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ABSTRACT 

 
We report on machine learning experiments to distinguish 
deceptive from nondeceptive speech in the Columbia-SRI-
Colorado (CSC) corpus. Specifically, we propose a system 
combination approach using different models and features for 
deception detection. Scores from an SVM system based on 
prosodic/lexical features are combined with scores from a Gaussian 
mixture model system based on acoustic features, resulting in 
improved accuracy over the individual systems. Finally, we 
compare results from the prosodic-only SVM system using features 
derived either from recognized words or from human 
transcriptions. 

 
1. INTRODUCTION 

 
The automatic detection of deceptive speech is of particular 
interest to law enforcement and other government agencies, for 
example, in evaluating reports from informants at embassies and 
consulates throughout the world, in identifying potential deception 
in border crossings, and as an antifraud tool.  

Most studies in the literature on deceptive behavior have 
involved human perception evaluations or descriptive analyses of 
facial, gestural, and biometric data. Significant research has been 
done in the psychology of deceptive behavior, where the main 
focus has been on identifying visual cues (body and facial 
gestures) through laboratory experiments (see [2] for a literature 
review in this area). 

A few studies have included audio analysis: Ekman et al. [4] 
found a significant increase in pitch for deceptive speech over 
truthful speech. Streeter et al. [11] reported similar results, with 
stronger findings for more highly motivated subjects. De-Paulo et 
al., in their meta-study of previous research findings in deception 
[2], reported significant effects for increased pitch and vocal 
tension in their overall examination of evidence of subject 
‘tenseness’ during deception. There is also some literature by 
members of law enforcement agencies and the military identifying 
auditory and lexical cues to deception. The most widely cited 
sources include response latency, filled pauses, coherence of 
discourse, passive voice, and use of contractions [1, 8]. Voice 

stress analysis procedures attempt to rely on low-level indicators of 
stress as indirect indicators of deception [5]. However, despite 
some evidence from the research community and belief among 
practitioners, there has been little work on the automatic 
identification (by machine) of deceptive speech from such 
acoustic, prosodic, and lexical cues. 

Recently, a corpus-based machine learning approach 
combining lexical, prosodic, and speaker-dependent features for 
distinguishing deceptive from nondeceptive speech was presented 
[6]. In that reference the Columbia-SRI-Colorado (CSC) corpus 
was introduced. Our work also uses that corpus but explores 
(especially acoustic) cues not previously applied to this task, and 
focuses on system combination and issues arising from automatic 
speech recognition. 

In this paper we first describe the CSC corpus. In Section 3 
we describe the features and classifiers from each individual 
system, and the system combiner. In Section 4 we describe the 
experiments performed. In Section 5 we present the conclusions 
followed by the references. 

 
 

2. THE CSC CORPUS 
 
One of the primary obstacles to research in automatic deception 
detection from speech is the lack of a cleanly recorded corpus of 
deceptive and nondeceptive speech for training and testing. 
Existing corpora are difficult to analyze because of poor recording 
conditions. While early studies were better able to utilize scenarios 
with ‘high stakes’ deception in the laboratory (in which subjects 
could be motivated by fear or shame) [7], more recent studies have 
been limited to less-stressful scenarios by human subject protocols 
and privacy considerations. In these studies, subjects are motivated 
to deceive primarily by financial reward. 

Our collection paradigm was designed to elicit within each 
subject deceptive and nondeceptive speech, from subjects who had 
both financial incentive and motivation in terms of what De-Paulo 
[2] calls the ‘self-presentational’ perspective to do well at 
deception. Thirty-two native speakers of Standard American 
English were recruited for the study. Subjects were asked to 
perform a series of tasks (activities and question answering) in six 
areas, and were told that their performance would be compared to a 
target profile based on a survey of the twenty-five ‘top 



entrepreneurs of America’ performing similar tasks, results of 
which they would be shown later. Task difficulty was manipulated 
so that subjects scored more poorly than the target in two task 
areas, better than the target in two others, and the same in another 
two of the six; this manipulation was balanced across task 
categories. 

In the next phase of the experiment, subjects were shown their 
own score and the target, which were invariably quite different in 
four areas. They were told that the study’s actual goal was to 
compare people who have certain skills and knowledge with 
people who are good at convincing others that they do. They were 
told that they could continue to the second stage of the study and 
also be eligible for a $100 prize if they could convince an 
interviewer that, instead of scoring as they had, they had in fact 
performed just as the target entrepreneurial profile.  

Thus, each subject was motivated to tell the truth in two task 
areas and to deceive the interviewer in four others. They were told 
that the interviewer had no knowledge either of the target profile or 
of their performance (the latter true). The interviewer’s task was to 
determine how he thought the subjects had actually performed, and 
he was allowed to ask them any questions other than those that 
were actually part of the tasks they had performed. Finally, for 
each question, subjects were asked to indicate whether the reply 
was factually true or contained any false information by pressing 
one of two pedals hidden from the interviewer under the table. 

The interviews, which lasted between 25 and 50 minutes, 
comprised 15.2 hours of interviewer/subject dialog and yielded 
approximately 7 hours of subject speech. They were recorded to 
digital audio tape on two channels using a Crown CM311A 
Differoid headworn close-talking microphone and downsampled to 
16 kHz. They were subsequently orthographically transcribed, and 
sentence-like units (“slash units”, or SUs) [3]) were labeled. The 
transcription was then automatically aligned with the audio data.  

 
3. FEATURES AND CLASSIFIERS  

 
Previous research and practitioner experience suggest that 
acoustic-prosodic and lexico-syntactic cues may signal when 
speakers are deceptive. Below we describe the lexical and acoustic-
prosodic cues we used in our corpus. 
 
3.1. Prosodic-Lexical SVM System 
 
Observations in the literature suggest that pitch, energy, speaking 
rate, and other stylistic factors (e.g., “muffled” voice) vary when 
speakers deceive. Our prosodic features attempt to capture this 
variation as well as to explore other potential cues. We considered 
a wide range of potential acoustic and prosodic features, taking 
advantage of tools available from automatic speech recognition, to 
extract and model features including duration, pausing, intonation, 
and loudness, associated with multiple time scales, from a few 
milliseconds to an entire speaker turn. Prosodic features are 
automatically normalized, taking into account long-term speaker-
specific habits as well as segmental context.  

To extract prosodic features, the speech was first segmented 
into SUs by chopping at punctuation marks (ellipses, periods, and 
question marks) in the hand-transcribed corpus. For each SU, we 
computed 215 prosodic features involving pitch, energy, and 
duration patterns. Pitch and energy were obtained from the 

ESPS/Waves pitch tracker get_f0; duration features were obtained 
via forced alignment of hand transcripts using the SRI automatic 
speech recognition system. Pitch features were computed from the 
voiced regions in the SU, and were then used in one of three 
forms: raw, median-filtered, or stylized using an approach that fits 
linear splines to the median-filtered pitch. From these pitch 
sequences we computed a large set of features, including maximum 
pitch, mean pitch, minimum pitch, range of pitch number of frames 
that are rising/falling/doubled/halved/voiced, length of the first/last 
slope, number of changes from fall to rise, and value of 
first/last/average slope. These features were normalized by five 
different approaches: no normalization, division by the mean, 
subtraction of the mean, and z-scores (subtracting the mean and 
dividing by the standard deviation). Two basic energy features 
were computed. The first was the raw energy in the SU and the 
second was the raw energy of only the voiced regions. The second 
feature type was used in one of three forms: raw, median-filtered, 
or stylized using a linear spline-fitting approach. From these values 
we computed several derived features, including the maximum 
energy, minimum energy, mean energy, and other features similar 
to those just mentioned for pitch. Finally, several duration features 
were computed. The maximum and the average phone duration in 
the SU were first computed. They were then used either as raw 
values, normalized using speaker-specific durations or normalized 
using durations computed from the whole corpus. The corpus-
based normalization was done dividing by the mean, or subtracting 
the mean and dividing by the standard variation. 

Lexical features were computed automatically using true 
words from hand transcriptions. These features were based on 
results or hypotheses from the literature [2] and on intuitions of 
practitioners in the intelligence and law enforcement communities. 
They include counts of filled pauses, syntax-based features, dialog 
act labels such as specific denials, flags for positive and negative 
emotion words [13], and a feature encoding whether a subject 
responded to the interviewer's question with a question. For each 
SU, we computed 20 lexical features. This is a preliminary set of 
features and we believe further gains can be achieved by adding 
more lexical features. 

A support vector machine (SVM) classifier with a linear kernel 
was used with the prosodic-lexical features. The total input feature 
dimension was 235 for the prosodic/lexical SVM system and 215 
for the prosodic SVM system. We used the freely available 
LIBSVM tool [12] for training and testing the SVM. A zero mean 
and unit standard deviation normalization was used with the input 
features. Other kernels (radial basis and polynomial) were also 
tried, but we found the linear kernel to give the best results. 

One problem for SVMs is the missing features for some SUs 
(for example, the maximum positive slope feature in a short unit 
with a negative slope). We found very few cases of missing 
features in our CSC corpus. Missing feature values were replaced 
by the mean of the observed values for that feature.  
 
3.2. Acoustic GMM System 
 
The acoustic system was built to discriminate truthful and 
deceptive speech using features computed in the spectral domain. 
This model is similar to the one used in speaker identification 
systems [9].  

The features used in this system are spectral-based Mel cepstral 
features with energy, plus simple, double and triple delta features. 



The total feature dimension is 52. The acoustic features were 
computed from 25 ms Hamming-windowed signal frames, stepped 
every 10 ms. The signal energy (C0) was normalized by the 
maximum over the complete waveform. In order to avoid using 
silent or noisy frames, we used only frames whose energy was at 
least a minimum difference over the maximum signal energy.  

A Gaussian mixture model (GMM) classifier was used with the 
acoustic features. The total number of Gaussians in the Gaussian 
mixture was 2048. First, a boot GMM was trained using the 
expectation maximization (EM) algorithm to maximize the 
likelihood on the training data. This boot model was trained with 
all the training data from both classes (truthful and deceptive). 
Next, two different GMMs were created by adapting the boot 
GMM to the truthful section and to the deceptive section of the 
training data. The adaptation algorithm was the maximum a 
posteriori adaptation (MAP) algorithm. A class decision is 
produced by this system comparing the class posterior probabilities 
from each GMM for a given waveform (using priors estimated 
from the training data). By adapting both target models from the 
same boot model we ensure that the likelihood scores are 
comparable. 
 
3.3. Combiner SVM System 
 
The purpose of the combiner was to evaluate whether combining 
scores from both systems would improve the classification 
accuracy. The rationale is that if each system provides a confidence 
measure for its class prediction, the combiner will weight the 
evidence from each system and thus may improve the class 
prediction. The score combiner was an SVM with a radial basis 
kernel.  

The score generated from the acoustic GMM system was the 
ratio of the truthful GMM posterior probability and the deceptive 
GMM posterior probability. The class priors were estimated from 
the training data. The score generated from the prosodic-lexical 
SVM system was the output of the dot product between the kernel 
output of the support vectors and the kernel output of the input 
vector. This corresponds to the signed distance in kernel space of 
the test data point from the decision boundary. 

The combiner was trained on a subset of the training data. We 
split the training data into two sets we will call devtrain and 
devtest. The split proportion was 80% for training and 20% for 
testing. The prosodic-lexical SVM and the acoustic GMM were 
retrained in the devtrain data. The scores from each system were 
generated for the devtest data, and the combiner was then trained 
on that data. For independent testing the two systems were 
retrained on the full training set. A zero mean and unit standard 
deviation normalization was used with the scores from each 
system. The normalization parameters were computed from the 
devtrain data and were applied to the test data. 

 
4. EXPERIMENTS  

 
We first explored the performance of each system, and then the 
performance of the combined system. We finally assessed the 
effects of word recognition errors by evaluating the prosodic 
system using features computed from the recognized words instead 
of transcriptions.  
 

4.1. Data 
 
Each speaker’s SUs were partitioned into 90% for training and 
10% for testing. Then the training data from all speakers was 
pooled to form the final training data. The same procedure was 
used for the test data resulting in a total of 8406 training SUs and 
922 test SUs. Before splitting the data by speaker, a randomization 
of the SUs was done with the same seed for all speakers. The 
collection of training data and test data randomized with the same 
seed was called a “run”. Ten different runs were produced, each 
with a different seed. All results represent averages over the 10 
different runs. The pedal press information was used to assign a 
truth or lie label to each SU. 

Since the same speakers occur in both training and test, our 
experiments are speaker dependent, thereby allowing the expected 
speaker-dependent effects to be modeled. However, we decided to 
pool data from all speakers since the amount of data per speaker 
experiment would otherwise be insufficient for effective model 
training. 
 
4.2. Results 
 
Table 1 presents accuracy results of the acoustic GMM system, the 
prosodic/lexical SVM system and the prosodic only SVM system 
in the CSC Corpus test data partition, as well as results for the 
combined systems. The chance result is simply the ratio of the 
more frequent class (truth) to the total number of units in the test 
set, corresponding to a classifier that ignores the test data and 
always outputs the a priori most likely class. 
 

Table 1: Accuracy of Single Systems and 
Combination Systems on the CSC Corpus. 

Systems % Accuracy 
Chance 60.4 

(A) Acoustic GMM 62.1 
(B) Prosodic SVM 62.7 

(C) Prosodic/Lexical SVM 62.9 
Combination of Systems A and B 64.4 
Combination of Systems A and C 64.0 

 
From Table 1 we conclude that each individual system 

produces a gain over chance, and the prosodic-based systems 
produce the largest gains. Adding the lexical features to the 
prosodic features gives higher accuracy than the prosodic features 
alone. The combination of systems A and B produces the best 
accuracy and the combination of systems A and C results in a 
similar performance. One reason why the combination of systems 
A and C was not better than the combination of systems A and B 
may be that by adding the lexical features, both systems become 
more similar, with fewer different errors for the combiner to 
leverage. 

When a matched pairs test is used the difference in accuracy 
between chance and the combination of systems A and B is 
significant (p < 0.05) and the difference in accuracy between 
chance and the combination of systems A and C is also significant 
(p < 0.10). 

The combiner is an SVM with a radial basis kernel. We 
explored using other kernels such as linear and polynomial. The 



linear kernel produced no gain over the individual systems. The 
third-degree polynomial kernel when used in combination of 
systems A and B produced an intermediate accuracy of 63.9%. 
Thus, the radial basis kernel outperforms the polynomial kernel, 
which in turn outperforms the linear kernel, showing that the class 
boundaries in the combiner are nonlinear in shape. 
 
4.3. Prosodic System from Recognized Words 
 
Finally, we compare accuracy results from the prosodic-only SVM 
system using features computed from automatically recognized 
words versus features computed from human transcriptions. This is 
important for feature extraction on untranscribed input, where only 
recognized words are available. 

The same original SU boundaries from the previous experiment 
were used. We used a conversational telephone speech recognizer 
adapted for full-bandwidth recordings [10]. The same procedure of 
data splitting and 10 run repetition was used as before. Since some 
short utterances could not be recognized, the total number of SUs 
was 874 for testing and 8104 for training. In Table 2 we present 
the accuracy of both systems on the CSC corpus. 
 

Table 2: Accuracy of Prosodic SVM Systems using 
Features from Transcripts and Recognizer in Smaller 

Train and Test Sets on the CSC Corpus. 
Systems % Accuracy 
Chance 60.4 

Prosodic SVM from Recognized Words 62.6 
Prosodic SVM from Transcripts 62.8 

 
From Table 2 we conclude that the prosodic SVM system using 

features extracted from recognized words performs similarly to the 
same system but using features extracted from the true words; the 
difference is not statistically significant.  

The comparison in Table 2 reveals a reasonable lack of 
sensitivity of the prosodic features to recognition errors. The most 
sensitive features were probably phone-based features (i.e. phone 
durations) and rate-of-speech based features (i.e. number of words 
divided by the SU duration). 

 
5. CONCLUSIONS  

 
In this paper we have described experiments on distinguishing 
deceptive from non-deceptive speech in the CSC Corpus. 
Specifically we have proposed a system combination approach 
which provides greater accuracy than the individual systems. The 
experimental results reveal that there is potential for further 
improvement by adding more independent systems. Additionally 
we began to explore the impact on accuracy of features computed 
from recognized words. Future work will focus on improving the 
individual systems by adding voice quality features and exploring 
other acoustic front-ends, on developing new features that are less 
sensitive to recognition errors, and on proposing new independent 
systems. 
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