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Abstract
Previous work has shown that the energy components of fre-
quency subbands with a variety of frequencies and bandwidths
predict pitch accent with various degrees of accuracy, and pro-
duce correct predictions for distinct subsets of data points. In
this paper, we describe a series of experiments exploring tech-
niques to leverage the predictive power of these energy compo-
nents by including pitch and duration features – other known
correlates to pitch accent. We perform these experiments on
Standard American English read, spontaneous and broadcast
news speech, each corpus containing at least four speakers. Us-
ing an approach by which we correct energy-based predictions
using pitch and duration information prior to using a majority
voting classifier, we were able to detect pitch accent in read,
spontaneous and broadcast news speech at 84.0%, 88.3% and
88.5% accuracy, respectively. Human performance at pitch ac-
cent detection is generally taken to be between 85% and 90%.
Index Terms: prosodic analysis, spectral emphasis

1. Introduction
Automatic detection of pitch accent is at least useful and at most
critically important to a number of spoken language processing
tasks. In English, accenting and deaccenting of a word provides
information concerning its discourse status [1] and surrounding
discourse structure [2]. The importance of a given word can be
highlighted by either types of pitch accent or the relative height
and placement of pitch peaks or intensity excursions. Addition-
ally, pitch accent can provide information to listeners to per-
form syntactic and semantic disambiguation [3, 4]. Of interest
to text-to-speech system developer is the potential of annotating
a unit-selection corpus with prosodic information. This allows
prosody to be included within the unit selection process to pro-
duce more natural, and less ambiguous synthesized speech, as
well as offering users greater control of prosodic parameters.
Currently, to include this functionality, unit selection corpora
need to be manually annotated with prosodic information – a
very time-consuming process.

The three major acoustic correlates to pitch accent are pitch
excursions, increased intensity and prolonged vowel duration
[5, 6]. In [7], we explored the discriminative properties of en-
ergy features extracted from a range of frequency subbands. We
found that energy features extracted from different frequency
subbands, even adjacent and overlapping ones, predict pitch ac-
cent with varying degrees of accuracy, and moreover produce
correct predictions on different subsets of data points. It was
determined that the frequency region between 2 and 20 bark
was the most accurate, and robust predictor to pitch accent. Ad-
ditionally, we found that at least one of the energy-based pre-
dictions was correct for upwards of 99% of all words. In this
paper, we build upon these results, investigating techniques to
leverage these predictions along with pitch and duration infor-
mation to the ends of constructing a robust, high-accuracy pitch

accent detector.
In section 4, we present a number of approaches to using

filtered energy-based predictions for pitch accent detection. In
particular, we present a technique to improve the accuracy of
a majority voting classifier by ’correcting’ those contributions
from energy-based classifiers that are believed to be erroneous.
We use pitch-based features to classify an energy prediction as
‘correct’ or ‘incorrect’, inverting those predictions that are de-
termined to be ‘incorrect’. This method is described in greater
detail in section 4.2. We apply these techniques to three manu-
ally annotated corpora, containing read speech (BDC-R), spon-
taneous speech (BDC-S) and broadcast news (TDT).

Some particularly relevant previous contributions to the
task of automatically detecting pitch accent are described in sec-
tion 2. In section 3 we describe the material we use to evaluate
our approach. We present results from our experiments in sec-
tion 5, and conclude in section 6.

2. Previous Work
The task of automatically identifying pitch accent has received
a significant amount of attention (e. g. [8, 9, 10, 11, 12, 13, 14,
15, 16, 17]). Wightman and Ostendorf [18] used decision trees
with acoustic and lexical information to classify pitch accent,
obtaining accuracy of approximately 84%. Ananthakrishnan
and Narayanan [19] approached this problem using a sequen-
tial modelling approach. The application of Coupled HMMs
was able to correctly classify approximately 80% of words cor-
rectly for the presence or absence of pitch accent when using
syntactic and acoustic features. Sun [20] found that Bagging
and Boosting ensemble learning approaches to significantly im-
prove pitch accent prediction accuracy over a standard CART
classifier. Using acoustic and lexical information, detection
accuracy of approximately 87% was achieved on a corpus of
broadcast news speech. Sluijter and van Heuven showed that
accent in Dutch strongly correlates with the energy within a
a particular frequency subband, specifically that greater than
500Hz, in both production [21] and perception experiments
[22]. Heldner [23, 24] and Fant [25] extended the study of this
“spectral emphasis” observation, by examining read Swedish
speech. They found the relationship between the energy in one
spectral region and the overall energy in the speech signal to be
an excellent predictor of pitch accent.

3. Corpora
3.1. Boston Directions Corpus

The Boston Directions Corpus (BDC) was collected by
Nakatani, Hirschberg and Grosz in order to study the rela-
tionship between intonation and discourse structure [26]. The
corpus consists of spontaneous and read speech from four na-
tive speakers of Standard American English, three males and
one female, all students at Harvard University. Each speaker
was given written instructions and asked to perform a series
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of nine increasingly complicated direction giving tasks. This
elicited spontaneous speech was subsequently transcribed man-
ually, and speech errors were removed. At least two weeks
later, the speakers returned to the lab and read the transcripts
of their initial spontaneous monologues. The corpus was then
ToBI [27] labeled and annotated for discourse structure. For
the purposes of the experiments described in this paper we treat
the spontaneous and read subcorpora as distinct data sets. The
read subcorpus contains approximately 50 minutes of speech
and 10818 words. The spontanous subcorpus contains approx-
imately 60 minutes of speech over 11627 words. We use the
hand-segmented word boundaries from the ToBI orthographic
tier during the extraction of acoustic features, and assume these
to be available for both the training and testing sets. We use
the ToBI tones tier to provide ground-truth pitch accent labels
for training and evaluation. We make only a binary distinction
between accented and non-accented words; in this work, we do
not attempt to distinguish pitch accent type.

3.2. TDT4
The TDT-4 corpus [28] was constructed by the LDC for the
Topic Detection and Tracking shared task, and was provided for
use in the DARPA GALE project. As part of the SRI NIGHT-
ENGALE team, Columbia University was provided with auto-
matic speech recognition (ASR) transcriptions of the corpus by
SRI [29] and hypothesized speaker diarization results by ICSI
Berkeley [30]. The TDT-4 corpus as a whole comprises mate-
rial from English, Mandarin and Arabic broadcast news (BN)
sources aired between October 1, 2000 and January 2, 2001.
However, for the experiments presented in this paper, we had
one 30-minute broadcast, 20010131 1830 1900 ABC WNT,
annotated for pitch accent. The annotation was performed by
a single experienced ToBI labeler and reviewed by one of the
authors. The annotator was asked to annotate the ASR tran-
script with pitch accent labels – since ASR hypothesized word
boundaries may not align with those perceived by a human lis-
tener, the annotator was asked to mark an ASR hypothesized
word as containing a pitch accent if he believed any syllable
within the ASR word to contain the realization of a pitch ac-
cent. After omitting regions of ASR error, silence and music,
the TDT4 material for use contained approximately 20 minutes
of annotated speech and 3326 hypothesized words. Note, we
use the ASR hypotheses only for word boundaries not for lex-
ical content. The output of an automatic speaker diarization
system identified 25 speakers within this show. These hypoth-
esized identities are used to normalize acoustic information to
account for speaker differences.

4. Methods
We explored a number of techniques of combining results from
the filtered energy experiments with pitch and duration features
in order to create a robust pitch accent detection module. In
order to eliminate any influence of learning algorithm, every
experiment was performed using weka’s [31] J48 algorithm, a
java implementation of Quinlan’s C4.5 algorithm [32]. In order
to isolate the learning architecture from the features used, we
extract the same acoustic features for each classification exper-
iment.

Pitch and Duration Features
We compute, for each word, the minimum, maximum,

mean, root mean squared and standard deviation of pitch (f0)
values extracted using Praat’s [33] Get Pitch (ac)... function.
We also computed each of these features based on speaker nor-
malized pitch values. This normalization was performed using

z-score normalization. For the BDC corpus, the true speaker
identifies (four male, one female) are known. However, the
speaker normalization for the TDT corpus does not use any
manual annotation. Instead, we use the hypotheses of a auto-
matic speaker diarization module to determine speaker iden-
tity. We included in the feature set, the above features calcu-
lated over the first order differences (Δ f0) of both the raw and
speaker normalized pitch tracks.

Additionally, we used nine contextual windows to account
for local context. These contextual windows were constructed
using each combination of two, one or zero previous words and
two, one or zero words following the given data point. Based
on the pitch content of these regions we performed z-score
and range normalization on the maximum and mean raw and
speaker normalized f0 of the current word.

We extracted three duration features: the duration of the
current word in seconds, the duration of the pause between the
current and following word, and the duration of the pause be-
tween the current and previous word.

Energy Features
We extracted energy information from 210 distinct fre-

quency bands. These frequency bands were constructed by
varying the minimum frequency from 0 bark to 19 bark, and
the maximum frequency from 1 bark to 20 bark. 20 bark is the
maximum frequency in all of our corpora (see section 3) due to
Nyquist rates of 8kHz.

For each word, we extracted the maximum, minimum,
mean, root-mean-squared and standard deviation of energy. Ad-
ditionally, we used the same nine contextual windows to ac-
count for local pitch content to normalize out local context from
the energy information. Based on the content of these nine
regions we performed z-score and range normalization on the
maximum and mean energy of the current word.

4.1. Simple decision trees
In order, to have a point of comparison for our experiments with
filtered energy features, we first performed pitch accent classi-
fication using feature vectors containing the pitch, duration and
unfiltered energy features.

In [7], based on experiments with the BDC-read corpus, it
was hypothesized that the frequency region between 2 and 20
bark contains energy information that would be the most ro-
bustly discriminative of pitch accent. To evaluate this claim, we
ran classification experiments on all three corpora with feature
vectors containing energy features drawn from the 2-20 bark
frequency subband along with pitch and duration features.

4.2. Voting classifiers
Using an ensemble of classifiers, each trained using only en-
ergy features extracted from a single frequency subband, we
constructed a simple majority voting classifier. For each data
point, 210 predictions were obtained – one from each filtered
energy-based classifier. The ultimate prediction for each data
point was the class (‘accented’ or ‘non-accented’) predicted by
at least 106 energy-based classifiers. In the case of a tie, the
data point was assigned to the ‘non-accented’ class – the major-
ity class in all corpora.

We also evaluated the performance of a number of variants
of a weighted majority voting classifier. First, we weighted the
predictions by the J48 confidence scores. Second, we weighted
each prediction by the cross-validation accuracy of the classi-
fier which generated it. Third, we weighted the predictions by
the product of the J48 confidence scores and this estimated ex-
pected accuracy.
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We observed that on all corpora, the oracular coverage of
the 210 predictors was over 99%. That is, at least one energy-
based classifier produced a correct prediction for nearly every
word in every corpora. We performed two experiments examin-
ing ways of using pitch and duration information to determine
which predictors will be correct for a given word.

In the first experiment, we constructed our feature vector
using the pitch and duration features along with the 210 raw pre-
dictions from the filtered energy-based classifiers. When evalu-
ating this type of classifier in a cross-validation setting, partic-
ular attention was paid to guarantee that none of the elements
of the testing set were used in constructing the predictions in-
cluded in the training set feature vector. To that end, for each
training and testing set, an additional ten-fold cross validation
scenario was run over the training set in order to produce pre-
dictions for use in the training feature vector. The testing set
predictions were based on energy-based classifiers trained on
the full training set.

The expectation in constructing this type of classifier is that
rules would automatically be learned that would either asso-
ciate predictions from frequency bands or associate pitch fea-
tures that might distinguish when one frequency band might be
more predictive than another. In figure 1 we can observe and
instance of the former relationship. The behavior represented
by this clipping of the decision tree says that for a given word,
following some number of previous decision, if the speaker nor-
malized mean pitch is below 0.6, then predict deaccented. If this
pitch value is greater than or equal to 0.6, then trust the predic-
tion made by the energy classifier trained on energy information
within the frequency band between 8 and 16 bark. One possible
explanation behind this type of decision is that this particular
energy-based classifier is fairly accurate in a specific pitch envi-
ronment, but fairly inaccurate in others. This type of branch in-
spired the next type of classification scheme, in which we make
explicit the use of pitch-based features to correct energy-based
predictions.

spkr norm Mean F0

8-16bark Energy Prediction
deaccented

accented deaccented

. . .

< .6 >= .6

=acc =no-acc

Figure 1: Detail view of single pitch-based classifier

In our final classifier design, we make the relationship be-
tween pitch and duration information and filtered energy based
predictions explicit. For each frequency band, we build a pitch
and duration-based classifier that predicts when the energy-
based prediction from the given frequency band will be correct,
and when it will be incorrect.

Again, when performing the ten-fold cross-validation on
this two stage classifier, we pay particular attention to making
sure that no data point in the test set is ever used in producing a
training set prediction.

For each training set, we use ten-fold cross-validation to
generate filtered energy-based pitch accent predictions for each

frequency region. We, then, for each energy-based classifier,
train a second classifier using pitch and duration features that
classifies each training-set energy prediction as either ‘correct’
or ‘incorrect’. Predictions that are classified as ‘incorrect’ are
inverted. Thus, a ‘accent’ prediction classified as ‘incorrect’ be-
comes ‘non-accented’ and vice versa. Since, this correction is
performed independently for each filtered energy-based classi-
fier, we are left with 210 ‘corrected’ pitch accent predictions.
We then combine these into a final prediction using a majority
voting scheme.

5. Results and Discussion

BDC-R BDC-S TDT

Pitch/Dur Corrected Voting 84.0% 88.3% 88.5%
Pitch/Dur + Predictions 78.8% 77.5% 80.3%
Majority Voting 81.8% 81.8% 83.7%
‘Best’ Band Energy 80.0% 79.0% 81.1%
No Filtering 79.8% 79.1% 81.1%

Table 1: Pitch Accent Classification Accuracy

Our baseline experiment (‘No Filtering’), which uses pitch,
duration and unfiltered energy features to train a standard deci-
sion tree, yields the lowest accuracy on all corpora. Replacing
the unfiltered energy features with corresponding energy fea-
tures extracted from the frequency band between 2 and 20 bark
(“Best’ Bark Energy’) does not yield significantly different re-
sults on any corpus. The hypothesis that the band between 2 and
20 bark would yield the most robust and discriminative energy
features was based on experiments on the BDC-read corpus. On
this corpus, we observe a statistically insignificant gain in accu-
racy of 0.02%. This band does not improve the accuracy on
either other corpora – even insignificantly reducing it on BDC-
spon. While the energy features extracted from the frequency
region between 2 and 20 bark are able to predict pitch accent
significantly better than unfiltered energy features, when com-
bined with pitch and duration information, the impact of this
improvement is severely diminished.

Based on the 210 predictions per data point using exclu-
sively those energy features extracted from each frequency sub-
band (‘Majority Voting’), a simple majority voting classifier
achieves classification accuracy that is significantly better than
the baseline experiment on the TDT and BDC-spon corpora.
Weighted voting classifiers, where each prediction is weighted
by either J48 confidence score, cross validation accuracy, or the
product of the two, do not yield significantly different results
from the majority voting classifier.

When we included the 210 energy-based predictions into a
feature vector (‘Pitch/Dur + Predictions’)along with the pitch
and duration features, the classification accuracy was reduced
below that of the majority voting classifier. We expected the
decision tree to learn associations between pitch features and
energy predictions, or to identify mutually reinforcing sets of
predictions. However, even the baseline classifier outperforms
this approach.

The two-stage classification technique (‘Pitch/Dur Cor-
rected Voting’), where pitch information is used to correct
energy-based predictions before voting, demonstrated the best
classification results on all corpora. On the BDC-spontaneous
and TDT corpora the accuracy was 88.3% and 88.5% respec-
tively. The human agreement on pitch accent identification is
generally taken to be somewhere between 85% and 90%, de-
pending on genre, recording conditions and particular labelers
[18, 27]. These results represent a significant improvement over
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the baseline classifier, and approach human levels of compe-
tence. The fact that the accuracy on the TDT corpus is not
significantly different from that obtained on the BDC mate-
rial indicates that the technique is relatively indifferent to the
fine grained accuracy of word boundary placement. Recall, the
BDC corpus word boundaries were manually defined, the TDT
word boundaries are a result of ASR output. While this tech-
nique produces the highest accuracy predictions on BDC-read
(84.0%), the improvement over the baseline classifier is much
more modest than that achieved on the other two corpora. It
is possible that non-professional speakers produce read speech
without pitch and duration information that can be successfully
used by this classification technique.

6. Conclusion
We have presented a number of experiments on the use of
filtered energy based predictors to accurately detect pitch ac-
cent. In particular, we described a two-stage classification tech-
nique which predicts pitch accent at rates close to human per-
formance. This technique proceeds as follows. First, energy-
based features extracted from 210 frequency subbands are used
to generate a set of predictions for each data point. Pitch and
duration features are then used to classify each prediction for
each data point as correct or incorrect. Predictions labeled as
incorrect are inverted; predictions of ’accent’ were changed to
’no accent’ and vice versa. Finally, a majority voting classi-
fier was used to combine these 210 corrected predictions. On
a corpus of read speech (BDC-read), this technique yielded ac-
curacy of 84.0%. On spontaneous speech (BDC-spontaneous),
the accuracy was 88.3%, and on a corpus of broadcast news
from multiple speakers with ASR-generated word boundaries,
the technique achieved accuracy of 88.5%, approaching human
performance on a similar task. This high accuracy performance
on disparate corpora demonstrates that this technique is robust
to genre, speaker and recording condition differences, as well
as noise in word boundary locations. We plan, however, to
investigate why this technique yielded less improvement over
baseline on non-professional read speech, than BN or sponta-
neous speech. This work has shown the success of applying
ensemble-based techniques to the task of detecting pitch accent
– we intend to study these applications more thoroughly. One
drawback of the technique presented in this paper.is that it is
very resource consuming to train and test. While there are many
opportunities for parallelization, each data point requires 420
classifications in order for pitch accent to be detected. While
previous work has determined that energy information drawn
from individual frequency regions is largely non-redundant, we
plan on running a combinatorial analysis to identify redundant
sets of frequency regions.
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