “phrase" indicates a string of words which is not necessary a 

linguistic unit. So a translation rule is basically a mapping between a word string in source and a 

word string in target. By capturing the mappings of word strings, a phrase-based MT model is 
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able to exploit context to reduce translation ambiguity.   

 

Hierarchical phrase-based MT: The term “hierarchical phrase” indicates a phrase (a word 

string) that contain subphrases. Hierarchical phrase-based MT uses a synchronous context-free 

grammar dynamically learned from source sentence and target hypotheses to represent the 

translation rules. It directly models possible word re-orderings in the translation rules, whereas 

Phrase-based MT phrase-based SMT systems typically model word reordering within a fixed 

window. 

 

Syntax-based MT: The translation rules consist of the mappings from syntactically well-formed 

trees to strings or vice versa, or the mapping from syntactically well-formed trees to syntactically 

well-formed trees (tree-to-tree) The motivation for syntax-based models is that their translation 

rules should be more accurate mappings, and thus, string-to-tree and tree-to-tree models should 

produce more fluent translations because the target side is constrained to be syntactically 

well-formed trees. But one of the biggest challenges of Syntax-based MT is that it could include 

too strict constraints on translation rules, compared with Phrase-based MT and Hierarchical 

phrase-based MT. This results in a relatively small number of translation rules are and thus could 

possibly lack some reasonable translation information. 

 

1.2 MEMT Approach 

MEMT approaches can be classified into three types based on the unit of fusion – word, phrase 

and sentence. The word-level fusion framework, such as the confusion network decoding model, 

is the most popular approach (Matusov et al., 2006; Rosti et al., 2007b; He et al. 2008; Karakos 

et al. 2008; Sim et al. 2007; Xu et al. 2011). However, using the word as the unit of fusion rather 
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than the phrase, has a higher risk of breaking coherence and consistency between the words in a 

phrase. In addition, it is difficult to consider syntax and semantics in a word-level fusion 

framework because the minimum unit of syntactic and semantic analysis is a phrase or a 

sentence rather than a word. Therefore, in addition to word-level combination approaches, some 

phrase-level combination approaches have also recently been developed with the goal of 

retaining coherence and consistency between the words in a phrase.   

    The most common phrase-level combination approaches are re-decoding methods: by 

constructing a new phrase translation table from each MT system’s source-to-target phrase 

alignments, the source sentence can also be re-decoded using the new translation table (Rosti et 

al., 2007a; Huang and Papineni, 2007; Chen et al., 2007b; Chen et al., 2009b). We call this 

strategy the phrase-based re-decoding model. One of the challenges with these approaches is 

that, with a new phrase table, the translated word order is computed entirely by the reordering 

model of the re-decoder, which usually only has the capability of local reordering and does not 

fully utilize existing information about word reordering present in the target hypotheses; thus 

these approaches lack the ability to reorder words across long distances. To address the problem, 

in this thesis, we propose the use of hierarchical phrases — phrases that contain subphrases 

(Chiang 2007) — for re-decoding-based combination. We learn hierarchical phrases from each 

MT system’s source-to-target phrase alignments and rely on the hierarchical phrases to directly 

model possible word re-orderings. We call this technique the hierarchical phrase-based 

re-decoding model. Our experiments show that it improves over the baseline combination 

technique of the phrase-based re-decoding model. 

  Another phrase-level combination approach relies on a lattice decoding model to carry out the 

combination (Feng et al 2009; Du and Way 2010). In a lattice, each edge is associated with a 

phrase (a single word or a sequence of words) rather than a single word. The construction of the 
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lattice is based on the extraction of phrase pairs from word alignments between a selected best 

MT system hypothesis (the backbone) and the other translation hypotheses. Feng et al (2009) 

designed some heuristic rules to extract phrase pairs while Du and Way (2010) rely on TER-Plus 

(TERp) to extract certain types of phrase pairs. For lattice decoding models, the word order of 

the backbone determines the word order of consensus outputs, thus they are able to use the 

existing word ordering of the backbone; however, lattice decoding models lack the ability to 

reorder words of the backbone. 

  To improve these models, in this thesis, we propose another phrase-level combination 

approach, called the paraphrasing model (Ma and McKeown. 2012a). It extracts string-to-string 

paraphrases from the backbone and other hypotheses, and then uses these paraphrases to 

paraphrase the backbone. A reordering model can be integrated into the paraphrasing model. In 

order to further capture more complicated paraphrasing phenomena between the backbone and 

other target hypotheses, such as longer phrase reordering or the occurrences of discontinuous 

phrases, we also propose the use of hierarchical phrases — phrases that contain subphrases 

(Chiang 2007) — for paraphrasing-based combination. We learn hierarchical paraphrases from 

monolingual word alignments between a selected backbone hypothesis and other hypotheses. 

These hierarchical paraphrases can model more complicated paraphrasing phenomena, and thus 

enable more utilization of consensus among MT engines than non-hierarchical paraphrases do. 

We call this technique the hierarchical paraphrasing model. 

  As for our sentence-level model, because the whole sentence can be used to evaluate the 

translation quality, it is easier to integrate more sophisticated syntactic and semantic features. We 

do relatively deeper analysis to evaluate the translation quality and represent our syntactic and 

semantic features in a log linear model. We hypothesize that, for a good translation, most of the 

predicate-argument structures are retained in order to preserve the semantics. That is, 
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predicate-argument structures and argument types in source and target should be the same in 

most cases. Based on this assumption, we develop several measures of how likely arguments are 

to be aligned. In addition, in order to identify ungrammatical hypotheses from a set of candidate 

translations, we utilize grammatical knowledge in the target language, including using a 

supertag-based structural language model that expresses syntactic dependencies between words, 

and a syntactic error detector based on a feature-based lexicalized tree adjoining grammar 

(FB-LTAG) to recognize ungrammatical translations.  

 

1.2 Hybrid Combination 

We design two hybrid combination structures for the integration of phrase-level and 

sentence-level combination frameworks in order to utilize the advantages of both frameworks 

and provide a more diverse set of plausible fused translations to consider.  

  The first structure is the homogeneously hybrid combination, where the same phrase-based 

techniques is used to generate outputs for the sentence-level combination component to select, 

and the other structure is heterogeneously hybrid combination, where different phrase-based 

techniques are used to generate outputs for the sentence-level combination component to select. 

 

1.3 Overview of Thesis Contributions 

Our contributions for the MT combination research community include: 

 

1. Novel Models 

We propose three novel phrase-level models. For the re-decoding combination framework, 

we present a hierarchical phrase-based decoding technique, based on synchronous 

context-free grammar, in order to better model work reordering information provided by 
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various MT translations and enable more utilization of consensus among MT engines. For 

the paraphrasing combination framework, two new paraphrasing methods are presented 

to paraphrase the backbone translation hypothesis: one uses string-to-string paraphrases 

and the other utilizes hierarchical paraphrases. Either kind of paraphrase is learned from 

monolingual word alignments between a selected backbone hypothesis and other 

hypotheses. 

 

2. Novel Features   

For the sentence-level model, we present novel syntactic and semantic features in a log 

linear model to evaluate the quality of a translation hypothesis. Our new features include 

argument alignments, a supertag-based structural language model and a syntactic error 

detector.  

 

3. Phrase Level V.S. Word Level 

We want to compare both fusion units under the same feature settings. Our expectation is 

that phrase is a more reasonable unit for fusion than word because it can carry more 

syntactic and semantic information with it. By setting the phrase length to be one, we can 

get the word-level version of each phrase-level model. In addition to comparing our 

phrase-level model with a word-level model, we also investigate the impact of phrase 

length in our models. 

 

4. Hybrid Architectures 

We propose two different hybrid combination architectures to integrate our phrase-level 

models and a sentence-level model. Our experimental results demonstrate that this 
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integration can yield an improvement in results. 
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Chapter 2 

 

Related Work 

 

 

In the past several years, many machine translation (MT) combination approaches have been 

developed. According to (Rosti et al., 2012), system combination methods proposed in the 

literature can be roughly divided into three categories: (i) hypothesis selection (Rosti et al., 

2007a; Hildebrand and Vogel, 2008), (ii) re-decoding (Frederking and Nirenburg, 1994; 

Jayaraman and Lavie, 2005; Rosti et al., 2007a; He and Toutanova, 2009; Devlin et al., 2011), 

and (iii) confusion network decoding (Matusov et al 2005, Rosti et al 2007b). This division is a 

good summary of the past major methods proposed in the literature, but it lacks two dimensions: 

lattice decoding model (Feng et al 2009, Du and Way 2010) and paraphrasing model, proposed 

in this thesis. We use Table 2.1 to summarize our methods and past system combination methods 

according to different fusion units. 

  Table 2.1 shows that we proposed some novel models for phrase-level combination and new 

features for sentence-level combination. These include a hierarchical-phrase model based on 

redecoding, two novel paraphrasing approaches and a sentence-level model based on some new 

features of the evaluation of translation quality. In this section, we would introduce Confusion 

Network decoding only and leave other related approaches to be introduced under relevant 

subsections later on. 
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 word phrase hierarchical phrase sentence 

Hypothesis 

Selection 

model 

 

- - - 

Hildebrand and 

Vogel 2008 

Callison-Burch 

et al., 2012 

This thesis 

(Ma and 

McKeown, 

2012b; 

2012c;2013) 

Re-decoding 

 

- 

Rosti et al., 2007a 

Huang and 

Papineni, 2007 

Chen et al., 2007b 

Chen et al., 2009 

This thesis 

(Ma and McKeown, 

summited 2014) 

- 

Confusion  

Network  

Decoding 

model 

 

Matusov et al., 

2006 

Rosti et al., 2007b 

He et al. 2008 

Xu et al. 2011 

Chen et al. 2012 

… 

- - - 

Lattice 

Decoding 

model 

- 

Feng et al 2009 

Du and Way 2010 

- - 

Paraphrasing 

model 

 

- 

This thesis 

(Ma and McKeown, 

2012a) 

This thesis 

(Ma and McKeown, 

summited 2014) 

- 

                 

                 Table 2.1: Categories of past methods and my approaches 
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2.1 Confusion Network Decoding Model 

Confusion Network decoding is one of the most popular approaches (Matusov et al., 2006; Rosti 

et al., 2007b; He et al. 2008; Karakos et al. 2008; Sim et al. 2007; Xu et al. 2011, Chen et al. 

2009a). Chen et al. (2009a) divides Confusion Network decoding into four steps: 1. Backbone 

selection: to select a backbone (also called “skeleton”) from all hypotheses. The backbone 

defines the word orders of the final translation. 2. Hypothesis alignment: to build word alignment 

between backbone and each hypothesis. 3. Confusion network construction: to build a confusion 

network based on hypothesis alignments. 4. Confusion network decoding: to decode the best 

translation from a confusion network. In the following, we explain each step and highlight the 

difference between Confusion Network decoding and our approaches, illustrating the process 

using the example in Figure 2.1. 

 

Backbone selection: As the selected backbone determines the word orders of the final fusion 

translation, the quality of the combination output also depends on which hypothesis is chosen as 

the backbone. The common selection strategy is through Minimum Bayes Risk (MBR) decoding 

(Sim et al., 2007; Rosti et al., 2007b; He et al 2008). The basic idea is to choose the hypothesis 

that best agrees with other hypotheses on average as the backbone. Translation edit rate (TER) 

(Snover et al., 2006) or modified BLEU score are often used as the loss function in MBR 

decoding. Taking TER score as the example, the hypothesis resulting in the lowest average TER 

score: 

𝐸𝑏 = argmin
𝐸̂∈𝐻

∑𝑇𝐸𝑅(𝐸̂, 𝐸)

𝐸∈𝐻

 

 

𝑇𝐸𝑅(𝐸̂, 𝐸) =
#𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 + #𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 + #𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 + #𝑆ℎ𝑖𝑓𝑡

𝑙𝑒𝑛𝑔𝑡ℎ(𝐸̂)
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where H is a hypotheses set; 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛, 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛, 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 are three different kinds of 

word edit. 𝑆ℎ𝑖𝑓𝑡 is a shift of a sequence of words and it is counted as a single edit. The 

minimum translation edit alignment is found through a beam search. 

  In the Figure 2.1 example, assume we are given three different hypotheses. Each of them is 

coming from a certain MT system, i.e, Sys1, Sys2 and Sys3. After backbone selection, we 

assume the hypothesis of Sys1 is selected based on MBR decoding. 

 

 

                Figure 2.1: Example of Confusion Network decoding 

 

Besides TER-based MBR decoding, in section 4.6, we also investigate the effect of utilizing our 

sentence-level model as the backbone selection module for our phrase-level combination 

approaches and analyze their performances. 

 

Sys1: I feel like fruit

Sys2: I prefer apples

Sys3: I am fond of apples

Sys2:   I prefer apples

Sys1:  I feel like fruit

Sys3:   I am fond of apples

Get word alignment 

between the backbone 

and others

Sys1: I feel like fruit

Sys2: I prefer apples

Sys3: I am fond of apples

Select backbone

Build confusion 

network

I         feel     like               fruit

am





fond of

prefer apples
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Hypothesis alignment: After selecting the backbone, the next step is to obtain the word 

alignments between the backbone and all other system hypotheses in order to construct the 

confusion network. Many techniques have been studied to address this issue. Bangalore et al. 

(2001) utilized an edit distance alignment algorithm for this task, and it only allows monotonic 

alignment. Jayaraman and Lavie (2005) proposed a heuristic-based matching algorithm which 

allows nonmonotonic alignments to align the words. More recently, Matusov et al. (2006, 2008) 

used GIZA++ to produce word alignments of hypotheses pairs. Sim et al. (2007), Rosti et al. 

(2007a), and Rosti et al. (2007b) depend on the TER alignment toolkit to obtain word alignments. 

Karakos et al. (2008) used an ITG-based method to produce word alignments. He et al. (2008) 

proposed an IHMM-based word alignment method which the parameters are estimated indirectly 

from a variety of sources. Chen et al. (2009a) and Rosti et al. (2012) did systematic comparisons 

of these well known hypothesis alignment algorithms for MT system combination via confusion 

network decoding, and both of them found IHMM-based word alignment method can achieve the 

best performance. 

   Our research is not focusing on the design of hypothesis alignment algorithms. In our 

phrase-level combination models, any hypothesis alignment algorithm can be used, so we adopt 

TERp-based word alignment toolkit to serve our mission, which is a released toolkit and has 

similar performance close to IHMM-based word alignment method.  

   In the Figure 2.1 example, after hypothesis alignment, both “I” of Sys2 and Sys3 align to “I” 

of Sys1; “prefer” of Sys2 aligns to “like” of Sys1; “am” of Sys3 aligns to “feel like” of Sys1; 

“am fond of ” of Sys3 aligns to “like” of Sys1; both “apples” of Sys2 and Sys3 align with “fruit” 

of Sys1. 

Confusion Network Construction: Hypothesis alignments algorithms, such as GIZA++ and 

IHMM-based word alignment methods, produce n-to-1 mappings between the hypothesis and 
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backbone. But because confusion network is built from one-to-one word alignments, the word 

alignments need to be normalized to one-to-one word alignment by removing duplicated links 

before constructing the confusion network. Researchers usually implement that by keeping the 

highest similarity measure based on a certain score function. For example, in Figure 2.1, “am 

fond of ” of Sys3 aligns to “like” of Sys1, and if the similarity measure of “fond” and “like” is 

higher than either the similarity measure of “am” and “like” or the similarity measure of “am” 

and “like”, the link of “am” and “like” and the link of “of” and “like” will be removed. After 

normalizing n-to-1 word alignment to one-to-one word alignment, the hypothesis words need to 

be reordered to match the word order of the backbone according to their alignment indices. To 

reorder the null-aligned words, we need to first insert the null words into the proper position in 

the backbone and then reorder the null-aligned hypothesis words to match the nulls on the 

backbone side. For example, in Figure 2.1, “of” of Sys3 aligns to an inserted null word of Sys2, 

which is between “like” and “fruit”. 

  Given the monotone one-to-one word alignments of hypotheses, the transformation to a 

confusion network as described by (Bangalore et al., 2001) is straightforward. It is explained by 

the example in Figure 2.1. Each arc represents an alternative word at that position in the 

sentence.  

  In Figure 2.1, we find that although “am fond of ” and “feel like” have the same meaning, the 

confusion network-based approaches face the risk of producing degenerate translations, such as 

“am like of” and “feel fond of”. In our phrase-level combination models, we use the phrase as 

the fusion unit instead of the word, and fully utilize the information of these n-to-1 mappings 

between the hypothesis and backbone to form the phrases. In other words, we fully utilize the 

information that “am like of” and “feel fond of” have the same meaning and are not supposed be 

separated. Therefore, in our phrase-level combination models, the step of normalization of n-to-1 
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word alignment to one-to-one word alignment is not necessary. We will illustrate this point in 

detail in later sections. 

 

Confusion Network Decoding: Confusion network decoding aims to find the path with the 

highest confidence in the network. The path is extracted from the confusion network through a 

beam-search algorithm with a log-linear combination of a set of feature functions. The feature 

functions which are usually employed in the search process include a language model, word 

penalty, votes on word arcs and N-gram posterior probabilities (Zens and Ney, 2006). The 

weights of feature functions are optimized to maximize the scoring measure (Och, 2003). 

  Because confusion network decoding is a word-level fusion framework, it is difficult to 

integrate syntax and semantics in the design of feature functions. That is one of our motivations 

of developing the phrase-level approaches, described in the following sections. 
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Chapter 3 

 

Phrase-level Combination: 

Combination by Re-decoding 

 

 

Confusion networks require one-to-one word alignment between the words of hypotheses, so 

they have difficulty in handling the common phenomenon in which several words are connected 

to another several words. For example, in Figure 2.1, “am fond of ” and “feel like” are 

paraphrases and are not supposed be separated. Based on this motivation, phrase-level 

combination approaches have also been developed recently. Their goal is to retain coherence and 

consistency between the words in a phrase. Phrase-level approaches can be classified according 

to whether they use information from the source (re-decoding methods) or whether they 

paraphrase the target. They are described in Chapter 3 and Chapter 4, respectively, and we 

propose our novel models in both categories. 

  Re-translation to combine MT outputs is the most common phrase-level combination 

approaches. By collecting or extracting MT system’s source-to-target phrase alignments, one can 

re-decode the source sentence using information from phrase alignments. Section 3.1 will 

introduce related work in this division and also highlight the difficulties that these approaches 

face, followed by our motivation and proposed solution - Hierarchical Phrase-based Re-decoding 
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Model, described in Section 3.2. 

3.1 Related Work: Phrase-based Re-decoding Model 

Most phrase-level combination approaches rely on the strategy of source re-decoding: by 

constructing a new phrase translation table from each MT system’s source-to-target phrase 

alignments, they re-decode the source sentence using the new translation table (Rosti et al., 

2007a; Huang and Papineni, 2007; Chen et al., 2007b; Chen et al., 2009b). We call this strategy 

the phrase-based re-decoding model, which system diagram is shown in Figure 3.1. 

                               

          Figure 3.1:  The system diagram of Phrase-based Re-decoding Model 

  Take the same example given in Figure 2.1. Assume both “am fond of” and “feel like” aligns 

to the same source phrase in Chinese – “喜歡”. After re-decoding “喜歡” in Chinese, the output 

will be either “am fond of” or “feel like”. 

  The source-to-target phrase alignments could be available from the individual systems (Rosti 

et al., 2007a). If the phrase alignments are not available, they can be extracted by applying the 

standard phrase extraction rules (Chen et al., 2009). The standard phrase extraction rules (Koehn 

et al., 2003) aim to extract all phrases that are word-continuous and consistent with word 

alignments, which are automatically generated; for example, by using GIZA++ (Och and Ney, 

Source sentence

phrase-based 

re-decoding 

model

Fusion

output

Translations from 

all MT Systems
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2003). This means that words in a legal phrase pair are not aligned to words outside of the phrase 

pair, and should include at least one pair of words aligned with each other.  

  (Koehn et al., 2003)’s definition of consistency can be formally stated as follows: assume there 

is a source sentence F  and a MT system hypothesis E . f  is a phrase of F , and e  is a 

phrase of E . A phrase pair ( f , e ) is consistent with the word alignment matrix A if 

          

                 and fyAwyew jj  ),(:  

                 and   Awwewfw jiji  ),(:,
 

where wi is a word of f , jw  is a word of e .  

  Once obtaining the source-to-target phrase alignments and constructing the new translation 

table, the definition of confidence scores for phrases in the translation table plays a crucial role. 

For example, Rosti et al., (2007a) derive the confidence scores from sentence posteriors with 

system-specific total score scaling factors and similarity scores based on the agreement among 

the phrases from all systems. The agreement is measured by levels of similarity. The confidence 

of the phrase table entry is increased if several systems agree on the target words. The phrasal 

decoder used in the phrase-level combination is based on standard beam search, and their 

decoder features include a trigram language model score, number of target phrases, number of 

target words, phrase distortion, phrase distortion computed over the original translations and 

phrase translation confidences. The total score for a hypothesis is computed as a log-linear 

combination of these features.  

  One of the challenges with these approaches is that, with a new phrase table, the translated 

word order is computed entirely by the reordering model of the re-decoder, which usually only 

has the capability of local reordering and does not fully utilize existing information about word 

exAxwfw ii  ),(:
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reordering present in the target hypotheses; thus they lack the ability to record word reordering 

across long distances. Especially when different MT systems usually have different reordering 

models, it is common that words in the source sentence would be translated in different orders 

for different MT systems. Researchers have studied this problem through a reordering cost 

function that encourages search along with decoding paths from all MT engines’ decoders 

(Huang and Papineni 2007). However, to the best of our knowledge, no one has investigated 

using more powerful grammars of translation rules able to directly model the information of 

existing word reordering of the target hypotheses. 

 

3.1.1 An example 

We use the Chinese-to-English example of Figure 3.2 to illustrate the re-decoding process. 

Assume we are given a Chinese sentence – “他喜歡你買的書 (He likes the book that you 

bought)”, the translation provided by MT system h1 – “He likes you buy the book” and the 

translation provided by MT system h2 – “He like the books that you bought”, we can obtain the 

word alignments between the source sentence and the two translation by using GIZA++ on the 

corresponding corpus. Phrases can then be extracted from the given source-to-target word 

alignments by using the standard bilingual phrase extraction rules (Koehn et al, 2003), shown in 

Figure 3.3 and Figure 3.4. 

  If we re-decode the source using a phrase-based decoder without any reordering model, the 

best translation we can get is “He likes the books that you bought” by using the rule from “<他 

喜歡 , He likes>” from MT system h1 and the rule “<你 買 的 書 , the books that you bought 

>” from MT system h2. The mistake of the translation is that “books” should be “book” and this 

mistake is due to the lack of the reordering ability.   
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     Figure 3.2: A source sentence and its two translations provided by MT system h1 and h2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Extracted phrases from the source sentence and the translation by MT system h1 

 

 

他 喜歡 你 買 的 書
He       likes        you   bought    ‘s       book

(He likes the book that you bought)

Eh2:           He   like the books     that    you     bought

source:      他 喜歡 你 買 的 書

Eh1:           He   likes     you    buy      the     book
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buy theyou  ,買 你

buyyou  ,買 你

you ,你



 

24 

 

 

 

 

 

 

 

 

 

Figure 3.4: Extracted phrases from the source sentence and the translation by MT system h2   

 

    If the phrase-based decoder has a reordering model, it will have a chance of getting the 

correct translation - “He likes the book that you bought” by using the rule of “<他 喜歡, He 

likes>” from MT system h1, the rule of “<你 買 的 , that you bought >” from MT system h2 

and the rule of “<書, book >” from MT system h1. However, because of the concern of time 

complexity, most phrase-based decoders only allow limited reordering, such as the relative 

distance reordering model, which restricts reordering to short local movements or permit moves 

within a window of a few words. Thus, for long-reordering phenomena, such as the pattern “與

(with)…有(have)…” in Chinese (Chiang 2005) or verb-final grammar (the verbs occurs at the 

end of the sentence) in Japanese or German, limited reordering often fails to produce a good 

translation. This is a particular problem for verb-final grammar, where the decoder needs to 

move the verb from the end of the sentence to the position just after the subject at the beginning 

of the sentence; that move could be over a large number of words, leading to be penalized 

heavily by the relative distance reordering model (Koehn 2010). In the next section, in order to 

address this issue and increase the diversity of consensus patterns, we will propose our solution, 
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which follows (Chiang 2007)’s hierarchical phrase-based model for statistical machine 

translation. 

 

3.2 Hierarchical Phrase-based Re-decoding Model 

In this section, we propose the use of hierarchical phrases—phrases that contain subphrases 

(Chiang 2007) and the use of a synchronous context-free grammar dynamically learned from 

source sentence and target hypotheses to represent the translation information. We learn 

hierarchical phrases from each MT system’s source-to-target phrase alignments and rely on the 

phrases to directly model possible word re-orderings. Through re-decoding the source sentence 

with the hierarchical phrases, we are able to obtain the combination result. We call this technique 

the hierarchical phrase-based re-decoding model, which system diagram is shown in Figure 3.5. 

 

              

         Figure 3.5: The system diagram of Hierarchical Phrase-based Re-decoding Model 
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  The combination process involves the following steps: 

 

1. Collect the translation hypotheses from multiple MT systems. In our work, the 

source-to-target word alignments are available from the individual systems. If the word 

alignments are not available, they can be automatically generated using GIZA++ (Och 

and Ney, 2003). 

 

2. Extract phrases from the given source-to-target word alignments. We follow the standard 

bilingual phrase extraction rules (Koehn et al, 2003): we extract all phrases that are 

word-continuous and consistent with the word alignment for each MT system. 

 

3. Extract hierarchical phrases from the given extracted phrases in step 2. The formal 

extraction algorithm is provided in Section 3.2.1. 

 

4. Assign each hierarchical phrase a confidence estimation, as described in Section 3.2.2. 

 

5. Re-decode the source using the extracted hierarchical phrases with confidence 

estimations as described in Section 3.2.3. 

 

3.2.1 Hierarchical Phrase Extraction 

We formulate our hierarchical phrase extraction as a weighted synchronous context-free 

grammar (SCFG). A formal definition of a synchronous CFG (Aho and Ullman, 1969) takes the 

form: 

~,,X
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where X is any non-terminal in the grammar;   and   are strings of terminals and 

non-terminals; ~ is a one-to-one correspondence between non-terminals in   and non-terminals 

in  . Each rule in a synchronous CFG is a rewrite rule with aligned pairs of right-hand sides. At 

each step, two coindexed non-terminals are rewritten using the two components of a rule. 

  Following Chiang (2007), our hierarchical phrase-level translation rules are designed as a 

synchronous-CFG, extracted from the source sentences and the given translations of multiple MT 

systems.  

  For the i-th sentence, we use F
i
 and f

i
 to represent the source sentence and one of its phrases, 

respectively. E
i
h represents the translation of MT system h, and e

i
h is one phrase of E

i
h. We use 

i

hT  to denote the set of translation rules for the i-th sentence and MT system h, and show how to 

collect i

hT  as follows: 

--------------------------------------------------------------------------------------------------------------------- 

If  i

h, ef i  is consistent with word alignment,   then   i

h,efX i  is added to i

hT . 

If    , X  is a rule in i

hT , and  i

h, ef i  is consistent with monolingual word alignment   

    such that 
21  if and 

2

i

h1  e  then   2121 ,  kk XXX  is added to i

hT ,  

    where k is an index. 

Then we add the following two special “glue” rules to i

hT      

     2121 X,X SSS ,   11 X,XS          

--------------------------------------------------------------------------------------------------------------------- 

          Figure 3.6: Algorithm of hierarchical phrase extraction for re-decoding 
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  We use the following Chinese-to-English example to show the results of using the extraction 

algorithm. 

 

 

Figure 3.7: A source sentence and its two translations provided by MT system h1 and h2. 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Extracted hierarchical phrases from the source sentence and the translation by MT 

system h1 

 

 

 

 

他 喜歡 你 買 的 書
He       likes        you   bought    ‘s       book

(He likes the book that you bought)

Eh2:           He   like the books     that    you     bought

source:      他 喜歡 你 買 的 書

Eh1:           He   likes     you    buy      the     book

  (9)                                         X  theX , X  的  X

(8)                             X buy theyou  , X  的  買  你

 (7)                                       book  theX , 書  的  X

  (6)                                                              book , 書

 (5)                                                    buyyou  , 買  你

(4)                          book buy theyou  , 書  的  買  你

......

(3)                                               likes He , 喜歡  他

(2)                                                                  X , X 

(1)                                                         X S , X S 

2121

11

11

11

2121



















X

X

X

X

X

X

X

S
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Figure 3.9: Extracted hierarchical phrases from the source sentence and the translation by MT 

system h2 

 

  Given the extracted hierarchical phrase of Figure 3.8 and Figure 3.9, hierarchical 

phrase-based re-decoding model would have the chance of getting the correct translation - “He 

likes the book that you bought”. Figure 3.10 shows the derivation of a synchronous CFG by 

using rules in Figure 3.8 and Figure 3.9. 

 

 

 

 

 

 

 

 

Figure 3.10: Derivation of a synchronous CFG by using rules in Figure 3.8 and Figure 3.9. 

 

 (18)                                   X that X  the, X  的  X

(17)                 boughtyou  that X  the, X  的  買  你

 (16)                               X that books  the, 書  的  X

 (15)                                                             books , 書

 (14)                                               boughtyou  , 買  你

(13)             boughtyou  that books  the, 書  的  買  你

......

(12)                                                 like He , 喜歡  他

(11)                                                                   X , X 

(10)                                                          X S , X S 
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(14) using              boughtyou  that X  thelikes He ,X 的 買  你 喜歡 他                

 (18) using                               X that X  thelikes He ,X 的 X 喜歡 他                 

(3) using                                                           X likes He ,X 喜歡 他                 
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(9)or  (1) using                                                                                XS ,XS  S , S 
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3.2.2 Model 

To model our Hierarchical Phrase-based Re-decoding Model, we need to first provide 

definitions for the estimation of confidence scores. 

Definition 1. For the i-th input sentence, one of the extracted translation rules j can be 

represented as  i

j

i

jX   ,  and its confidence score for the system h can be represented as an 

indicator: 

 


 


otherwise 0

in  occurs  ,  if  1
) , ( ,

,

i

h

i

jh

i

ji

jh

i

j

TX
CS


                          (3.1) 

  

Definition 2. For the i-th input sentence and one of the extracted translation rules j, we can 

represent its overall confidence score as a weighted summarization over all MT systems’ 

individual confidence score toward it: 




sN

h

i

jh

i

jh CS
1

, ) , (*                                                        (3.2) 

Where Ns is the total number of MT systems, and h denotes the weight of MT system h 

 

Definition 3. For the i-th input sentence Fi, we can define the confidence score for its 

combination result iE  as follows: 

 

                                                                          (3.3) 

 

J is the total number of phrases for the given sentence. h is the weight of MT system h. p  is 

phrase penalty. l  is LM weight and w  is word penalty. All weights as well as word and 

)(*))(log(*

*) , (*)|(log
1 1

,

i

w
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phrase penalties are trained discriminatively for Bleu score using Minimum Error Rate Training 

(MERT) procedure (Och 2004). 

 

3.2.3 Decoding 

Given an input source and the corresponding hierarchical phrases of MT systems, the decoder 

performs a search for the single most probable derivation via the CKY algorithm with a Viterbi 

approximation. The path of the search is our combination result. The single most probable 

derivation can be represented as 

 

)|(logmaxarg ii

E

i

best FEpE
i

                                                (3.4) 

 

3.2.4 Experiment 

The experiments are conducted and reported on two datasets: One dataset includes 

Chinese-English system translations and references from DARPA GALE 2008 (GALE Chi-Eng 

Dataset). The other one includes Chinese-English system translations and references and from 

NIST 2008 (NIST Chi-Eng Dataset). 

3.2.4.1 Setting 

We described our experimental setting as follows: 

 

GALE Chi-Eng Dataset: The GALE Chi-Eng Dataset consists of source sentences in Chinese, 

corresponding machine translations of 12 MT systems and four human reference translations in 

English. It also provides word alignments between source and translation sentences. We 

manually select the top five MT systems for our combination experiment. Each system provides 

the top one translation hypothesis for every sentence. The tuning set includes 422 sentences and 
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the test set also includes 422 sentences. 

                Table 3.1: Techniques of top five MT of GALE Chi-Eng Dataset 

 

  From Table 3.1, we can see that “rwth-pbt-sh” performs the best in BLEU, “rwth-pbt-aml” 

performs the best in TER, and “nrc” performs the best in MET. Since we are tuning toward 

BLEU, we regard “rwth-pbt-sh” as the top MT system. 

 

NIST Chi-Eng Dataset: The NIST Chi-Eng Dataset also consists of source sentences in Chinese, 

corresponding machine translations of multiple MT systems and four human reference 

translations in English, but word alignments between source and translation sentences are not 

included. We manually select the top five MT systems for our combination experiment. Each 

system provides the top one translation hypothesis for every sentence. The tuning set includes 

524 sentences and the test set includes 788 sentences. 

 

 

 

 

MT System name Approach BLEU TER MET 

Sys nrc phrase-based SMT 30.95     59.31 59.06 

Sys rwth-pbt-aml phrase-based SMT + source reordering 31.83   58.09  58.85 

Sys rwth-pbt-jx 
phrase-based SMT + Chinese word 

segmentation 
31.78   62.04  57.51 

Sys rwth-pbt-sh 
phrase-based SMT + source reordering + 

rescoring 
32.63   58.67  58.98 

Sys sri-hpbt hierarchical phrase-based SMT 32.00   58.97  58.84 
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                 Table 3.2: Techniques of top five MT of NIST Chi-Eng Dataset 

 

  From Table 3.2, we can see that “Sys 03” performs the best in BLEU, “Sys 15” performs the 

best in TER, and “Sys 15” performs the best in MET. Since we are tuning toward BLEU, we 

regard “Sys 03” as the top MT system. 

  We compare our hierarchical phrase-based re-decoding model with its baseline combination 

approach - phrase-based re-decoding model in this section. The estimations of confidence scores 

are the same as those described in section 3.2.2. The only difference is that the baseline uses 

phrases (continuous words) rather than hierarchical phrases.  

 

3.2.4.2 Results 

 Table 3.3: Comparing the performance of hierarchical phrase-based re-decoding model with 

Top 1 MT system and phrase-based re-decoding model (baseline). 

MT System name BLEU TER MET 

Sys 03 30.16    55.45  54.43 

Sys 15 30.06   55.16  54.49 

Sys 20 28.15     57.97 52.36 

Sys 22 29.94     56.10 54.19 

Sys 31 29.52    56.29 54.31 

 BLEU TER MET 

Sys rwth-pbt-sh 32.63   58.67  58.98 

phrase-based re-decoding model (baseline) 31.02    60.62 57.32 

hierarchical phrase-based re-decoding model 32.11    59.19  58.40 
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Figure 3.11: Comparing the performance of hierarchical phrase-based re-decoding model with 

all other systems 

 

  From Table 3.3, we see that the hierarchical phrase-based re-decoding model performs better 

than the phrase-based re-decoding model, showing that hierarchical phrases do bring some 

benefits by better modeling long-distance phrase reordering and the occurrences of discontinuous 

phrases. However, hierarchical phrase-based re-decoding model does not beat the best MT 

system.  
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3.3 Conclusions 

In this chapter, we propose the hierarchical phrase-based re-decoding model, which outperforms 

one of the baseline combination systems – the phrase-based re-decoding model. It features the 

use of hierarchical phrases and the use of a synchronous context-free grammar dynamically 

learned from source sentence and target hypotheses to represent the translation information. 

Through re-decoding the source sentence with the hierarchical phrases, it is able to obtain the 

combination result with stronger abilities of word re-ordering and consensus among the multiple 

MT systems’ translations compared with phrase-based re-decoding model. 

  For re-decoding framework, although our current model do not outperform the best MT 

system, there exists much potential to improve our approach because there are relatively more 

resources available to improve the performance in comparison with paraphrasing framework, 

such as bilingual corpora. So the future work for our re-decoding framework involves the 

integration of the existing translation probabilities trained from a bilingual corpus to the 

combination model. 
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Chapter 4 

 

Phrase-level Combination: 

Combination by Paraphrasing 

 

 

 

Phrase-level combination aims to retain coherence and consistency between the words in a 

phrase. In the previous chapter, we presented a new re-decoding model – the hierarchical 

phrase-based re-decoding model and demonstrate it performs better than the phrase-based 

re-decoding model but does not beat the best MT system. 

  In this chapter, we will present a different direction of phrase-level combination: instead of 

using re-decoding strategies, we propose to view combination as a paraphrasing process and use 

paraphrasing rules. Based on this idea, we present another phrase-level combination approach, 

called the paraphrasing model, described in Section 4.2. It extracts string-to-string paraphrases 

from the backbone and other hypotheses, and then uses these paraphrases with a reordering 

model to paraphrase the backbone. In order to further capture more complicated paraphrasing 

phenomena between the backbone and other target hypotheses, such as longer phrase reordering 

or the occurrences of discontinuous phrases, in Section 4.3, we also propose the use of 

hierarchical phrases — phrases that contain subphrases (Chiang 2007) — for paraphrasing-based 
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combination. We learn hierarchical paraphrases from monolingual word alignments between a 

selected backbone hypothesis and other hypotheses. These hierarchical paraphrases can model 

more complicated paraphrasing phenomena, and thus enable more utilization of consensus 

among MT engines than non-hierarchical paraphrases do. We call this technique the hierarchical 

paraphrasing model. 

4.1 Related Work: Lattice Decoding Model 

In recent years, some phrase-level combination techniques have been presented. They rely on a 

lattice decoding model to carry out the combination (Feng et al 2009; Du and Way 2010). In a 

lattice, each edge is associated with a phrase (a single word or a sequence of words) rather than a 

single word. The construction of the lattice is based on the extraction of phrase pairs from word 

alignments between a selected best MT system hypothesis (the backbone) and the other 

translation hypotheses. The combination is carried out through decoding over the phrase lattice 

to search for the best path. 

  Feng et al (2009) designed heuristic rules to extract paraphrases from word alignments 

between the backbone and the set of hypotheses. The paraphrases are allowed to be 

discontinuous but are required to be “minimum” alignment units unless they are generated by 

adding null words. The lattice was then constructed by adding aligned sentence pairs 

incrementally. In (Du and Way 2010), a Translation Error Rate Plus (TERp) tool was employed to 

carry out the word alignment between the backbone and other hypotheses; a lattice is built by 

extracting paraphrases based on certain alignment types that TERp indicated, i.e, “stem match”, 

“synonym match” and paraphrases. 
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  For the lattice decoding model, the word order of the backbone determines the word order of 

consensus outputs and thus, they are able to use existing word ordering of the backbone; 

however, lattice decoding models lack the ability to reorder words of the backbone. 

4.2 Paraphrasing Model 

In contrast to the above state-of-the-art lattice decoding techniques, we propose a novel 

perspective for combination: the combination process is regarded as a paraphrasing process. It 

extracts string-to-string paraphrases from the backbone (the selected hypothesis) and other 

hypotheses, and then uses these paraphrases to paraphrase the backbone. We call this technique 

the paraphrasing model. The process can be also interpreted as a post-editing process over the 

backbone, which system diagram is shown in Figure 4.1. 

 

 

            Figure 4.1: The system diagram of Paraphrasing Model 

 

Translation from 

MT System 1

Sentence-level Combination

…

Translation from 

MT System 2
Translation from 

MT System N

Backbone translation

Paraphrasing

model

Fusion

output

Translations from 

all MT Systems
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  The paraphrasing perspective motivates the application of various existing phrase-based MT 

techniques in the combination framework. For example, bilingual phrase extraction rules (Koehn 

et al, 2003), which are widely used in MT, can directly map to a target-to-target version for our 

paraphrase extraction. The simple but efficient rules avoid the complexity of (Feng et al 2009)’s 

heuristic alignment-unit rules. Moreover, to extract paraphrases that are more than one word, 

(Feng et al 2009) and (Du and Way 2010)’s rules rely only on crossing or many-to-many word 

alignments that their monolingual word aligners provided, while our rules are capable of utilizing 

not only crossing and many-to-many word alignments but also one-to-one monolingual word 

alignments to form multi-word paraphrases, and this enables us to extract many more 

paraphrases than (Feng et al 2009) and (Du and Way 2010). For the same reason, even though 

our implementation uses TERp tool as the word aligner,  the paraphrasing model actually can 

be applied to any kind of monolingual word aligner, including a pure one-to-one word aligner, 

such as Translation Error Rate (TER). Other benefits of the paraphrasing model include the fact 

that the phrase-table based lattice avoids the complexity of lattice construction in (Feng et al 

2009), and decoding over the backbone enables us to integrate a reordering model into our 

combination model directly. 

 

The paraphrasing model involves the following steps: 

 

1. Collect the hypotheses from multiple MT systems.  

 

2. Select the backbone sentence hypothesis. The common strategy is through Minimum Bayes 

Risk (MBR) decoding (Sim et al., 2007; Rosti et al., 2007a; Feng et al 2009) or system-weighted 

MBR (Du and Way 2010). These approaches basically only rely on the agreement of system 
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hypotheses. In order to utilize other information, such as a LM, we view the backbone selection 

as a sentence-based MT combination framework and design the following log-linear model: 

 

                                                                       (4.1) 

 

 

Where E is system hypothesis, Ns is system number,
s is system weight, l is LM weight and w

is word penalty. 

 

3. Get the word alignments between the backbone and all system hypotheses. The paraphrasing 

model actually can be applied to any kind of monolingual word aligner. In our implementation, 

we adopt TERp, one of the state-of-the-art alignment tools, to serve this purpose, described in 

section 4.2.1.1. 

 

5. Given the word alignments between the backbone and all system hypotheses, we extract 

paraphrases as phrase table entries, described in section 4.2.1.2. 

 

6. Assign each entry in the phrase table a paraphrase confidence score, described in section 4.2.2. 
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 Figure 4.2(a): Example of word alignments of hypotheses. Assume Sys1 as the baseline.                   

                      

      Figure 4.2(b): Confusion Network based on word alignments in Figure 4.2(a). 

                      

            Figure 4.2(c): Lattice based on word alignments in Figure 4.2(a). 

                       

 Figure 4.2(d): Search Space of the paraphrasing model based on word alignments in Figure 

4.2(a). 

Sys2:   I prefer apples

Sys1:   I feel like fruit

Sys3:   I am fond of apples
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am fond of apples
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 Bold lines and words indicate the basebline. 

  The example in Figure 4.2 provides a comparison between the paraphrasing model and other 

combination approaches from the view of search space. Based on the word alignments of 

hypotheses from MT systems, shown in Figure 4.2(a), we construct a confusion network in 

Figure 4.2(b), a lattice in Figure 4.2(c), and the search space of our paraphrasing model in 

Figure 4.2(c). 

  From Figure 4.2(b), we see that although “am fond of ” and “feel like” have the same 

meaning, the confusion network-based approaches face the risk of producing degenerate 

translations, such as “am like of” and “feel fond of”. In Figure 4.2(c), we see that the phrases 

“am fond of” and “feel like” are not allowed to be mixed, but it does not consider the 

paraphrases - “prefer apples” and “feel like apples” and the paraphrases - “am fond of apples” 

and “feel like apples”. And because lattice decoding searches the path from left to right, the word 

order of the backbone completely determines the word order of consensus outputs. Thus, the 

lattice decoding search lacks the ability to reorder the words of the backbone. On the other hand, 

in Figure 4.2(d), we see that the paraphrasing model overcomes the problems of confusion 

network decoding and lattice decoding. It considers the paraphrases - “prefer apples” and “feel 

like apples” and the paraphrases - “am fond of apples” and “feel like apples”. Since the decoding 

object is no longer the lattice, but the backbone, it has the ability to reorder words of the 

backbone. 

4.2.1 Paraphrase Extraction 

The process pf paraphrase extraction is divided into two steps. We first use a word aligner to get 

word alignments of hypotheses and then extract paraphrases based on these word alignments. 
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4.2.1.1 Monolingual Word Alignment 

Our paraphrases are deduced from monolingual word alignment. Any monolingual word aligner 

can serve the purpose. In our implementation, we adopt TERp as our alignment tool. We briefly 

review it and use an abstract example to illustrate its alignment output format and how we 

slightly adjust the format to meet our needs. 

TERp (Snover et al. 2009) is an extension of TER (Snover et al. 2006). Both TERp and TER 

are automatic evaluation metrics for MT, based on measuring the ratio of the number of edit 

operations between the reference sentence and the MT system hypothesis. TERp uses all the edit 

operations of TER—Matches, Insertions, Deletions, Substitutions and Shifts—as well as three 

new edit operations: Stem Matches, Synonym Matches and Paraphrases. TERp identifies the 

Stem Matches and Synonym Matches using the Porter stemming algorithm (Porter, 1980) and 

WordNet (Fellbaum, 1998) respectively. Sequences of words in the reference are considered to 

be paraphrases of a sequence of words in the hypothesis if that phrase pair occurs in the TERp’s 

own paraphrase database. 

One valuable characteristic of TERp is that it can produce very high-quality alignments 

between two given input sentences and identify the alignment types including M (Exact Match), 

I (Insertion), D (Deletion), S (Substitution), T (Stem Match), Y (Synonym Match) and P 

(Paraphrase). While P is a phrase alignment, all other types are word alignments. An real 

alignment example using TERp is shown as Figure 4.3. 
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Figure 4.3: An real alignment example using TERp. P (Paraphrase) is shown in gray; S 

(Substitution) is shown in pink; I (Insertion) and D (Deletion) are shown in black; Y (Synonym 

Match) is shown in yellow; T (Stem Match) is shown in green; M (Exact Match) is shown in no 

color. 

 

To better illustrate the tool, we use an abstract instance. Assume we have a backbone Eb and a 

system hypothesis Eh as follows: 

 

 

           

   Figure 4.4: A backbone Eb and a system hypothesis Eh 

 

where each wi means a word w in position i in the sentence.  

Given the sentence pair as input for the TERp tool, the alignment between Eb and Eh could be 

produced as follows: 

 

11       10       9       8       7       6       5       4       3       2       1  : wwwwwwwwwwwEb

  10       9       8       7       6      5       4       3       2       1  : wwwwwwwwwwEh
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            Figure 4.5: The alignment between Eb and reordered Eh 

 

Note that in the alignment produced by TERp in Fig. 4.5, Eb’s word order remains the same 

but Eh’s word order is changed to fit the most reasonable alignment. To extract paraphrases using 

our extraction rules, we re-order it back to the original word order and keep the alignment links 

and types. In order to generate a pure word alignment, for each P, we link every word of Eb to 

every word of Eh. The adjusted format is as follows: 

 

           

        Figure 4.6: The alignment between Eb and Eh with the original word order 

 

4.2.1.2 Algorithm for Paraphrase Extraction 

Before introducing our paraphrase extraction strategy, it is worth discussing the motivation: if we 

compare the phrase-level combination model with a phrase-based translation model, we see their 

motivations are quite similar. In translation, it is very common for several words in a foreign 

language to translate as a whole to several words in the target language. Similarly, in combining 

a pair of different translation hypotheses, sometimes several words can be substituted as a whole 

for several other words. For example, “is sick of” and “is disgusted with” basically carry the 

same meaning and have similar usages. Using the word as the unit to perform combination 

would run the risk of producing incorrect translations, such as “is sick with” or “is disgusted of”. 

Since translation and combination share a similar motivation for using phrases, it is natural for us 
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to apply a similar phrase extraction strategy in our combination framework. 

  We map the standard bilingual phrase extraction rules (Koehn et al, 2003) to the following 

target-to-target version for our paraphrase extraction: we extract all phrases that are 

word-continuous and consistent with the monolingual word alignment. This means that words in 

a legal paraphrase are not aligned to words outside of the paraphrase, and should include at least 

one pair of words aligned with each other. The definition of consistency can be formally stated 

as follows: assume e  is a phrase of a backbone and he  is a phrase of a MT system hypothesis. 

A pair of phrases ( e  , he ) is consistent with the monolingual word alignment matrix A if 

 

 

              and  eyAwyew jhj  ),(:  

              and    Awwewew jihji  ),(:,  

where wi is a word of e, jw  is a word of he  .  

  For a paraphrase ( e , he ), we make word position information attach to e , while it is not 

necessary to do so with he  . This results in pairs, such as (is_20 disgusted_21 with_22, is sick 

of), where 20-22 are the word positions in the backbone. 

  We use the same Chinese-to-English example of Figure 3.2 to illustrate the paraphrasing 

process. We assume Eh1 - “He likes you buy the book” is the selected backbone sentence 

hypothesis, and Eh2 – “He likes the books that you bought” is another hypothesis. Figure 4.7 

shows the word alignments between the backbone and another hypothesis. Figure 4.8 shows the 

extracted paraphrases from the translation by MT system h1, and Figure 4.9 shows the extracted 

paraphrases from the translation by MT system h2. 

hii exAxwew  ),(:
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Fig 4.7: A backbone sentence (the translation Eh1), the translation Eh2 and the word alignment 

between the two. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: The extracted phrases from the translation by MT system h1. 

 

 

 

 

 

 

 

 

 

Figure 4.9: The extracted phrases from the translation by MT system h2. 

 

他 喜歡 你 買 的 書
He       likes        you   bought    ‘s       book

(He likes the book that you bought)

Eh2:           He   like the books     that    you     bought

Eh1:           He   likes     you    buy      the     book






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




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



boughtyou  that books  thebook, buy theyou 

boughtyou  that books book, buy theyou 

boughtyou  that buy the,you 

boughtyou  buy the,you 

boughtyou  that buy,you 

boughtyou  buy,you 

boughtyou  that books  thelike book, buy theyou  likes
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  Given the extracted phrases of Figure 4.8 and Figure 4.9, the paraphrasing model has the 

chance of getting the correct translation - “He likes the book that you bought” by using the rule 

of “<He likes, He likes>” from MT system h1, the rule of “<you buy, that you bought >” from 

MT system h2 and the rule of “<the book, the book >” from MT system h1, and by reordering 

the order of “that you bought” and “the book” to the order of “the book” and “that you bought”. 

    

4.2.2 Model 

We use the basic translation model in MT as inspiration for our combination model.  

 

Definition 1. For the backbone of the i-th input sentence and translation of MT system h, one of 

the extracted paraphrasing rules j can be represented as  hi

j

i

j ee , ,  and its confidence score for 

the system h can be represented as an indicator: 

 





otherwise 0

sparaphrase are    if  1
) , ( ,

,

i

jh

i

ji

jh

i

j

eande
eeCS                             (4.2)           

 

Definition 2. For the backbone of i-th input sentence and one of the extracted paraphrasing rules 

j, we can represent its overall confidence score as a weighted summarization over all MT 

systems’ individual confidence score toward it: 




sN

h

i

jh

i

jh eeCS
1

, ) , (*                                                       (4.3) 

Where N is the total number of MT systems, and h  denotes the weight of MT system h 
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Definition 3. For the backbone ( iE ) of the i-th input sentence, we can define the confidence 

score for its combination result iE   as follows: 

 

                                                                       (4.4) 

  

J is the total number of phrases for the given sentence. h  is the weight of MT system h. p  is 

phrase penalty, which controls the preference of phrase length. w  is word penalty, which 

controls the preference of hypothesis length. d  is a reordering model based on distortion cost, 

weighted by d . LM  is a general language model, weighted by l . In this combination model, all 

weights, as well as word and phrase penalty, can be trained discriminatively for Bleu score using 

Minimum Error Rate Training (MERT) procedure (Och 2004). 

 

4.2.3 Decoding 

Given the backbone of an input source and the corresponding paraphrasing rules, the decoder 

performs a search for the single most probable path via a Viterbi approximation. The path of the 

search is our combination result. It can be represented as 

 

)|(logmaxarg ii

E

i

best EEpE
i

  

  Here we mimic the combination processing using our paraphrasing model to combine the two 

hypotheses in Figure 4.7. By using the extracted phrases of Figure 4.8 and Figure 4.9. The model 

has the chance of getting the correct translation - “He likes the book that you bought” by using 

the rule “<He likes, He likes>” from MT system h1, the rule “<you buy, that you bought >” from 

MT system h2 and the rule “<the book, the book>” from MT system h1. Please note that because 
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of the reordering model, the paraphrasing model has the ability to put “the books” and “that you 

bought” in a right order. On the other hand, if we use the lattice decoding model of (Feng et al 

2009) and (Du and Way 2010) to combine the two hypotheses, and assume the extracted phrases 

of Figure 4.7 and Figure 4.8 are given, the best translation we can get is “He likes that you 

bought the book” by using the same three rules. The only mistake of the translation is that “that 

you bought” and “the book” should be switched in order, because the model lacks of the ability 

of word reordering.  

   One implementation detail for the paraphrasing model is based on the fact that the words in 

the backbone are not necessarily unique within the entire sentence, so before decoding, they need 

to be indexed using word positions. Any standard translation decoder can be used to decode the 

format
1
. Take a toy example to illustrate the decoding process as follows. Start with an indexed 

backbone: 

            … He_19  is_20  disgusted_21  with_22  that_23 … 

Assume there are only four entries in our phrase table: 

 

(He_19, He)          

(is_20 disgusted_21 with_22, is disgusted with) 

(is_20 disgusted_21 with_22, is sick of)          

(that_23, that) 

 

Then one of the following hypotheses would be generated by the decoding: 

              … He  is  disgusted  with  that … 

              … He  is  sick  of  that … 

                                                 
1 In our implementation, we use MOSES (http://www.statmt.org/moses/) 
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4.2.4 Experiments 

Our experiments are conducted and reported on three datasets: The first dataset includes 

Chinese-English system translations and reference translations from DARPA GALE 2008 

(GALE Chi-Eng Dataset). The second dataset includes Chinese-English system translations and 

reference translations and from NIST 2008 (NIST Chi-Eng Dataset). And the third dataset 

includes Arabic-English system translations and reference translations and from NIST 2008 

(NIST Ara-Eng Dataset). 

 

4.2.4.1 Setting 

We use the GALE Chi-Eng Dataset and the NIST Chi-Eng Dataset as in Section 3.2.4.1. For the 

reader’s convenience, we briefly describe the two datasets here again first, followed by the 

introduction of the NIST Ara-Eng Dataset. 

 

GALE Chi-Eng Dataset: The GALE Chi-Eng Dataset consists of source sentences in Chinese, 

corresponding machine translations of 12 MT systems and four human reference translations in 

English. It also provides word alignments between source and translation sentences. We 

manually select the top five MT systems for our combination experiment. Each system provides 

the top one translation hypothesis for every sentence. The tuning set includes 422 sentences and 

the test set also includes 422 sentences. Among the five systems, “rwth-pbt-sh” performs the best 

in BLEU, and since we are tuning toward BLEU, we regard “rwth-pbt-sh” as the top MT system. 

 

NIST Chi-Eng Dataset: The NIST Chi-Eng Dataset also consists of source sentences in Chinese, 

corresponding machine translations of multiple MT systems and four human reference 

translations in English, but word alignments between source and translation sentences are not 
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included. We manually select the top five MT systems for our combination experiment. Each 

system provides the top one translation hypothesis for every sentence. The tuning set includes 

524 sentences and the test set includes 788 sentences. Among the five systems, “Sys 03” 

performs the best in BLEU, and since we are tuning toward BLEU, we regard “Sys 03” as the 

top MT system. 

 

NIST Ara-Eng Dataset: The previous datasets are Chinese-English datasets. We evaluated our 

models on the test set of these two datasets for every combination approach. Although we did not 

inspect the errors of the test set during development of a new approach, we also wanted to run 

our system after all approaches were finalized on a brand new dataset. We use a dataset of a 

different language pair as a blind test to further demonstrate our models’ robustness and 

consistency. The NIST Ara-Eng Dataset plays this role. It consists of source sentences in Arabic, 

corresponding machine translations of multiple MT systems and four human reference 

translations in English, but word alignments between source and translation sentences are not 

included. We manually select the top five MT systems for our combination experiment. Each 

system provides the top one translation hypothesis for every sentence. The tuning set includes 

592 sentences and the test set includes 717 sentences. 

 

 

 

 

 

                  

             Table 4.1: Techniques of top five MT of NIST Ara-Eng Dataset 

MT System name BLEU TER MET 

Sys 03 45.81  48.88 69.34 

Sys 07 44.67   46.70 68.00 

Sys 15 45.71  46.20 70.24 

Sys 26 45.83  45.35 69.42 

Sys 31 48.40  45.55 70.67 
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  From Table 4.1, we can see that “Sys 31” performs the best in BLEU, “Sys 26” performs the 

best in TER, and “Sys 31” performs the best in MET. Since we are tuning toward BLEU, we 

regard “Sys 31” as the top MT system. 

4.2.4.2 Results 

 

 

 

 

 

Table 4.2: GALE Chi-Eng Dataset : The paraphrasing model in comparison with baseline and 

previous results 

 

 

 

 

 

Table 4.3: NIST Chi-Eng Dataset : The paraphrasing model in comparison with baseline. 

 

 

 

 

 

Table 4.4: NIST Ara-Eng Dataset : The paraphrasing model in comparison with baseline. 

 BLEU TER MET 

Sys rwth-pbt-sh 32.63   58.67  58.98 

phrase-based re-decoding model (baseline) 31.02    60.62 57.32 

hierarchical phrase-based re-decoding model 32.11    59.19  58.40 

Confusion Network (baseline) 33.04     57.08 59.44 

paraphrasing model 33.16    56.63  59.46 

 BLEU TER MET 

Sys 03 30.16    55.45  54.43 

Confusion Network (baseline) 31.21 54.59 55.59 

paraphrasing model 32.65     55.11 56.17 

 BLEU TER MET 

Sys 31 48.40  45.55 70.67 

Confusion Network (baseline) 48.56  43.81 70.67 

paraphrasing model 49.33  45.08 70.87 



 

54 

 

  Form Table 4.2 and 4.3, we can make the following observations: 1. For the three datasets, the 

paraphrasing model performs better than the top MT system. 2. For the three datasets, the 

paraphrasing model performs better than confusion network decoding, which supports our basic 

claim about the advantage of using phrases in combination. Especially for NIST Chi-Eng Dataset, 

the paraphrasing model enlarges the leading gap in comparison with the confusion network 

decoding model. 3. From Table 4.2, we find the paraphrasing model performs better than both 

re-decoding models. The reason could be that for the re-decoding models, we decode the source 

sentence, and more word reordering needs to be modeled because the input and output are in 

different languages. On the other hand, for the paraphrasing model, the backbone sentence is 

decoded, and less word reordering needs to be modeled because the input and output are in the 

same languages. In other words, the backbone has similar word reordering with the eventual 

combination results, lowering the chance of causing errors in word reordering. 

  To provide another objective evaluation, we also evaluate our paraphrasing model on NIST 

Ara-Eng Dataset as a blind test. The results are shown in Table 4.4. We see that the paraphrasing 

model still achieves the better performance in BLEU in comparison with the confusion network 

decoding model, which demonstrates the paraphrasing model’s robustness and consistency. It 

shows the results are consistent across test sets and across two languages. 

 

4.2.4.3 Analysis of Phrase Length 

For our paraphrasing model, how long do phrases have to be to achieve high performance? 

Figure 4.10 displays results from experiments with different maximum phrase lengths for NIST 

Chi-Eng Dataset. We find that limiting the length to a maximum of five words per phrase 

achieves top performance in BLEU, and that limiting the length to a maximum of three words 

per phrase achieves top performance in MET, and that limiting the length to a maximum of seven 
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words per phrase achieves top performance in TER. Because we are tuning toward BLEU, we 

regard a maximum of five words per phrase is the best setting for the paraphrasing model. 

 

         

        Figure 4.10: Different limits for maximum phrase length for NIST Chi-Eng Dataset. 

 

 

4.2.4.4 Analysis of Syntactic Paraphrase Extraction 

In section 4.2.1.2, we introduced our paraphrase extraction method: extract all phrases that are 

word-continuous and consistent with the monolingual word alignment, which does not consider 

any syntactic information or restriction. To understand the effect of syntactic paraphrases, in this 

section, we use the following three different extraction methods for our paraphrasing model. 

 

Extraction Method A: a pair of phrases ( e  , he ) is consistent with the monolingual word 

alignment, and only e  is a constituent. 

 

Extraction Method B: a pair of phrases ( e  , he ) is consistent with the monolingual word 

alignment, and e  and he  are both constituents. 
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Extraction Method C: a pair of phrases ( e  , he ) is consistent with the monolingual word 

alignment, and e  and he  are both constituents with the same constituent types, such as NP, VP, 

PP…etc. 

 

In the three extraction methods, the constituents and their types are determined by the Stanford 

Parser. The combination results using these methods are shown in Table 4.5. 

 

 

 

 

 

 

 

Table 4.5: Comparing the performance of paraphrasing model using different extraction methods 

for NIST Chi-Eng Dataset. 

 

  Table 4.5 shows that syntactic paraphrases give no improvement in comparison with the basic 

extraction rules in section 4.2.1.2. The results might be explained by the following reason: 

restricting paraphrases to be syntactic paraphrases enforces the paraphrasing model to retain the 

same or similar overall syntactic structure of the backbone hypothesis. But because of these 

restrictions, only fewer paraphrases are extracted and many reasonable paraphrases are missing, 

resulting in the consequence that the backbone has a smaller chance to be paraphrased. 

 

 

 BLEU TER MET 

Sys 03 30.16    55.45  54.43 

Confusion Network (baseline) 31.21 54.59 55.59 

paraphrasing model 32.65     55.11 56.17 

paraphrasing model with Extraction Method A 32.11    55.07 56.18 

paraphrasing model with Extraction Method B 31.73   54.78 56.09 

paraphrasing model with Extraction Method C 31.66   55.30 55.78 
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4.2.4.5 Analysis of the Addition of Syntactic Features 

In MT, to investigate the impact of syntactic information, Koehn et. al. (2003) weighted syntactic 

phrases in the phrase table used in their MT experiments, and found that the consideration of 

syntactic phrases does not bring benefits. We adopt a similar strategy; we add the following 

different features individually in (4.4). 

 

Feature A 

 

 

Feature B 

 

 

Feature C 

 

 

 

  Each feature is attached with a weight, obtained from MERT process. In the previous section, 

Method A, B and C are hard constraints about syntactic paraphrases. In this section, Feature A, B 

and C can be regarded as soft constraints about syntactic paraphrases. In the three features, the 

constituents and their types are determined by Stanford Parser. The combination results using 

these methods are shown in Table 4.6. 
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. 

 

 

 

Table 4.6: Comparing the performance of paraphrasing model using different features about 

syntactic paraphrases for NIST Chi-Eng Dataset. 

 

  From Table 4.6, we found that the features for syntactic paraphrases still gave no improvement 

in comparison with the basic extraction rules in section 4.2.1.2. 

 

4.2.4.6 Analysis of the Selections of MT systems 

In Section 4.2.4.2, we manually select the top five MT systems for our combination experiment. 

Here we investigate whether this selection based on MT systems’ performances is reasonable and 

able to yield the best performance. We compare the performances of top three, top five, top seven, 

top nine MT systems, and another selection of five MT systems – 6
th

-10
th

 MT systems. 

 

 

 

 

 

 

 

 BLEU TER MET 

Sys 03 30.16    55.45  54.43 

Confusion Network (baseline) 31.21 54.59 55.59 

paraphrasing model 32.65     55.11 56.17 

paraphrasing model with Feature A 32.54   54.65 56.24 

paraphrasing model with Feature B 32.07   55.29 55.87 

paraphrasing model with Feature C 31.91   54.82 56.02 
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Table 4.7: The combination performances using top 5 MT systems v.s. other choices of input MT 

systems on NIST Chi-Eng Dataset. 

 

  Table 4.7 shows that, the performance of top five systems provides the best performance in 

BLEU even compared with top seven and top nine MT systems. In other words, adding more MT 

systems does not always bring benefits when the added MT systems are relatively poorer. From 

Table 4.7, we also see that the performance of combination based on 6
th

-10
th

 MT systems drops 

significantly, which indicates that the performance of combination strongly correlates with the 

individual quality of each MT system. To further support this interpretation, we compare the 

performances of using the selection of top three MT systems with other selections of three MT 

systems. The results are shown in Table 4.8. 

 

  BLEU TER MET 

The Best MT 

system 
Sys 03 30.16 55.45 54.43 

Word-level 

combination 

(baseline) 

Confusion Network 31.21 54.59 55.59 

Phrase-level 

combination 

paraphrasing model  

(top 3 sys) 

31.34   55.39 55.45 

paraphrasing model  

(top 5 sys) 

32.65 55.11 56.17 

paraphrasing model  

(top 7 sys) 

32.52   54.95 56.20 

paraphrasing model  

(top 9 sys) 

32.48   55.02 56.17 

paraphrasing model  

(6th-10th sys) 

28.44   58.53 53.11 
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Table 4.8: The combination performances using top 3 MT systems and other choices of three MT 

systems on NIST Chi-Eng Dataset. 

 

  From Table 4.8, we see that top 3 MT systems performs the best and the lowest quality 3 MT 

systems performs the worst, which indicates again that the performance of combination strongly 

correlates with the individual quality of each MT system. 

  From these analyses, we can conclude that for MT combination, the selection of top N MT 

systems is a reasonable strategy, but larger N does not always bring benefits when N exceeds 5. 

 

4.3 Hierarchical Paraphrasing Model 

In the last section, we introduced the paraphrasing model, relying on string-to-string paraphrases 

to paraphrasing the backbone. However, these string-to-string paraphrases are not able to capture 

more complicated paraphrasing phenomena between the backbone and other target hypotheses, 

such as longer phrase reordering or the occurrences of discontinuous phrases. 

  In this section, we propose the use of hierarchical phrases—phrases that contain subphrases 

  BLEU TER MET 

The Best MT 

system 
Sys 03 30.16 55.45 54.43 

Word-level 

combination 

(baseline) 

Confusion Network 31.21 54.59 55.59 

Phrase-level 

combination 

paraphrasing model  

(top 3 sys) 

31.34   55.39 55.45 

paraphrasing model  

(4th-6th sys) 

27.92   56.85 52.38 

paraphrasing model  

(7th-9th sys) 

26.82   59.27 51.76 



 

61 

 

(Chiang 2007) -- for machine translation system combination. We present a hierarchical 

phrase-level combination for paraphrasing by using a synchronous context-free grammar 

dynamically learned from bi-text without any syntactic annotations. We learn hierarchical 

paraphrases from monolingual word alignments between a selected backbone hypothesis and 

other hypotheses. These hierarchical paraphrases can model more complicated paraphrasing 

phenomena, and thus enable more utilization of consensus among MT engines than 

non-hierarchical paraphrases do. We call this technique the hierarchical paraphrasing model. 

Figure 4.11 shows the system diagram. 

 

 

            Figure 4.11: The system diagram of Hierarchical Paraphrasing Model 

 

The combination process involves the following steps: 

 

Translation from 

MT System 1

Sentence-level Combination

…

Translation from 

MT System 2
Translation from 

MT System N

Backbone translation

Hierarchical

paraphrasing

model

Fusion

output

Translations from 

all MT Systems
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1. Collect the translation hypotheses from multiple MT systems.  

 

2. Select the backbone translation hypothesis E from multiple translations for each input sentence. 

We follow the common strategy of Minimum Bayes Risk (MBR) decoding (Sim et al., 2007; 

Rosti et al., 2007a; Feng et al 2009; Du and Way 2010) and use TER-based consensus to select 

the backbone. The selection method is the same as what we described in the step2 of 

paraphrasing model. For the reader’s convenience, we describe it here again: 

 

                                                                       (4.5)                

 

 

Where E is system hypothesis, Ns is system number,
s is system weight, l is LM weight and w

is word penalty. 

 

3. Get monolingual word alignments between the backbone and all system hypotheses. We adopt 

TERp, one of the state-of-the-art alignment tools, to serve this purpose.  

 

4. Extract phrases from the given monolingual word alignments. We extract all phrases that are 

word-continuous and consistent with the monolingual word alignment for each MT system. The 

extraction algorithm is the same as what we showed in section 4.2.1. 

 

5. Extract hierarchical phrases from the given extracted phrases in step 4. The formal extraction 

algorithm is provided in section 4.3.1. 
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6. Assign each hierarchical phrase a confidence estimation, as described in section 4.3.2. 

 

7. Re-decode the backbone using the above hierarchical phrases with confidence estimation as 

described in section 4.3.3. 

 

4.3.1 Hierarchical Paraphrase Extraction 

Our hierarchical phrase-level paraphrasing rules are designed as a synchronous-CFG, extracted 

from the backbone and the given translations of multiple MT systems. For an i-th sentence, we 

use E
i
 and ie  to represent the backbone and one of its phrases, respectively. E

i
h represents the 

translation of MT system h, and e
i
h is one phrase of E

i
h. We use Q

i
h to denote the set of the 

paraphrasing rules for sentence i and MT system h, and show how to collect Q
i
h as follows: 

--------------------------------------------------------------------------------------------------------------------- 

If   i

h

i ee  ,  is consistent with monolingual word alignment,  

     then   i

h

i eeX  ,  is added to Q
i
h. 

If    , X  is a rule in Q
i
h , and  i

h

i ee  ,  is consistent with monolingual word alignment 

such that 21  ie  and 
21  i

he    

     then   2121  ,  kk XXX  is added to Q
i
h,  

   where k is an index. 

Two special “glue” rules are added to Q
i
h 

 2121 X,X SSS    and  11 X,XS  

--------------------------------------------------------------------------------------------------------------------- 

Figure 4.12: Algorithm of hierarchical phrase extraction for paraphrasing 

 

  We use the same Chinese-to-English example of Figure 3.1 to illustrate the hierarchical 
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paraphrasing process. We assume Eh1 - “He likes you buy the book” is the selected backbone 

sentence hypothesis, and Eh2 – “He likes the books that you bought” is another hypothesis. 

Figure 4.13 shows the word alignments between the backbone and another hypothesis. Figure 

4.14 shows the extracted hierarchical paraphrases from MT system h1’s translation, and Figure 

4.15 shows the extracted hierarchical paraphrases from MT system h2’s translation. 

 

 

Figure 4.13: A backbone sentence (the translation Eh1), the translation Eh2 and the word 

alignment between the two. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Extracted hierarchical phrases from the source sentence and the translation by MT 

system h1 

 

 

 

 

 

他 喜歡 你 買 的 書
He       likes        you   bought    ‘s       book

(He likes the book that you bought)

Eh2:           He   like the books     that    you     bought

Eh1:           He   likes     you    buy      the     book

 (9)                                               X    theX , X    theXX

(8)                                   X buy theyou  , X buy theyou X

 (7)                                           book   theX ,book    theXX

 (6)                                                                   book ,book X

 (5)                                                         buyyou  ,buy you X

(4)                            book buy theyou  ,book  buy theyou X

......

(3)                                                         likes He , likes HeX

(2)                                                                           X , X S

(1)                                                                 X S , X S S

2121

11

11

11

2121


















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Figure 4.15: Extracted hierarchical phrases from the source sentence and the translation by MT 

system h2 

 

  Given the extracted hierarchical phrases of Figure 4.14 and Figure 4.15, the hierarchical 

paraphrasing model would have the chance of getting the correct translation - “He likes the book 

that you bought”. Figure 4.16 shows the derivation of a synchronous CFG by using rules in 

Figure 4.14 and Figure 4.15. 

 

 

 

 

 

 

 

 

Figure 4.16: Derivation of a synchronous CFG by using rules in Figure 4.14 and Figure 4.15. 

 

4.3.2 Model 

To build our Hierarchical Phrase-based Re-decoding Model, we need to first provide definitions 

about the estimation of confidence scores. 

 

 (18)                                                 X that X  the, X    theXX

(17)                              boughtyou  that X  the, X buy theyou X

 (16)                                          X that books  the,book    theXX

 (15)                                                                         books ,book X

 (14)                                                           boughtyou  ,buy you X

(13)                     boughtyou  that books  the,book  buy theyou X

......

(12)                                                                  likes He , like HeX

(11)                                                                                  X , X S

(10)                                                                        X S , X S S

1221

11

11

11

2121



















(6) using   boughtyou book that   thelikes He ,book buy theou  likes He                

(14) using               boughtyou  that X  thelikes He ,Xbuy ou  likes He                

 (18) using                             X that X  thelikes He ,X het X likes He                 

(3) using                                                           X likes He ,X likes He                 

              (10)or  (2) using                                                                             XX ,XX                 

(9)or  (1) using                                                                                XS ,XS  S , S 
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Definition 4. For the backbone of the i-th input sentence and translation of MT system h, one of 

the extracted paraphrasing rules j can be represented as  i

j

i

jX   ,  and its confidence score 

for the system h can be represented as an indicator: 

 


 


otherwise 0

in  occurs  ,  if  1
) , ( ,

,

i

h

i

jh

i

ji

jh

i

j

QX
CS


                           (4.6) 

 

Definition 5. For the backbone of i-th input sentence and one of the extracted paraphrasing rules 

j, we can represent its overall confidence score as a weighted summarization over all MT 

systems’ individual confidence score toward it: 




sN

h

i

jh

i

jh CS
1

, ) , (*                                                        (4.7) 

Where N is the total number of MT systems, and h  denotes the weight of MT system h 

 

Definition 6. For the backbone ( iE ) of the i-th input sentence, we can define the confidence 

score for its combination result iE   as follows: 

 

                                                                       (4.8) 

  

J is the total number of phrases for the given sentence. h  is the weight of MT system h. p  is 

phrase penalty, which controls the preference of phrase length. w  is word penalty, which 

controls the preference of hypothesis length. LM  is a general language model, weighted by l

. In this combination model, all weights as well as word and phrase penalty can be trained 

discriminatively for Bleu score using Minimum Error Rate Training (MERT) procedure (Och 

2004). 

)(*))(log(*

*) , (*)|(log
1 1

,

i
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i
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p
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h
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jh
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ii

ElengthELM

JCSEEp
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4.3.3 Decoding 

Given the backbone of an input source and the corresponding paraphrasing rules, the decoder 

performs a search for the single most probable derivation via the CKY algorithm with a Viterbi 

approximation. The path of the search is our combination result. The single most probable 

derivation can be represented as 

)|(logmaxarg ii

E

i

best EEpE
i

  

 

4.3.4 Experiment 

The experiments are conducted and reported on two datasets: One dataset includes 

Chinese-English system translations and references from DARPA GALE 2008 (GALE Chi-Eng 

Dataset). The other one includes Chinese-English system translations and references and from 

NIST 2008 (NIST Chi-Eng Dataset). 

4.3.4.1 Setting 

We use the same setting as in Section 4.2.4.1. For the reader’s convenience, we describe it here 

again: 

 

GALE Chi-Eng Dataset: The GALE Chi-Eng Dataset consists of source sentences in Chinese, 

corresponding machine translations of 12 MT systems and four human reference translations in 

English. It also provides word alignments between source and translation sentences. We 

manually select the top five MT systems for our combination experiment. Each system provides 

the top one translation hypothesis for every sentence. The tuning set includes 422 sentences and 

the test set also includes 422 sentences. Among the five systems, “rwth-pbt-sh” performs the best 

in BLEU, and since we are tuning toward BLEU, we regard “rwth-pbt-sh” as the top MT system. 
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NIST Chi-Eng Dataset: The NIST Chi-Eng Dataset also consists of source sentences in Chinese, 

corresponding machine translations of multiple MT systems and four human reference 

translations in English, but word alignments between source and translation sentences are not 

included. We manually select the top five MT systems for our combination experiment. Each 

system provides the top one translation hypothesis for every sentence. The tuning set includes 

524 sentences and the test set includes 788 sentences. Among the five systems, “Sys 03” 

performs the best in BLEU, and since we are tuning toward BLEU, we regard “Sys 03” as the 

top MT system. 

4.3.4.2 Results 

 

 

 

 

 

 

Table 4.9: Comparing the performance of the hierarchical paraphrasing model with top MT 

system, re-decoding models, the paraphrasing model and confusion network decoding for GALE 

Chi-Eng Dataset. 

 BLEU TER MET 

Sys rwth-pbt-sh 32.63   58.67  58.98 

phrase-based re-decoding model (baseline) 31.02    60.62 57.32 

hierarchical phrase-based re-decoding model 32.11    59.19  58.40 

Confusion Network (baseline) 33.04     57.08 59.44 

paraphrasing model 33.16    56.63  59.46 

hierarchical paraphrasing model 33.09    56.68  59.34 
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Figure 4.17: Comparing the performance of hierarchical paraphrasing model with all other 

systems for GALE Chi-Eng Dataset. 
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Table 4.10: Comparing the performance of the hierarchical paraphrasing model with top MT 

system, the paraphrasing model and confusion network decoding for NIST Chi-Eng Dataset. 

 

 

Figure 4.18: Comparing the performance of hierarchical paraphrasing model with all other 

systems for NIST Chi-Eng Dataset. 
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 BLEU TER MET 

Sys 03 30.16    55.45  54.43 

Confusion Network (baseline) 31.21 54.59 55.59 

paraphrasing model 32.65     55.11 56.17 

hierarchical paraphrasing model 32.59    55.06 56.19 
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Table 4.11: Comparing the performance of the hierarchical paraphrasing model with top MT 

system, the paraphrasing model and confusion network decoding for NIST Ara-Eng Dataset. 

 

  From Table 4.9 and 4.10, we see that the hierarchical paraphrasing model outperforms the 

best MT system and confusion network decoding model for the two datasets. And from Table 4.9, 

similar to the paraphrasing model, we also find that the hierarchical paraphrasing model 

performs better than both re-decoding models.  

  Table 4.9 and 4.10 are Chinese-English datasets, which we evaluate our hierarchical 

paraphrasing model during and after the development process. To provide a more objective 

evaluation, we evaluate our hierarchical paraphrasing model on NIST Ara-Eng Dataset as a 

blind test. The results are shown in Table 4.11. we see that the hierarchical paraphrasing model 

still achieves the better performance in BLEU in comparison with the best MT system and the 

confusion network decoding model, which demonstrates the hierarchical paraphrasing model’s 

robustness and consistency.  

  Although the experimental results show that hierarchical paraphrasing model performs well, 

there is almost no difference in performance in any of the three metrics when compared against 

the paraphrasing model. However, in Chapter 3, we did see that the Hierarchical Phrase-based 

Re-decoding Model outperforms Phrase-based Re-decoding Model in all three metrics. So there 

are two questions emerging: 

 

 BLEU TER MET 

Sys 31 48.40  45.55 70.67 

Confusion Network (baseline) 48.56  43.81 70.67 

paraphrasing model 49.33  45.08 70.87 

hierarchical paraphrasing model 49.46  44.84 70.99 
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1. What is the reason that the hierarchical phrase-based technique works better for the 

re-decoding strategy than the paraphrasing strategy?  

2. Is it possible that the hierarchical paraphrasing model can compensate for the 

paraphrasing models for some sentences, still bringing some benefits to the overall 

performance? 

 

  We try to answer the first question in this section, and leave the second question to Chapter 6 

to answer when hybrid combination strategy is introduced. In fact, because the two questions are 

relevant, our observations shown in this section for answering the first question help answer the 

second question in Chapter 6. 

  To answer the first question, we note that the decoding targets for the re-decoding strategy and 

for the paraphrasing strategy are actually different. For the re-decoding strategy, the source 

sentence is decoded, and for the paraphrasing strategy, the backbone sentence is decoded. For the 

source sentence, more word reordering needs to be modeled because of the big difference of 

word ordering between the source language and the target language. On the other hand, for the 

backbone sentence, it has similar word ordering with the eventual combination results, because 

the MT systems already tried their best to model word reordering. And since a major strength of 

the hierarchical phrase-based technique is that it has a stronger ability to address word 

reordering, we hypothesis that when more word reordering is needed, hierarchical phrase-based 

techniques can bring more benefits in comparison with its counterpart using the non-hierarchical 

phrase-based technique. In other words, when less word reordering is necessary, the hierarchical 

phrase-based technique seems unlikely to bring significant improvement over its counterpart 

using the non-hierarchical phrase-based technique. The observation that the hierarchical 

phrase-based technique works better for the re-decoding strategy than the paraphrasing strategy 
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can support this hypothesis. In order to obtain more evidence to prove this hypothesis, we carried 

out the following experiment in the next section, Section 4.3.4.3. 

4.3.4.3 Analysis of Paraphrasing Different Backbones 

The quality of a given translation hypothesis is related to word choices and their orders. Based 

on this fact, we make an assumption that if a given hypothesis for paraphrasing is well translated, 

it is more likely to have relatively correct word order, so less word reordering is needed. On the 

other hand, if a given hypothesis for paraphrasing is poorly translated, it is more likely to have 

relatively incorrect word order, so more word reordering needs to be done.  

  Based on this assumption, it can be expected that when a well-translated hypothesis is 

paraphrased, hierarchical phrase-based techniques would be less likely to bring significant 

improvement than its counterpart using non-hierarchical phrase-based techniques, but when a 

poorly translated hypothesis is paraphrased, hierarchical phrase-based techniques can bring more 

benefits in comparison with its counterpart using the non-hierarchical phrase-based technique. 

  From Table 3.2, we observe that although the five MT systems are the selected top 5 systems 

in the NIST Chi-Eng Dataset, their performances are still quite different. For each MT system, 

we paraphrase its translations using the paraphrasing model and the hierarchical paraphrasing 

model separately, aiming to compare the performances of the two models on each MT system. In 

other words, we do not first do backbone selection. Every MT system’s translation is regarded as 

a backbone. The results are shown in Figure 4.19 - 4.21.  
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Figure 4.19: Comparing the performance using BLEU of the MT systems, the paraphrasing 

model and the hierarchical paraphrasing model on the NIST Chi-Eng Dataset. 

       

Figure 4.20: Comparing the performance using TER of the MT systems, the paraphrasing model 

and the hierarchical paraphrasing model on the NIST Chi-Eng Dataset. 

 

      

Figure 4.21: Comparing the performance using MET of the MT systems, the paraphrasing model 

and the hierarchical paraphrasing model on the NIST Chi-Eng Dataset. 
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  Among the five MT systems, “Sys 20” and “Sys 31” perform poorer than the other three MT 

systems. When we paraphrase the two systems, we find that the hierarchical paraphrasing model 

outperforms the paraphrasing model in all three metrics. Based on these results, we show that 

when more word reordering is needed, hierarchical phrase-based techniques can bring more 

benefit in comparison with non-hierarchical phrase-based techniques. 

  In fact, this finding motivates us to develop a hybrid combination structure to integrate these 

various paraphrasing results using a hypothesis selection procedure, which will be introduced in 

detail in Chapter 6. 

 

4.3.4.4 Analysis of Syntactic Paraphrase Extraction 

In Section 4.3.1, we introduced our algorithm of hierarchical phrase extraction for paraphrasing -  

a synchronous CFG with the form    , X , where X is any non-terminal in the grammar; 

  and   are strings of terminals and non-terminals, which do not consider any syntactic 

information or restriction. Similar to the analysis of syntactic paraphrases used in the 

paraphrasing model, we investigate the effect of syntactic paraphrases used in the hierarchical 

paraphrasing model by using three different extraction methods. 

   We use the same notation as we used in Section 4.3.1: for an i-th sentence, we use E
i
 and ie  

to represent the backbone and one of its phrases, respectively. E
i
h represents the translation of 

MT system h, and e
i
h is one phrase of E

i
h. We use Q

i
h to denote the set of the paraphrasing rules 

for sentence i and MT system h. Our three different extraction methods – D, E and F are shown 

in Figures 4.22, 4.23 and 4.24, respectively. The differences with our algorithm of hierarchical 

phrase extraction shown in Section 4.3.1 are highlighted. 
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Extraction Method D: 

--------------------------------------------------------------------------------------------------------------------- 

If   i

h

i ee  ,  is consistent with monolingual word alignment, and ie is a constituent  

     then   i

h

i eeX  ,  is added to Q
i
h. 

If    , X  is a rule in Q
i
h , and  i

h

i ee  ,  is consistent with monolingual word alignment, 

and ie is a constituent such that 21  ie  and 
21  i

he    

     then   2121  ,  kk XXX  is added to Q
i
h,  

   where k is an index. 

Two special “glue” rules are added to Q
i
h 

 2121 X,X SSS    and  11 X,XS  

--------------------------------------------------------------------------------------------------------------------- 

Figure 4.22: Hierarchical phrase extraction method D 

 

Extraction Method E: 

--------------------------------------------------------------------------------------------------------------------- 

If   i

h

i ee  ,  is consistent with monolingual word alignment, and ie and 
i

he  are both 

constituents 

     then   i

h

i eeX  ,  is added to Q
i
h. 

If    , X  is a rule in Q
i
h , and  i

h

i ee  ,  is consistent with monolingual word alignment, 

and ie and 
i

he  are both constituents such that 21  ie  and 
21  i

he    

     then   2121  ,  kk XXX  is added to Q
i
h,  

   where k is an index. 
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Two special “glue” rules are added to Q
i
h 

 2121 X,X SSS    and  11 X,XS  

--------------------------------------------------------------------------------------------------------------------- 

Figure 4.23: Hierarchical phrase extraction method E 

 

Extraction Method F: 

--------------------------------------------------------------------------------------------------------------------- 

If   i

h

i ee  ,  is consistent with monolingual word alignment, and ie and i

he  are both 

constituents with the same constituent types, such as NP, VP, PP…etc. 

     then   i

h

i eeX  ,  is added to Q
i
h. 

If    , X  is a rule in Q
i
h , and  i

h

i ee  ,  is consistent with monolingual word alignment, 

and ie and i

he  are both constituents with the same constituent types, such as NP, VP, PP…etc. 

such that 21  ie  and 
21  i

he    

     then   2121  ,  kk XXX  is added to Q
i
h,  

   where k is an index. 

Two special “glue” rules are added to Q
i
h 

 2121 X,X SSS    and  11 X,XS  

--------------------------------------------------------------------------------------------------------------------- 

Figure 4.24: Hierarchical phrase extraction method F 
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  In the three extraction methods, the constituents and their types are determined by the Stanford 

Parser. The combination results using these methods are shown in Table 4.12. 

Table 4.12: Comparing the performance of hierarchical paraphrasing model using different 

extraction methods for NIST Chi-Eng Dataset. 

 

  Table 4.12 shows that syntactic paraphrases give no improvement in comparison with the 

basic extraction rules in section 4.3.1. The results might be explained by the same reason we 

mentioned for the paraphrasing model in Section 4.2.4.4; restricting paraphrases to be syntactic 

paraphrases makes the paraphrasing model to retain the same or similar overall syntactic 

structure of the backbone hypothesis. As a result, only fewer paraphrases are extracted and thus 

the backbone has less chance to be paraphrased. 

 

4.3.4.5 Analysis of the Addition of Syntactic Features 

In Section 4.2.4.5, to investigate the impact of syntactic information, we weighted syntactic 

phrases in the paraphrase table used in our paraphrasing model, and found that the consideration 

of syntactic phrases does not bring benefits. Here for hierarchical paraphrasing model, we adopt 

a similar strategy; we add the following different features individually in (4.8). 

 

 BLEU TER MET 

Sys 03 30.16    55.45  54.43 

Confusion Network (baseline) 31.21 54.59 55.59 

hierarchical paraphrasing model 32.59    55.06 56.19 

hierarchical paraphrasing model with Extraction Method D 32.12   55.11 56.21 

hierarchical paraphrasing model with Extraction Method E 32.00   54.81 56.12 

hierarchical paraphrasing model with Extraction Method F 31.77   55.24 55.83 
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Feature D 

 

 

Feature E 

 

 

Feature F 

 

 

 

  Each feature is attached with a weight, obtained from MERT process. In the previous section, 

Method D, E and F are hard constraints about syntactic paraphrases. In this section, Feature D, E 

and F are soft constraints on syntactic paraphrases. 

  In the three features, the constituents and their types are determined by the Stanford Parser. 

The combination results using these methods are shown in Table 4.13. 

 

 

 

. 

 

 

 

Table 4.13: Comparing the performance of hierarchical paraphrasing model using different 

features about syntactic paraphrases for NIST Chi-Eng Dataset. 

 BLEU TER MET 

Sys 03 30.16    55.45  54.43 

Confusion Network (baseline) 31.21 54.59 55.59 

hierarchical paraphrasing model 32.59    55.06 56.19 

hierarchical paraphrasing model with Feature D 32.54   55.03 56.25 

hierarchical paraphrasing model with Feature E 31.91   56.19 55.60 

hierarchical paraphrasing model with Feature F 31.81    54.58 55.92 
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  Table 4.13 shows that the features for syntactic paraphrases still give no improvement over the 

basic extraction rules in section 4.3.1. 

 

4.4 Conclusions 

In this chapter, we propose two models, which view combination as a paraphrasing process with 

the use of a set of paraphrases, learned from monolingual word alignments between a selected 

best translation hypothesis and other hypotheses.  The paraphrasing model relies on 

string-to-string paraphrases to paraphrase the backbone translation hypothesis while the 

hierarchical paraphrasing model uses hierarchical paraphrases to paraphrase the backbone 

translation hypothesis. Our experimental results show that they have similar performances, and 

both of them give superior performance compared with the best single translation engine and 

outperform the re-decoding model and confusion network decoding.  

  Our experiments show that the addition of simple syntactic constraints in both models does not 

yield improvement. Moreover, we also carried out some investigational experiments and found 

out that if a given hypothesis for paraphrasing is well translated, the hierarchical paraphrasing model 

would not bring benefits to paraphrasing model. But on the other hand, if a given hypothesis for 

paraphrasing is poorly translated, the hierarchical paraphrasing model is more likely to improve that 

than the paraphrasing model.  
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Chapter 5 

 

Sentence-level Combination 

 

 

 

 

In Chapter 3 and Chapter 4, we introduced our phrase-level combination techniques. In this 

chapter, we present a sentence-level combination model using a log linear model with some 

novel features to select the best translation hypothesis among multiple candidates of translation 

hypotheses. In comparison with phrase-level combination, the advantage of sentence-level 

combination is that because the whole sentence can be used to evaluate the translation quality, it 

allows for easy integration of complex syntactic features that would be too expensive to use 

during the decoding process of phrase-level combination techniques. That enables us to do 

relatively deeper analysis to evaluate the translation quality and represent syntactic and semantic 

features in addition to consensus in a log linear model. On the other hand, the limit of 

sentence-level combination is that it not generate any new fused hypothesis from the given 

multiple translation hypotheses.  

  In order to identify ungrammatical hypotheses from a set of candidate translations, we utilize 

grammatical knowledge in the target language, including using a supertag-based structural 

language model that expresses syntactic dependencies between words, described in Section 5.2, 

and a syntactic error detector based on a feature-based lexicalized tree adjoining grammar 
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(FB-LTAG) to recognize ungrammatical translations, described in Section 5.3. In addition, we 

hypothesize that, for a good translation, most of the predicate-argument structures from the 

source language should be retained in order to preserve the semantics. That is, 

predicate-argument structures and argument types in source and target should be the same in 

most cases. Based on this assumption, we develop a measure of how likely arguments should be 

aligned, shown in Section 5.4. 

  In this chapter, our experimental goal is to use our sentence-level model to select a translated 

sentence from multiple MT systems. In chapter 6, we will propose several hybrid combination 

structures to integrate our phrase-level combination models and the sentence-level combination 

model, in which the sentence-level combination model makes the final decision among all fused 

translations generated by the phrase-level models. 

 

5.1 Related Work 

In recent years, there has been a burgeoning interest in incorporating syntactic structure into 

statistical machine translation (SMT) models (e..g, Galley et al., 2006; DeNeefe and Knight 

2009; Quirk et al., 2005). In addition to modeling syntactic structure in the decoding process, a 

methodology for candidate translation selection has also emerged. This methodology first 

generates multiple candidate translations followed by rescoring using global sentence-level 

syntactic features to select the final translation.  

  Candidate translation selection is usually applied in two scenarios: one scenario is as part of an 

n-best reranking (Och et al., 2004; Hasan et al., 2006), where n-best candidate translations are 

generated through a decoding process. Hasan et al., (2006) focused on monolingual syntax and 

investigated the effect of directly using the log-likelihood of the output of a HMM-based 
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supertagger, and found it did not improve performance significantly. It is worth noticing that this 

log-likelihood is based on supertagged n-gram LM, which is one type of class-based n-gram LM, 

so it does not model explicit syntactic dependencies between words in contrast to the work we 

describe in this thesis. Hardmeier et al., (2012) use tree kernels over constituency and 

dependency parse trees for either the input or output sentences to identify constructions that are 

difficult to translate in the source language, and doubtful syntactic structures in the output 

language. The tree fragments extracted by their tree kernels are similar to our elementary trees 

but they only regard them as the individual inputs of support vector machine regression while 

binary relations of our elementary trees are considered in a formulation of a structural language 

model. Och et al., (2004) investigated various syntactic feature functions to rerank the n-best 

candidate translations. Most features are syntactically motivated and based on alignment 

information between the source sentence and the target translation. The results are rather 

disappointing. Only the non-syntactic IBM model 1 yielded significant improvement. All other 

tree-based feature functions had only a very small effect on the performance.  

  The other scenario for candidate translation selection is translation selection or reranking 

(Hildebrand and Vogel 2008; Callison-Burch et al., 2012), where candidate translations are 

generated by different decoding processes or different decoders. Our approaches in Section 5.2 

and 5.4 belong to this scenario.   

  As for the identification of ungrammatical hypotheses, researchers developed a variety of 

methods used for grammar checking, including statistic-based approaches, rule-based approaches 

and the mix of both. For example, Alam et al., (2006) and Wu et al., (2006) rely on N-gram 

language model to consider if a given sentence has grammatical problems: if a sentence has 

grammatical problems, it is likely to have uncommon word sequences, result in lower score of 

language model. Huang et al. (2010) extracted erroneous and correct patterns of consecutive 
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words from the data of an online-editing diary website. Some researchers use a set of hand 

crafted rules out of words and POS tags (Naber, 2003), or out of parsing results (Heidorn, 2000) 

to detect errors. Jensen et al. (1993) utilize a parsing procedure to detect errors: each sentence 

must be syntactically parsed; a sentence is considered incorrect if parsing does not succeed. 

Stymne and Ahrenberg (2010) utilized an existing rule-based Swedish grammar checker, as a 

post-processing tool for their English-Swedish translation system. They tried to fix the 

ungrammatical translation phrases by applying the grammar checker’s correction suggestions. In 

contrast to their using an existing grammar checker, we developed our own novel grammar 

checker for translated English in order to better controlling the quality of error detection and 

have more insights about how to correct errors in translation context. 

 

5.2 Supertagged Dependency Language Model 

In this section, we present a novel, structured language model - Supertagged Dependency 

Language Model to model the syntactic dependencies between (Ma and McKeown, 2013). The 

goal is to identify ungrammatical hypotheses from given candidate translations using 

grammatical knowledge in the target language that expresses syntactic dependencies between 

words. To achieve that, we propose a novel Structured Language Model (SLM) - Supertagged 

Dependency Language Model (SDLM) to model the syntactic dependencies between words. 

Supertag (Bangalore and Joshi, 1999) is an elementary syntactic structure based on Lexicalized 

Tree Adjoining Grammar (LTAG). Traditional supertagged n-gram LM predicts the next 

supertag based on the immediate words to the left with supertags, so it can not explicitly model 

long-distance dependency relations. In contrast, SDLM predicts the next supertag using the 

words with supertags on which it syntactically depend, and these words could be anywhere and 

arbitrarily far apart in a sentence. A candidate translation’s grammatical degree or “fluency” can 
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be measured by simply calculating the SDLM likelihood of the supertagged dependency 

structure that spans the entire sentence. 

  To obtain the supertagged dependency structure, the most intuitive way is through a LTAG 

parser (Schabes et al., 1988). However, this could be very slow as it has time complexity of 

O(n
6
).  Another possibility is to follow the procedure in (Joshi and Srinivas 1994, Bangalore 

and Joshi, 1999): use a HMM-based supertagger to assign words with supertags, followed by 

derivation of a shallow parse in linear time based on only the supertags to obtain the 

dependencies. But since this approach uses only the local context, in (Joshi and Srinivas 1994), 

they also proposed another greedy algorithm based on supertagged dependency probabilities to 

gradually select the path with the maximum path probability to extend to the remaining 

directions in the dependency list.  

  In contrast to the LTAG parsing and supertagging-based approaches, we propose an alternative 

mechanism: first we use a state-of-the-art constituent parser to obtain the parse of a sentence, and 

then we extract elementary trees with dependencies from the parse to assign each word with an 

elementary tree. The second step is similar to the approach used in extracting elementary trees 

from the TreeBank (Xia, 1999; Chen and Vijay-Shanker, 2000). 

Aside from the consideration of time complexity, another motivation of this two-step 

mechanism is that, compared with LTAG parsing, the mechanism is more flexible for defining 

syntactic structures of elementary trees for our needs. Because those structures are defined only 

within the elementary tree extractor, we can easily adjust the definition of those structures within 

the extractor and avoid redesigning or retraining our constituent parser. 

We experiment with sentence-level translation combination of five different translation 

systems of the NIST Chi-Eng Dataset; the goal is for the sentence-level combination system to 
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select the best translation for each input source sentence among the translations provided by the 

five systems.  

 

5.2.1 LTAG and Supertag 

LTAG (Joshi et al., 1975; Schabes et al., 1988) is a formal tree rewriting formalism, which 

consists of a set of elementary trees, corresponding to minimal linguistic structures that localize 

dependencies, including long-distance dependencies, such as predicate-argument structure. Each 

elementary tree is associated with at least one lexical item on its frontier. The lexical item 

associated with an elementary tree is called the anchor in that tree; an elementary tree thus serves 

as a description of syntactic constraints of the anchor. The elementary syntactic structures of 

elementary trees are called supertags (Bangalore and Joshi, 1999), in order to distinguish them 

from the standard part-of-speech tags. 

  Elementary trees are divided into initial and auxiliary trees. Initial trees are those for which all 

non-terminal nodes on the frontier are substitutable. Auxiliary trees are defined as initial trees, 

except that exactly one frontier, non-terminal node must be a foot node, with the same label as 

the root node. Two operations - substitution and adjunction - are provided in LTAG to combine 

elementary trees into a derived tree. 

 

5.2.2 Elementary Tree Extraction 

We use an elementary tree extractor, a modification of (Chen and Vijay-Shanker, 2000), to serve 

our purpose. Heuristic rules were used to distinguish arguments from adjuncts, and the extraction 

process can be regarded as a process that gradually decomposes a constituent parse to multiple 

elementary trees and records substitutions and adjunctions. From elementary trees, we can obtain 

supertags by only considering syntactic structure and ignoring anchor words. Take the sentence – 
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“The hungry boys ate dinner” as an example; the constituent parse is shown in Figure 5.1, and 

extracted supertags are shown in Figure 5.2. 

In Figure 5.2, dotted lines represent the operations of substitution and adjunction. Note that 

each word in a translated sentence would be assigned exactly one elementary syntactic structure 

which is associated with a unique supertag id for the whole corpus. Different anchor words could 

own the same elementary syntactic structure and would be assigned the same supertag id, such as 

“ 1  ” for “boys” and “dinner”.  

 

             

 

             Figure 5.1: Parse of “The hungry boys ate dinner”          
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Figure 5.2: Extracted elementary trees of “The hungry boys ate dinner” 

 

5.2.3 Model 

Bangalore and Joshi (1999) gave a concise description for dependencies between supertags: “A 

supertag is dependent on another supertag if the former substitutes or adjoins into the latter”. 

Following this description, for the example in Figure 1 (b), supertags of “the” and “hungry” are 

dependent on the supertag of “boys”, and supertags of “boys” and “dinner” are dependent on the 

supertag of “ate”. These dependencies between supertags also provide the dependencies between 

anchor words.  

Since the syntactic constraints for each word in its context are decided and described through 

its supertag, the likelihood of SDLM for a sentence could also be regarded as the degree of 

violations of the syntactic constraints on all words in the sentence. Consider a sentence S = w1 w2 

…wn with corresponding supertags T = t1 t2 …tn. We use di=j to represent the dependency 

relations for words or supertags. For example, d3 = 5 means that w3 depends on w5 or t3 depends 

on t5. We propose five different bigram SDLM as follows and evaluate their effects in the 

following. 
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SDLM model (2) is the approximation form of model (1); models (3) and (4) are individual 

terms of model (2); model (5) models word dependencies based on elementary tree 

dependencies. The estimation of the probabilities is done using maximum likelihood estimations 

with Laplace smoothing.  Take Figure 5.2 as an example; using model (1), the SDLM 

likelihood of “The hungry boys ate dinner” is 

 

)|2,(*)2,|1,(

*)2,|1,(*)1,|2,(*)1,|1,(

rootatePatedinnerP

ateboysPboyshungryPboystheP




 

  In our experiment on sentence-level translation combination, we use a log-linear model to 

integrate all features including SDLM models. The corresponding weights are trained 

discriminatively for Bleu score using Minimum Error Rate Training (MERT). 

 

5.2.4 Experiment 

The experiments are conducted and reported on Chinese-English system translations and 

references and from NIST 2008 (NIST Chi-Eng Dataset). 
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5.2.4.1 Setting 

We use the same setting of NIST Chi-Eng Dataset as in Section 3.2.4.1. The NIST Chi-Eng 

Dataset consists of source sentences in Chinese, corresponding machine translations of multiple 

MT systems and four human reference translations in English, but word alignments between 

source and translation sentences are not included. We manually select the top five MT systems 

for our combination experiment. Each system provides the top one translation hypothesis for 

every sentence. The tuning set includes 524 sentences and the test set includes 788 sentences. 

Among the five systems, “Sys 03” performs the best in BLEU, and since we are tuning toward 

BLEU, we regard “Sys 03” as the top MT system. 

  In terms of SDLM training, we extract elementary trees from automatically-generated parses 

of part of the Gigaword corpus (around one year of newswire of “afp_eng” in Gigaword 4) in 

addition to TreeBank-extracted elementary trees. In total, 17053 different elementary syntactic 

structures (17053 supertag ids) are extracted. 

  For the baseline combination system, we use the following feature functions in the log-linear 

model to calculate the score of a system translation. 

 

 Sentence consensus toward MT systems’ translations based on TER 

 Gigaword-trained 3-gram LM     

 

                                                                       (5.1) 

 

 

Where E is system hypothesis, Ns is system number,
s is system weight, l is LM weight and w

is word penalty. 
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  For testing SDLM, in additional to all features that the baseline combination system uses, we 

add single or multiple SDLM models in the log-linear model, and each SDLM model has its own 

weight. 

5.2.4.2 Results 

From Table 5.1, we see that the combination of SDLM model 3, 4 and 5 yields the best 

performance, which is better than the best MT system by a difference in Bleu score of 1.45, TER 

of 0.67 and METEOR of 1.25, and also better than the baseline combination system by a 

difference in Bleu score of 0.72, TER of 0.25 and METEOR of 0.44. Compared with SDLM 

model 5, which represents a type of word dependency LM without labels, the results show that 

adding appropriate syntactic “labels” (here, they are “supertags”) on word dependencies brings 

benefits. 

 

        Table 5.1: Result of sentence-level translation combination using SDLM 

 

 

 Bleu TER METEOR 

Sys 03 30.16 55.45 54.43 

Sys 15 30.06 55.16 54.49 

Sys 20 28.15 57.97 52.36 

Sys 22 29.94 56.10 54.19 

Sys 31 29.52 56.29 54.31 

LM+consensus (baseline) 30.89 55.03 55.24 

LM+consensus + model 1 31.29 54.99 55.63 

LM+consensus + model 2 31.25 55.23 55.37 

LM+consensus + model 3 31.25 55.06 55.40 

LM+consensus + model 4 31.44 54.70 55.54 

LM+consensus + model 5 31.39 55.15 55.68 

LM+consensus + model 3+model 4+ model 5 31.61 54.78 55.68 
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In addition to automatic metrics, we also carry out a human evaluation task on Amazon 

Mechanical Turk (AMT) to compare the translation sentences produced by the baseline of using 

feature sets of LM+consensus and the combination model of using feature sets of 

LM+consensus+SDLM (model3+model4+model5). We call the former baseline and the latter 

CombUsingSDLM. 

208 sentences out of 788 sentences of the testing dataset of NIST Chi-Eng Dataset produced by 

baseline and CombUsingSDLM are different. So we asked native English speakers on AMT to 

compare only those translation pairs. The judgment is based on two dimensions separately: fluency 

and adequacy. The fluency evaluation asked Turk users to judge which translation between the 

two is more fluent, regardless of the correct meaning of the source, while the adequacy 

evaluation measures which translation between the two conveys the more correct meaning in the 

source sentence in comparison to the reference, even if the translation is not fully fluent. For 

adequacy, each comparison (hit) consists of one correct translation reference and the translation 

pair. For fluency, only the translation pair is provided. Each comparison for either adequacy or 

fluency task is done by 5 different native English speakers and the translation with more votes 

wins.  

 

 better fluency better adequacy 

baseline 37.50 43.75 

CombUsingSDLM 62.50 56.25 

Table 5.2: Experimental results of human evaluation on 208 different combination results 

 

The results in Table 5.2 show that the performance of CombUsingSDLM is better than baseline 

from both the adequacy and the fluency perspectives, demonstrating the effective of SDLM. In 
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Table 5.1, although CombUsingSDLM yields better performance than the baseline by a difference in 

Bleu score of 0.72, TER of 0.25 and METEOR of 0.44, the differences, while significant, are small, 

because these automatic metrics are not focusing on the syntactic quality of translations, which SDLM 

tries to improve. Syntactic problems in particular are sometimes caused by very few words yet they 

can result in misunderstanding of the entire sentence; those mistakes are not easily reflected 

through automatic metrics. On the other hand, we see that human evaluation is able to reflect a 

greater effect of SDLM: the difference in fluency of CombUsingSDLM is 25% and the difference 

in adequacy of CombUsingSDLM is 12.5%. These results show that the syntactic quality would not 

only influence translations’ fluency but also play a crucial role in the understanding of translations. 

 

5.3 Syntactic Error Detector 

In the last section, we use SDLM to evaluate the syntactic correctness of a given translation but 

do not use any existing linguistic resources to evaluate the given translation’s grammar. As 

illustrative examples, consider the following three ungrammatical English sentences: 

 

1. Many young student play basketball. 

2. John play basketball and Tom also play basketball. 

3. John thinks to play basketball. 

 

  In 1 and 2 above, number agreement errors between the subjects and verbs (and quantifier) 

cause the sentences to be ungrammatical, while in 3, the infinitive following the main verb 

makes it ungrammatical. One could argue that an existing grammar checker could do the error 

detection for us, but if we use Microsoft Word 2010 (MS Word)’s grammar checker (Heidorn, 
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2000) to check the three sentences, the entire first sentence will be underlined with green wavy 

lines without any indication of what should be corrected, while no errors are detected in 2 and 3. 

However, an ideal grammatical detection should detect multiple errors, identify their types, and 

track the words in which they occur, such as Table 5.3.  

 

                    Table 5.3:  Examples of ideal grammatical detection 

 

  To achieve this goal, we use XTAG English grammar (XTAG group, 2001), a feature-based 

lexicalized tree adjoining grammar (FB-LTAG), to serve this mission. In FB-LTAG, each lexical 

item is associated with a syntactic elementary tree, in which each node is associated with a set of 

feature-value pairs, called Attribute Value Matrices (AVMs). AVMs define the lexical item’s 

syntactic usage. Our syntactic error detection works by checking the AVM values of all lexical 

items within a sentence using a unification framework. Thus, we use the feature structures in the 

AVMs to detect multiple errors, identify their types, and track the words in which they occur (Ma 

and McKeown, 2012b; 2012c). In order to simultaneously detect multiple error types and track 

their corresponding words, we propose a new unification method which allows the unification 

procedure to continue when unification fails and also to propagate the failure information to 

relevant words. We call the modified unification a fail propagation unification. 

  Through the fail propagation unification, one is able to correct errors based on a unified 

consideration of all related words under the same error types. We present a simple mechanism to 

Sentence Error Types Words  

Many young student play basketball. argeement Many, student  

John play basketball and Tom also play basketball. 
argeement John, play 

argeement Tom, play 

John thinks to play basketball. mode thinks 
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correct part of the detected situations. In the experiment described in this section, we use our 

approach to detect and correct translations of five single statistical machine translation systems 

run on the GALE Chi-Eng Dataset. The results show that most of the corrected translations are 

improved. 

 

5.3.1 Background 

We briefly introduce the FB-LTAG formalism and XTAG grammar in this section. 

 

5.3.1.1 Feature-Based Lexicalized Tree Adjoining Grammars 

FB-LTAG is based on tree adjoining grammar (TAG) proposed in (Joshi et al., 1975). The TAG 

formalism is a formal tree rewriting system, which consists of a set of elementary trees, 

corresponding to minimal linguistic structures that localize the dependencies, such as specifying 

the predicate-argument structure of a lexeme. Elementary trees are divided into initial and 

auxiliary trees. Initial trees are those for which all non-terminal nodes on the frontier are 

substitutable, marked with “↓”. Auxiliary trees are defined as initial trees, except that 

exactly one frontier, nonterminal node must be a foot node, marked with “*”, with the same label 

with the root node. Two operations - substitution and adjunction are provided in TAG to adjoin 

elementary trees. 

  FB-LTAG has two important characteristics: First, it is a lexicalized TAG (Schabes, 1988). 

Thus each elementary tree is associated with at least one lexical item. Second, it is a 

feature-based lexicalized TAG (Vijay-Shanker & Joshi, 1988). Each node in an elementary tree is 

constrained by two sets of feature-value pairs (two AVMs). One AVM (top AVM) defines the 

relation of the node to its super-tree, and the other AVM (bottom AVM) defines the relation of the 
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node to its descendants. We use Figure 5.3 and Figure 5.4  to illustrate the substitution and 

adjunction operations with the unification framework respectively. 

 

                   

                     Figure 5.3: Substitution of FB-LTAG      

 

                

                     Figure 5.4: Adjunction of FB-LTAG 

 

  In Figure 5.3, we can see that the feature structure of a new node created by substitution 

inherits the union of the features of the original nodes. The top feature of the new node is the 

union of the top features of the two original nodes, while the bottom feature of the new node is 

simply the bottom feature of the top node of the substituting tree. In Figure 5.4, we can see that 

the node undergoing adjunction splits, and its top features unify with the top features of the root 

adjoining node, while its bottom features unify with the bottom features of the foot adjoining 

node. 
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5.3.1.2 XTAG English Grammar 

XTAG English grammar (XTAG group, 2001) is designed using the FB-LTAG formalism 

released by UPENN in 2001. The range of syntactic phenomena that can be handled is large. It 

defines 57 major elementary trees (tree families) and 50 feature types, such as agreement, case, 

mode (mood), tense, passive, etc, for its 20027 lexical entries. Each lexical entry is associated 

with at least one elementary tree, and each elementary tree is associated with at least one AVM. 

For example, Figure 5.5 shows the simplified elementary tree of “saw”. “<number>” indicates 

the same feature value. For example, the feature – “arg_3rdsing” in the bottom AVM of root S 

should have the same feature value of “arg_3rdsing” in the top AVM of VP. In our 

implementation, it is coded using the same object in an object-oriented programming language. 

Since the feature value of mode in the top AVM of “S↓” is “base”, we know that “saw” 

can only be followed by a sentence with a base verb. For example, “He saw me do that” 

shown in Figure 5.6(a) is a grammatical sentence while “He saw me to do that” shown in Figure 

5.6(b) is an ungrammatical sentence because “saw” is not allowed to be followed by an infinitive 

sentence. 

               

                        Figure 5.5: Elementary tree for “saw” 
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Figure 5.6(a). Grammatical sentence of “saw”      (b) Ungrammatical sentence of “saw” 

 

  But if we look at the simplified elementary tree of “asked” shown in Figure 5.7, we can find 

that “asked” can only be followed by a sentence with an infinitive sentence (inf). For example, 

“He asked me to do that” shown in Figure 5.8(a) is a grammatical sentence while “He asked me 

do that” shown in Figure 5.8(b) is an ungrammatical sentence because “asked” is not allowed to 

be followed by a sentence with a base verb. 
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                        Figure 5.7: Elementary tree for “ask” 

 

              

     

Figure 5.8(a). Grammatical sentence of “ask”      (b) Ungrammatical sentence of “ask” 
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5.3.2 Syntactic Error Detection 

Our procedure for syntactic error detection includes 1. decomposing each sentence hypothesis 

parse tree into elementary trees, 2. associating each elementary tree with AVMs through look-up 

in the XTAG grammar, and 3. reconstructing the original parse tree out of the elementary trees 

using substitution and adjunction operations along with AVM unifications. 

  When unification of the AVMs fails, a grammatical error has been detected and its error type is 

also identified by the corresponding feature in the AVM. In order to simultaneously detect 

multiple error types and their corresponding words, we adjust the traditional unification 

definition to allow the unification procedure to continue after an AVM failure occurs and also 

propagate the failure information to relevant words. We call the modified unification fail 

propagation unification. Each step is illustrated in this section. 

5.3.2.1 Decomposing to Elementary trees 

Given a translation sentence, we first get its syntactic parse using the Stanford parser (Klein & 

Manning, 2003) and then decompose the parse to multiple elementary trees by using an 

elementary tree extractor, a modification of (Chen & Vijay-Shanker, 2000). After that, each 

lexical item in the sentence will be assigned one elementary tree. Taking the sentence – “Many 

young student play basketball” as an example, its parse and extracted elementary trees are shown 

in Figure 5.9 and Figure 5.10, respectively. In Figure 5.9, the arrows represent relations among 

the elementary trees and the relations are either substitution or adjunction. In this example, the 

two upper arrows are substitutions and the two bottom arrows are adjunctions. 
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              Figure 5.9: Parse of “Many young student play basketball” 

 

             

 Figure 5.10: The elementary trees of ‘Many young student play basketball” and their relations 

 

5.3.2.2 Associating AVMs to Elementary trees 

Each elementary tree is associated with AVMs through look-up in the XTAG English grammar. 

Using the same example of the sentence – “Many young student play basketball”, its elementary 

trees, relations and one set of AVMs (simplified version) are shown in Figure 5.11. To keep 

tracing what word(s) that a feature value relates to for the next step of reconstruction, we design 

a new data structure of word set, named “word trace”. It is represented by “{…}” and attached 
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with each feature value except the value of “null”, such as “agr_num:pl{play}” in Figure 5.11. 

 

 

 

Figure 5.11: The elementary trees of ‘Many young student play basketball”, their relations and 

AVMs (simplified version). 

 

  In XTAG English Grammar, sometimes one elementary tree could have multiple possible 

AVM associations. For example, for the verb “are”, one of its elementary trees is associated with 

three different AVMs, one for 2nd person singular, one for 2nd person plural, and one for 3rd 

person plural. Unless we can reference the context for “are” (e.g., its subject), we are not sure 

which AVM should be used in the reconstruction. So we associate each elementary tree with its 

all possible AVMs defined in the XTAG English Grammar. 
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5.3.2.3 Reconstruction Framework 

Once the elementary trees are associated with AVMs, they will be used to reconstruct the original 

parse tree through substitution and adjunction operations which are indicated during the process 

of decomposing a parse tree to elementary trees. The reconstruction process is able to decide if 

there is any conflict with the AVMs values. When a conflict occurs, it will cause an AVM 

unification failure, associated with a certain grammatical error. 

   

5.3.2.4 Fail Propagation Unification 

Our system detects grammatical errors by identifying unification failures. However, traditional 

unification does not define how to proceed after failures occur, and also lacks an appropriate 

structure to record error traces. So we extend it as follows: 

 

[f=x] {t1}     U  [f=x] {t2}    =>    [f=x] {t1} union {t2}              (1) 

[f=x] {t1}     U  [f=null]      =>    [f=x] {t1}                       (2) 

[f=null]       U  [f=null]      =>    [f=null]                         (3) 

[f=x] {t1}     U  [f=y] {t2}    =>    [f=fail] {t1} union {t2}             (4) 

[f=fail] {t1}   U  [f=null]      =>    [f=fail] {t1}                      (5) 

[f=fail] {t1}   U  [f=y] {t2}    =>    [f=fail] {t1} union {t2}             (6) 

[f=fail] {t1}   U  [f=fail] {t2}  =>    [f=fail] {t1} union {t2}             (7) 

 

  Where f is a feature type, such as “arg_num”; x and y are two different feature values; U 

represents the “unify” operation; t1 and t2 are word traces introduced in Section 5.3.2.2. “fail” is 

also a value. 

  (1)~(4) are traditional unification operations except that these operations are along with their 
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word traces’ union operations. When a unification failure occurs in (4), the unification procedure 

does not halt but only assigns f a value of “fail” and proceeds. (5)~(7) propagate the value of 

“fail” to the related words’ AVMs. Take the sentence of Figure 5.11 as an example, the following 

two fail propagation unifications occur in order during the reconstruction: 

 

[arg_num=pl]{many} U [arg_num=sing]{student} => [arg_num =fail]{many,student} 

[arg_num=fail]{many, student} U [arg_num=pl]{play} => [arg_num =fail]{many,student,play} 

 

  After the two fail propagation unifications, we identify that there is an agr_num error related 

to three words – “many”, “student” and “play” by the feature value of “fail” and the word trace 

of  “{many,student,play}”. 

  After going through the entire reconstruction procedure, the reconstructed parse tree with 

AVMs is shown in Figure 5.12. 

 

 

Figure 5.12: The reconstructed parse tree with AVMs of the sentence- “Many young student play 

basketball”  
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5.3.3 Syntactic Error Correction 

Because in our experimental datasets, only around 10% translations are detected to have 

syntactic errors, it is not practical to apply the detected results as a general feature in the 

log-linear model of sentence-level combination. So in this section, our goal is to correct the 

detected translations. 

  When an AVM has the value of “fail”, its word trace must contain at least one ungrammatical 

word. The two following questions need to be answered: which words in the word trace should 

be corrected and how should they be corrected? To date, we have developed the following simple 

mechanism to correct words with the agreement problem: first, within the word trace, the words 

whose original feature value is in the minority compared with other words’ original feature value 

is decided to be corrected. We call this feature-value voting. Take the word trace of 

“{many,student,play}” in Figure 5.12 as an example, “student” should be corrected since its 

agr_num is “sing” and the other two words’ agr_num is “plural”. 

  Once the corrected words are selected, we replace them with their variations which original 

feature value is in the majority. For example, we replace the above “student” with “students”. 

5.3.4 Experiment 

Among the 57 major elementary trees and 50 feature types that XTAG defines, we have 

implemented 26 major elementary trees and 4 feature types – agr_pers, arg_num, arg_3rdsing 

and several cases of mode/mood at this point (The first three belong to agreement features.) 

  We use the same setting as in Section 3.2.4.1. For the reader’s convenience, we describe it 

here again: 

 

GALE Chi-Eng Dataset: The GALE Chi-Eng Dataset consists of source sentences, 

corresponding machine translations of 12 MT systems and four human reference translations. It 
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also provides word alignments between source and translation sentences. We manually select the 

top five MT systems for our combination experiment. Each system provides the top one 

translation hypothesis for every sentence. The tuning set includes 422 sentences and the test set 

also includes 422 sentences. Among the five systems, “rwth-pbt-sh” performs the best in BLEU, 

and since we are tuning toward BLEU, we regard “rwth-pbt-sh” as the top MT system. 

 

NIST Chi-Eng Dataset: The NIST Chi-Eng Dataset also consists of source sentences in Chinese, 

corresponding machine translations of multiple MT systems and four human reference 

translations in English, but word alignments between source and translation sentences are not 

included. We manually select the top five MT systems for our combination experiment. Each 

system provides the top one translation hypothesis for every sentence. The tuning set includes 

524 sentences and the test set includes 788 sentences. Among the five systems, “Sys 03” 

performs the best in BLEU, and since we are tuning toward BLEU, we regard “Sys 03” as the 

top MT system.  

  We use our syntactic error detector to detect grammatical errors of a given translation. And we 

design a binary grammatical indicator as follows: once there is at least one error, the indicator is 

set to 1; otherwise, it is set to 0. In our log linear, we use this indicator along with TER-based 

concensus and Gigaword-trained 3-gram LM to select the best translation among all MT 

systems’ translations. Table 5.4 shows the results of the NIST Chi-Eng Dataset. 
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Table 5.4: Result of sentence-level translation combination using Syntactic Error Detection on 

NIST Chi-Eng Dataset 

 

  From Table 5.4, we see that using syntactic error detection along with LM and consensus 

outperforms just using LM and consensus, which shows the effective of syntactic error detection. 

And we also see that the effective of syntactic error detection does not exceed SDLM. 

  The results of syntactic error detection for agreement and mode errors and correction for 

agreement errors on GALE Chi-Eng Dataset are shown in Table 5.5.  

 

 Detected 

sentences 

(arg error + 

mode error) 

Corrected 

sentences 

(arg 

error) 

Bleu for 

corrected 

sentences 

(before) 

Bleu for 

corrected 

sentences 

(after) 

Sys nrc 23 9 26.75 27.80 

Sys rwth-pbt-aml 18 7 32.13 32.67 

Sys rwth-pbt-jx 25 14 31.49 32.17 

Sys rwth-pbt-sh 30 11 29.31 30.61 

Sys sri-hpbt 18 8 29.15 28.83 

   Table 5.5: The results of syntactic error detection and correction for GALE Chi-Eng Dataset 

 

  From Table 5.5, we see that the overall Bleu score for all sentences is not significantly 

improved. But if we take a close look at just the sentences where agreement errors were 

corrected and calculate their Bleu scores, we can see that the corrected translations are improved 

for every system except for “Sys sri-hpbt”, which shows the effectiveness and potential of our 

approach. 

 Bleu TER METEOR 

Sys 03 30.16 55.45 54.43 

LM+consensus (baseline) 30.89 55.03 55.24 

LM+consensus + SDLM 31.61 54.78 55.68 

LM+consensus + SyntacticErrorDetection 31.41   55.03 55.62 
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5.4 Argument Alignment 

We hypothesis that for a good translation, the predicate-argument structures are retained in order 

to preserve the semantics, i.e, predicate-argument structures and argument types in source and 

target should be the same in most cases. For example, an agent for a predicate in source tends to 

also be an agent for that predicate in target. The hypothesis can be supported by the investigation 

of (Wu and Palmer 2011), who obtain argument alignments of PropBank, such as examples of 

Figure 5.13, using their argument aligner, and calculated the frequencies of different argument 

alignment type of PropBank, shown in Table 5.6. 

 

Figure 5.13: Examples of alignments between Chinese arguments and English argument 
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   Table 5.6: Argument Alignment Mapping Table for PropBank. For example, the cell of 

“1610” represents that the frequency of A0 in source and A0 in target is 1610. 

 

  In addition to this overall mapping, given an argument type and its predicate of a source 

sentence, Wu and Palmer (2011) also calculated the probabilities of its aligned argument types of 

the target sentence. Table 5.7 shows a very small part of these conditional probabilities. The first 

row means the probabilities of the aligned argument types of the target sentence given argument 

type – “A0” and its predicate - ”接受” of a source sentence. The second row means the 

probabilities of the aligned argument types of the target sentence given argument type – “A1” 

and its predicate - ”接受” of a source sentence. 
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Table 5.7: The probabilities of the aligned argument types of the target sentence given an 

argument type and its predicate of a source sentence. For example, the cell of “0.8274” 

represents that P(A0 in target |A0 of predicate -“接受” in source) = 0.8274. 

 

5.4.1 Approach 

Given a source sentence, a target sentence, the word alignment between the two and the semantic 

role labelers for source and target sides, we can obtain the argument alignment using an 

argument aligner and then exploit these argument alignment probabilities learned from PropBank 

to evaluate the quality of the target sentence.  

  Our notations are described as follows: 

--------------------------------------------------------------------------- 

s

ipred : the ith predicate of a source sentence 

s

ji,arg : the jth argument type of s

ipred  

t

kji ,,arg : the kth aligned argument of 
s

ji,arg  

),arg|(arg ,,,

s

i

s

ji

t

kji predP : the probability of the aligned argument type - 
t

kji ,,arg  of the target 

sentence given an argument type - 
s

ji,arg  and its predicate - s

ipred  of a source sentence 

--------------------------------------------------------------------------- 

 

 
A0  

in target 

A1  

in target 

A2  

in target 

ADV  

in target 

TMP  

in target 

LOC   

in target 

A0 of predicate - “接受”  

in source 

0.8274 0.0952 - 0.0327 0.0119 0.0104 

A1 of predicate - “接受”  

in source 

0.0352 0.8816 0.0296 - - - 
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  We evaluate the quality of a given translation by the following formula of its Score, which is 

either used as an only measure to select the best translation or as one feature in our log-linear 

model, along with other features, to select the best translation. 

 


i j k

s

i

s

ji

t

kji predPScore ),arg|(arg ,,,                                      (5.2) 

 

  In formula (5.2), the score for evaluating the quality of a given translation sentence is the sum 

of the probability of every aligned argument type of the target sentence given every argument 

type and its predicate of the source sentence. 

 

5.4.2 Experiment 

We use the same setting of GALE Chi-Eng Dataset as in Section 3.2.4.1. For the reader’s 

convenience, we describe it here again: the GALE Chi-Eng Dataset consists of source sentences 

in Chinese, corresponding machine translations of 12 MT systems and four human reference 

translations in English. It also provides word alignments between source and translation 

sentences. We manually select the top five MT systems for our combination experiment. Each 

system provides the top one translation hypothesis for every sentence. The tuning set includes 

422 sentences and the test set also includes 422 sentences. Among the five systems, “rwth-pbt-sh” 

performs the best in BLEU, and since we are tuning toward BLEU, we regard “rwth-pbt-sh” as 

the top MT system. 
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5.4.2.1 Results 

 

 

   Table 5.8: Results of using Argument Alignment to select the best translation 

 

  From Table 5.8, we see that when only Argument Alignment is used to select the best 

translation, it is among the top two in comparison with the five MT systems. And it significantly 

improves just random selection. This shows that Argument Alignment is helpful. However, if we 

add the language model and consensus along with the Argument Alignment as the features, there 

is no improvement in comparison with just using the consensus and LM. This observation 

reveals that Argument Alignment does correspond to the translation quality, but it is not as strong 

indicator as consensus and LM to evaluate the translation quality. 

5.5 Conclusions 

In this chapter, we first presented Supertagged Dependency Language Model for explicitly 

modeling syntactic dependencies of the words of translated sentences in Section 5.2. Its goal is to 

select the most grammatical translation from candidate translations. To obtain the supertagged 

dependency structure of a translation candidate, a two-step mechanism based on constituent 

 Bleu TER METEOR 

Sys nrc 30.95 59.31 59.06 

Sys rwth-pbt-aml 31.83 58.09 58.85 

Sys rwth-pbt-jx 31.78 62.04 57.51 

Sys rwth-pbt-sh 32.63 58.67 58.98 

Sys sri-hpbt 32.00 58.97 58.84 

random selection 31.52   59.55 58.55 

ArgumentAlignment 32.16   59.18 59.38 

LM+consensus (baseline) 32.81 57.22 59.43 

LM+consensus+ArgumentAlignment 32.69 57.71 59.33 
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parsing and elementary tree extraction is also proposed. SDLM shows its effectiveness in the 

scenario of translation selection.  

  In Section 5.3, we also proposed a new FB-LTAG-based syntactic error detection and 

correction mechanism along with a novel AVM unification method to simultaneously detect 

multiple ungrammatical types and their corresponding words for machine translation. Our 

approach features: 1) the use of XTAG grammar, a rule-based grammar developed by linguists, 

2) the ability to simultaneously detect multiple ungrammatical types and their corresponding 

words by using unification of feature structures, and 3) the ability to simultaneously correct 

multiple ungrammatical types based on the detection information.  From the experimental 

results, we see that using syntactic error detection along with LM and consensus outperforms just 

using LM and consensus, although its effective does not exceed SDLM. We also demonstrated its 

utility for correcting agreement errors.  

  We also applied the probabilities of argument alignment between source and target as an 

indicator to evaluate the quality of the target sentence in Section 5.4. Our experimental results 

demonstrate that argument alignment is not as strong indicator as consensus and LM, but it does 

correspond to the translation quality. 
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Chapter 6 

 

Hybrid Combination 

 

 

 

 

 

In Chapter 3 and 4, we introduced our two phrase-level combination frameworks: one 

approaches combination via re-decoding the source sentence, and the other one approaches 

combination via paraphrasing the backbone translation hypothesis. In Chapter 5, we proposed a 

sentence-level model using novel syntactic and semantic features to select the best hypothesis 

from a pool of hypothesis candidates. Phrase-level and sentence-level combination have their 

own distinct advantages: the former is able to generate a whole new fused translation that never 

appeared in the original translations of multiple MT systems while in the latter it is easier to 

exploit more sophisticated syntactic and semantic information than in the phrase-level models. 

So, the design of a hybrid combination structure for the integration of phrase-level and 

sentence-level combination in order to utilize both advantages is an appealing direction.   

  Another motivation for a hybrid combination structure is to provide a more diverse set of 

plausible fused translations to consider. MT researchers have recently started to consider 

diversity for system combination (Macherey and Och, 2007; Devlin and Matsoukas, 2012, Xiao 

et al., 2013; Cer et al., 2013; Gimpel et al., 2013). Devlin and Matsoukas (2012) generate diverse 
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translations according to translation length and number of rules applied. Xiao et al. (2013) used 

bagging and boosting to get a diverse system. Cer et al. (2013) used multiple identical systems 

trained jointly with an objective function that encourages the systems to generate complementary 

translations. Gimpel et al. (2013) propose a dissimilarity function to generating diverse 

translations in the context of system combination, discriminative reranking and post editing.  

  For either the re-decoding framework or the paraphrasing framework, the decoding object is 

but a single object – either the source sentence or a backbone translation. Consider the 

paraphrasing framework as an example. Although we have shown that the quality of a backbone 

translation corresponds to the quality of its paraphrased outcome in Section 4.3.4.3, paraphrasing 

only one single translation could limit the possibility of generating more diverse fused 

translations. Therefore, our goal is to generate more diverse fused translations through a 

pipeline-based integration of our phrase-level and sentence-level combination systems. In this 

section, we propose two hybrid combination structures: the first one is homogeneously hybrid 

combination, where the same phrase-based techniques are used to generate fused translations for 

the sentence-level combination component to select the best of those, described in Section 6.1, 

and the other one is heterogeneously hybrid combination, where different phrase-based 

techniques are used to generate outputs for the sentence-level combination component to select 

the best of those, described in Section 6.2. 

 

6.1 Homogeneously Hybrid Combination 

Figure 6.1 shows one homogeneously hybrid combination architecture. The source text is 

translated by multiple MT systems, and each system produces the top-one translation hypothesis 

as well as phrase alignments between source and target. No sentence-level models are needed for 
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backbone selection. Instead, every MT translation has a chance to be the backbone. For each MT 

translation, we paraphrase it to another translation by fusing it with other MT translations using 

our paraphrasing model. Thus, this hybrid combination architecture considers more combination 

possibilities. Figure 6.2 shows another homogeneously hybrid combination architecture, where 

we use hierarchical paraphrasing model to provide fused translations. 

 

 

 

Figure 6.1: Homogeneously Hybrid Paraphrasing Model 
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Figure 6.2: Homogeneously Hybrid Hierarchical Paraphrasing Model 

 

6.1.1 Experiment 

The experiments are conducted and reported on system translations and references from NIST 

Chi-Eng Dataset and NIST Ara-Eng Dataset. 

6.1.1.1 Setting 

We use the same setting of NIST Chi-Eng Dataset as in Section 4.2.4.1. For the reader’s 

convenience, we describe it here again: the NIST Chi-Eng Dataset consists of source sentences in 

Chinese, corresponding machine translations of multiple MT systems and four human reference 

translations in English, but word alignments between source and translation sentences are not 

included. We manually select the top five MT systems for our combination experiment. Each 

system provides the top one translation hypothesis for every sentence. The tuning set includes 

524 sentences and the test set includes 788 sentences. Among the five systems, “Sys 03” 
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performs the best in BLEU, and since we are tuning toward BLEU, we regard “Sys 03” as the 

top MT system. 

 

  We investigate two sets of features for our sentence-level combination. One set includes:  

 Sentence consensus toward MT systems’ translations based on TER (concensus) 

 Gigaword-trained 3-gram LM (LM) 

 

And other set includes 

 Sentence consensus toward MT systems’ translations based on TER (concensus) 

 Gigaword-trained 3-gram LM (LM)     

 Supertag-based dependency language model (SDLM)    

 

6.1.1.2 Results 

Table 6.1: The results of Homogeneously Hybrid Paraphrasing Models on NIST Chi-Eng Dataset 

 BLEU TER MET 

Sys 03 30.16    55.45  54.43 

Confusion Network (baseline) 31.21 54.59 55.59 

paraphrasing model (selected backbone) 32.65     55.11 56.17 

paraphrasing model (Sys 03 as backbone) 32.17   58.15  55.25 

paraphrasing model (Sys 15 as backbone) 31.93   55.72  55.51 

paraphrasing model (Sys 20 as backbone) 30.66    57.92  53.79 

paraphrasing model (Sys 22 as backbone) 31.86     56.02 55.18 

paraphrasing model (Sys 31 as backbone) 31.52    55.69  55.52 

Homogeneously hybrid paraphrasing model  

(LM+consensus) 

32.64   55.07  55.87 

Homogeneously hybrid paraphrasing model  

(LM+consensus+SDLM) 

32.87   55.86 56.21 
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Table 6.2: The results of Homogeneously Hybrid Hierarchical Paraphrasing Models on NIST 

Chi-Eng Dataset 

 

  Table 6.1 shows that, in comparison with the paraphrasing model (selected backbone), the 

homogeneously hybrid paraphrasing model using a feature set of LM+consensus does not 

provide improvement, but when it uses a feature set of LM+consensus+SDLM, it gives a little bit 

of improvement in BLEU and MET. Table 6.2 shows that, in comparison with the hierarchical 

paraphrasing model (selected backbone), the homogeneously hybrid hierarchical paraphrasing 

model using a feature set of LM+consensus provides significant improvement but when it uses a 

feature set of LM+consensus+SDLM, it performs worse. We explain this as follows. Since 

SDLM aims to calculate the grammaticality of translated sentences to evaluate the quality of 

translation, it would be expected to be more effective on translation with poor syntactic 

structures. And because the hierarchical paraphrasing model already implicitly considers 

 BLEU TER MET 

Sys 03 30.16    55.45  54.43 

Confusion Network (baseline) 31.21 54.59 55.59 

hierarchical paraphrasing model (selected backbone) 32.59    55.06 56.19 

hierarchical paraphrasing model (Sys 03 as backbone) 31.76   55.44  55.25 

hierarchical paraphrasing model (Sys 15 as backbone) 31.72     56.17 55.47 

hierarchical paraphrasing model (Sys 20 as backbone) 31.00    56.63 54.30 

hierarchical paraphrasing model (Sys 22 as backbone) 31.46    56.22 55.10 

hierarchical paraphrasing model (Sys 31 as backbone) 31.92   55.56  55.56 

Homogeneously hybrid hierarchical paraphrasing model 

(LM+consensus) 

33.14    55.34  56.55 

Homogeneously hybrid hierarchical paraphrasing model 

(LM+consensus+SDLM) 

32.52   55.31 56.05 
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syntactic structures via SCFG, SDLM is not able to bring the benefit.  

  Among all system combination models on NIST Chi-Eng Dataset, described in this thesis, 

homogeneously hybrid hierarchical paraphrasing model using a feature set of LM+consensus 

provides the best performance of Bleu score of “33.14”, which is higher than Bleu score of 

Confusion Network by “1.93” and higher than Bleu score of best MT system by “2.98”. 

  From Table 6.1 and 6.2, we see that under the same feature set of LM+consensus, 

homogeneously hybrid paraphrasing model does not provide improvement, but homogeneously 

hybrid hierarchical paraphrasing model provides significant improvement. That might stem 

from the hypothesis that hierarchical paraphrasing model is able to generate more diverse 

translations than the paraphrasing model, because the former is able to model more possible 

word re-orderings. To support this hypothesis, we compute TER scores for pairs of outputs of the 

paraphrasing model and compute TER scores for pairs of outputs of the hierarchical 

paraphrasing model in order to compare the diversity degree of the outputs of the two models. 

The results are shown in Table 6.3 and Table 6.4. 

 

Table 6.3: TER-based diversity degree of the outputs of paraphrasing model 

 

 

 Para Sys 03 Para Sys 15 Para Sys 20 Para Sys 22 Para Sys 31 

Para Sys 03 - 31.503 31.031 29.383 29.068 

Para Sys 15 33.676 - 36.503 33.191 33.377 

Para Sys 20 32.442 35.689 - 23.974 30.573 

Para Sys 22 31.430 33.293 24.506 - 27.484 

Para Sys 31 31.021 33.203 31.172 27.383 - 

Average 32.142 33.422 30.803 24.483 30.126 

Average 30.995 
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Table 6.4: TER-based diversity degree of the outputs of hierarchical paraphrasing model 

 

  In Table 6.3 and Table 6.4, we see that the diversity degree of the outputs of the hierarchical 

paraphrasing model (average TER score: 31.593) is higher than the diversity degree of the 

outputs of the paraphrasing model (average TER score: 30.995). Especially for the relatively 

poor MT systems (“Sys 20” and “Sys 22”), the hierarchical paraphrasing model provides much 

higher diversity for its outputs than the paraphrasing model. 

  In addition to NIST Chi-Eng Dataset, we also carry out the experiments of homogeneously 

hybrid combination models on NIST Ara-Eng Dataset, which plays a role of blind test to provide 

a more objective evaluation. The results are shown in Table 6.5 and 6.6.  

 

 

 

 

 HiePara  

Sys 03 

HiePara  

Sys 15 

HiePara  

Sys 20 

HiePara  

Sys 22 

HiePara  

Sys 31 

HiePara  

Sys 03 

- 32.945 38.687 33.403 30.232 

HiePara 

Sys 15 

31.276 - 32.479 34.227 31.551 

HiePara  

Sys 20 

37.353 32.983 - 26.029 31.282 

HiePara  

Sys 22 

32.078 34.755 25.993 - 27.092 

HiePara  

Sys 31 

29.221 32.010 31.201 27.172 - 

Average 32.482 33.173 32.090 30.208 30.039 

Average 31.598 
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Table 6.5: The results of Homogeneously Hybrid Paraphrasing Models on NIST Ara-Eng Dataset 

 

Table 6.6: The results of Homogeneously Hybrid Paraphrasing Models on NIST Ara-Eng Dataset 

 

  Table 6.5 shows that, in comparison with the paraphrasing model (selected backbone), the 

homogeneously hybrid paraphrasing model using a feature set of LM+consensus provides 

significant improvement. Similarly, Table 6.6 shows that, in comparison with the hierarchical 

paraphrasing model (selected backbone), the homogeneously hybrid hierarchical paraphrasing 

model using a feature set of LM+consensus yields significant improvement. These results 

demonstrate the homogeneously hybrid combination model’ robustness and consistency.  

6.2 Heterogeneously Hybrid Combination 

In last section, we introduced the homogeneously hybrid combination, where the same 

phrase-based technique is used to generate fused translations for the sentence-level combination 

component to select. In this section, we introduce the heterogeneously hybrid combination, 

 BLEU TER MET 

Sys 03 48.40  45.55 70.67 

Confusion Network (baseline) 48.56  43.81 70.67 

paraphrasing model (selected backbone) 49.33  45.08 70.87 

Homogeneously hybrid paraphrasing model  

(LM+consensus) 

50.25  43.55 71.19 

 BLEU TER MET 

Sys 03 48.40  45.55 70.67 

Confusion Network (baseline) 48.56  43.81 70.67 

hierarchical paraphrasing model (selected backbone) 49.46  44.84 70.99 

homogeneously hybrid hierarchical paraphrasing model 

(LM+consensus) 

50.09  43.71 71.30 
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where different phrase-based techniques are used to generate outputs for the sentence-level 

combination component to select, shown in Figure 6.3. 

 

             Figure 6.3: Heterogeneously Hybrid Combination 

6.2.1 Experiment 

The experiments are conducted and reported on NIST Chi-Eng Dataset and NIST Ara-Eng 

Dataset. 

6.2.1.1 Setting 

We use the same setting of NIST Chi-Eng Dataset as in Section 4.2.4.1. We manually select the 

top five MT systems for our combination experiment. Each system provides the top one 

translation hypothesis for every sentence. The tuning set includes 524 sentences and the test set 

includes 788 sentences. Among the five systems, “Sys 03” performs the best in BLEU, and since 

we are tuning toward BLEU, we regard “Sys 03” as the top MT system. Besides NIST Chi-Eng 

Dataset, we also carried out experiments on NIST Ara-Eng Dataset. Each system provides the 

top one translation hypothesis for every sentence. The tuning set includes 592 sentences and the 

test set includes 717 sentences. Among the five systems, “Sys 31” performs the best in BLEU, 
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and since we are tuning toward BLEU, we regard “Sys 31” as the top MT system. 

  We investigate two sets of features for our sentence-level combination. One set includes:  

 Sentence consensus toward MT systems’ translations based on TER (concensus) 

 Gigaword-trained 3-gram LM (LM) 

And other set includes 

 Sentence consensus toward MT systems’ translations based on TER (concensus) 

 Gigaword-trained 3-gram LM (LM)     

 Supertag-based dependency language model (SDLM)    

 

6.2.1.2 Results 

Table 6.7: The results of Heterogeneously Hybrid Combination Models on NIST Chi-Eng 

Dataset 

 BLEU TER MET 

Sys 03 30.16    55.45  54.43 

Confusion Network (baseline) 31.21 54.59 55.59 

paraphrasing model (selected backbone) 32.65     55.11 56.17 

hierarchical paraphrasing model (selected backbone) 32.59    55.06 56.19 

homogeneously hybrid paraphrasing model 

(LM+consensus) 

32.64   55.07  55.87 

homogeneously hybrid hierarchical paraphrasing model 

(LM+consensus) 

33.14    55.34  56.55 

heterogeneously hybrid combination model 

(LM+consensus) 

32.82   55.52 56.66 

homogeneously hybrid paraphrasing model 

(LM+consensus+SDLM) 

32.87   55.86 56.21 

homogeneously hybrid hierarchical paraphrasing model 

( LM+consensus+SDLM) 

32.52   55.31 56.05 

heterogeneously hybrid combination model 

(LM+consensus+SDLM ) 

32.91   55.58 56.04 
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  Table 6.7 shows that for either feature set, the heterogeneously hybrid combination model 

outperforms both paraphrasing model (selected backbone) and hierarchical paraphrasing model 

(selected backbone) in BLEU, which shows the effective of the heterogeneously hybrid 

combination.  

  In comparison of homogeneously hybrid combination models, for the feature set of 

LM+consensus, the performance in BLEU of the heterogeneously hybrid combination model is 

in the middle of the performance of the two homogeneously hybrid combination models. And for 

the feature set of LM+consensus+SDLM, the performance in BLEU of the heterogeneously 

hybrid combination model slightly outperforms both homogeneously hybrid combination models. 

  In addition to NIST Chi-Eng Dataset, we also carry out the experiments of heterogeneously 

hybrid combination model on NIST Ara-Eng Dataset, which plays a role of blind test to provide 

a more objective evaluation. The results are shown in Table 6.8.  

 

Table 6.8: The results of Heterogeneously Hybrid Combination Models on NIST Ara-Eng 

Dataset 

 

 BLEU TER MET 

Sys 31 48.40  45.55 70.67 

Confusion Network (baseline) 48.56  43.81 70.67 

paraphrasing model (selected backbone) 49.33  45.08 70.87 

hierarchical paraphrasing model (selected backbone) 49.46  44.84 70.99 

homogeneously hybrid paraphrasing model 

(LM+consensus) 

50.25  43.55 71.19 

homogeneously hybrid hierarchical paraphrasing model 

(LM+consensus) 

50.09  43.71 71.30 

heterogeneously hybrid combination model 

(LM+consensus) 

50.05  44.27 70.87 
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  Table 6.8 shows that, for the feature set of LM+consensus, the heterogeneously hybrid 

combination model still outperforms both paraphrasing model (selected backbone) and 

hierarchical paraphrasing model (selected backbone) in BLEU, which demonstrates the 

heterogeneously hybrid combination model’s robustness and consistency. 

 

6.3 Conclusions 

In this chapter, we proposed two hybrid combination structures for the integration of phrase-level 

and sentence-level combination frameworks in order to utilize the advantages of both 

frameworks and provide a more diverse set of plausible fused translations to consider. The first 

one is the homogeneously hybrid combination, where the same phrase-based techniques are used 

to generate outputs for the sentence-level combination component to select, and the other one is 

heterogeneously hybrid combination, where different phrase-based techniques are used to 

generate outputs for the sentence-level combination component to select. Our experiments show 

that both hybrid combination structures are effective, and the improvement corresponds to the 

diversity degree of fused translations that our phrase-level combination models provided. 

  Among all system combination models on NIST Chi-Eng Dataset, described in this thesis, 

homogeneously hybrid hierarchical paraphrasing model using a feature set of LM+consensus 

provides the best performance of Bleu score of “33.14”, which is higher than Bleu score of 

Confusion Network by “1.93” and higher than Bleu score of best MT system by “2.98”.  

  And all system combination models on NIST Ara-Eng Dataset, described in this thesis, the 

homogeneously hybrid paraphrasing model using a feature set of LM+consensus provides the 

best performance of Bleu score of “50.25”, which is higher than Bleu score of Confusion 

Network by “1.69” and higher than Bleu score of best MT system by “1.85”. 
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Chapter 7 

 

Conclusions 

 

 

Given the wide range of successful statistical MT approaches that have emerged recently, it 

would be beneficial to take advantage of their individual strengths and avoid their individual 

weaknesses. Multi-Engine Machine Translation attempts to do so by either fusing the output of 

multiple translation engines or selecting the best translation among them, aiming to improve the 

overall translation quality. The word-level fusion framework, such as the confusion network 

decoding model, is the most popular approach. However, using a word as the unit of fusion 

rather than a phrase, has a higher risk of breaking coherence and consistency between the words 

in a phrase and it is difficult to consider syntax and semantics. 

  In this thesis, we showed how to use the phrase or the sentence as our combination unit instead 

of the word; three new phrase-level models, three novel features for the sentence-level model 

and two novel pipeline-based hybrid combination structures were presented and evaluated.  
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7.1 Overview of Contributions 

Phrase-level Combination: The goal is to fuse the given multiple MT systems’ translations. We 

presented three different novel models to achieve this task. 

 hierarchical phrase-based re-decoding model  

 It utilizes hierarchical phrases learned from source sentences and target translation 

hypotheses to re-decode the source sentences using the hierarchical phrases 

 paraphrasing model 

 It views combination as a paraphrasing process based on a set of paraphrases, learned 

from monolingual word alignments between a selected best translation hypothesis and 

other hypotheses. 

 hierarchical paraphrasing model  

 It views combination as a paraphrasing process with the use of a set of hierarchical 

paraphrases, learned from monolingual word alignments between a selected best 

translation hypothesis and other hypotheses. 

 

  Among the three phrase-level models, the paraphrasing model and the hierarchical 

paraphrasing model have similar performances, and both of them outperform the hierarchical 

phrase-based re-decoding model as well as baseline combination systems.  

  From our investigational experiments, we also saw that the addition of simple syntactic 

constraints in both models did not yield improvement. Moreover, we found out that if a given 

hypothesis for paraphrasing is well translated, the hierarchical paraphrasing model would not 

bring benefits to paraphrasing model. But, on the other hand, if a given hypothesis for 

paraphrasing is poorly translated, the hierarchical paraphrasing model is more likely to improve 

that translation than the paraphrasing model.  
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  We also found that the performance of combination strongly correlates with the individual 

quality of each MT system. For MT combination, the selection of top N MT systems is a 

reasonable strategy, but larger N does not always bring benefits when N exceeds 5. 

 

Sentence-level Combination: The goal is to select the best translation from the given multiple 

MT systems’ translations. We presented three different novel features to help evaluate the quality 

of a given translation. 

 Supertagged Dependency Language Model (SDLM)  

 It explicitly models syntactic dependencies of the words of translated sentences. To 

obtain the supertagged dependency structure of a translation candidate, a two-step 

mechanism based on constituent parsing and elementary tree extraction is also 

presented. 

 FB-LTAG-based syntactic error detector 

 It uses XTAG grammar, a rule-based FB-LTAG developed by linguists. Our detector 

is able to simultaneously detect multiple ungrammatical types and their corresponding 

words by using a novel unification method, and we also show that it can be used to 

correct ungrammatical words. 

 argument alignment  

 We applied the probabilities of argument alignment between source and target as an 

indicator to evaluate the quality of the target sentence from a semantic perspective. 

 

  Among the three features, SDLM is the most effective and FB-LTAG syntactic error detector is 

the second. Although argument alignment is not as strong indicator as SDLM and FB-LTAG 
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syntactic error detector, our experimental results demonstrate that argument alignment does 

correspond to the translation quality.  

 

Hybrid Combination: the goal is to utilize the advantages of phrase-level and sentence-level 

combination and provide a more diverse set of plausible fused translations to consider. We presented 

two novel pipeline-based hybrid combination structures to achieve this task. 

 homogeneously hybrid combination  

 The same phrase-based technique is used to generate outputs for the sentence-level 

combination component to select. According to different phrase-based techniques, we 

developed two structures: 

 homogeneously hybrid paraphrasing model  

 homogeneously hybrid hierarchical paraphrasing model 

 heterogeneously hybrid combination 

 Different phrase-based techniques are used to generate outputs for the sentence-level 

combination component to select. 

 

  We found that both hybrid combination structures are effective, and the improvement 

corresponds to the degree of diversity of fused translations that our phrase-level combination 

models provided. The homogeneously hybrid hierarchical paraphrasing model using a feature 

set of LM+consensus provides the best performance. 
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Comparison of all models: we list the performances of the best models for Phrase-level 

combination, Sentence-level combination and hybrid combination on NIST Chi-Eng Dataset. 

Table 7.1: The performances of the best models for Phrase-level combination, Sentence-level 

combination and hybrid combination on NIST Chi-Eng Dataset 

 

  From Table 7.1, we see that homogeneously hybrid hierarchical paraphrasing model using a 

feature set of LM+consensus provides the best performance on NIST Chi-Eng Dataset through 

this thesis : its Bleu score of “33.14” is higher than the Bleu score of Confusion Network by 

“1.93” and higher than Bleu score of best MT system by “2.98”. 

 

 

 

  BLEU TER MET 

The Best MT 

system 
Sys 03 30.16 55.45 54.43 

Word-level 

combination 

(baseline) 

Confusion Network 31.21 54.59 55.59 

Phrase-level 

combination 

paraphrasing model  

(selected backbone) 

32.65 55.11 56.17 

hierarchical paraphrasing model  

(selected backbone) 

32.59 55.06 56.19 

Sentence-level 

combination 

LM + consensus + SDLM 31.61 54.78 55.68 

LM + consensus + SyntacticErrorDetection 31.41 55.03 55.62 

hybrid  

combination 

homogeneously hybrid hierarchical 

paraphrasing model (LM+consensus) 

33.14 55.34 56.55 

heterogeneously hybrid combination model 

(LM+consensus+SDLM ) 

32.91 55.58 56.04 
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  In addition to the NIST Chi-Eng Dataset, we also carried out experiments of our models on 

NIST Ara-Eng Dataset, which plays a role of blind test to provide a more objective evaluation.    

 

Table 7.2: The performances of the combination models on NIST Ara-Eng Dataset 

   

  From Table 7.2, we saw that the homogeneously hybrid paraphrasing model using a feature 

set of LM+consensus provides the best performance on the NIST Ara-Eng Dataset through this 

thesis: its Bleu score of “50.25” is higher than Bleu score of Confusion Network by “1.69” and 

higher than Bleu score of best MT system by “1.85”. This result demonstrates the hybrid 

combination model’s robustness and consistency. It shows the results are consistent across test 

sets and across two languages. 

  The reason why the hybrid combination models consistently provide the best performances 

could stem from the fact that the hybrid combination structures integrate phrase-level and 

sentence-level combination approaches, which fully utilize the individual advantages of the two 

  BLEU TER MET 

The Best MT 

system 
Sys 31 48.40  45.55 70.67 

Word-level 

combination 

(baseline) 

Confusion Network 48.56  43.81 70.67 

Phrase-level 

combination 

paraphrasing model  

(selected backbone) 

49.33  45.08 70.87 

hierarchical paraphrasing model  

(selected backbone) 

49.46  44.84 70.99 

hybrid  

combination 

homogeneously hybrid hierarchical 

paraphrasing model (LM+consensus) 

50.25  43.55 71.19 

heterogeneously hybrid combination model 

(LM+consensus) 

50.05  44.27 70.87 



 

133 

 

frameworks: phrase-level approaches are able to generate a whole new fused translation that 

never appeared in the original translations of multiple MT systems while sentence-level 

combination approaches make the final decisions using information from whole sentences. 

Another reason to interpret hybrid combination models’ excelled performance is that they 

consider a more diverse set of plausible fused translations. 

 

7.2 Future Work 

For phrase-level combination models, the integration of grammatical knowledge, such as SDLM 

and XTAG English Grammar, would be an appealing future research direction. Since SDLM and 

XTAG English Grammar are represented in the form of tree adjoining grammar, it is natural to 

utilize a synchronous tree adjoining grammar (STAG) as our phrase-level combination model to 

integrate the grammatical knowledge in the form of tree adjoining grammar. The synchronous 

tree adjoining grammar could be learned either from bilingual word alignments between source 

sentences and target translation hypotheses, or from monolingual word alignments between a 

selected best translation hypothesis and other hypotheses. Semantic information, such as 

argument types, can also be attached in the elementary trees in STAG easily. 

  For the re-decoding framework, there are relatively more resources available to improve the 

performance in comparison with the paraphrasing framework, such as bilingual corpora. So our 

future work for this model involves the integration of existing translation probabilities trained 

from a bilingual corpus to the combination model. 

For SDLM, there are several avenues for future work: we have focused on bigram 

dependencies in our models. The extension from bigram dependencies to more than two 

dependent elementary trees is straightforward. It would also be worth investigating the 

performance of using our sentence-level model to re-rank n-best outputs of a phrase-based 
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combination model.  

  For MEMT in general, our future research direction involves the design of a specific MEMT 

model, aiming to fuse outputs of semantic-based MT and statistical phrase-based MT engines, 

and investigate when and where to use the output of either engine. The motivation of this 

direction is because we believe the two kinds of engines reflect the two major brain operations a 

human uses to translate sentences - “understand (semantics)” and “memorize (phrase 

translations)”; people use the two kinds of operations to complete a translation process 

simultaneously. Leveraging the recent advances in semantic representation and parsing will 

enable the development of semantic-based MT systems; an MEMT system could integrate these 

semantic-based MT systems with the statistical phrase-based MT systems in order to mimic the 

two major brain operations for translation. 
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