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Abstract

To date, studies of deceptive speech have largely been con-
fined to descriptive studies and observations from subjects, re-
searchers, or practitioners, with few empirical studies of the
specific lexical or acoustic/prosodic features which may charac-
terize deceptive speech. We present results from a study seek-
ing to distinguish deceptive from non-deceptive speech using
machine learning techniques on features extracted from a large
corpus of deceptive and non-deceptive speech. This corpus em-
ploys an interview paradigm that includes subject reports of
truth vs. lie at multiple temporal scales. We present current
results comparing the performance of acoustic/prosodic, lexi-
cal, and speaker-dependent features and discuss future research
directions.

1. Introduction
In recent years, there has been considerable interest in the
speech community in the automatic identification of affective
speech [5]. Promising research is currently underway using
corpus-based machine learning approaches to identify frustra-
tion and anger in spoken dialogue systems and call centers;
to determine whether students using automatic tutoring sys-
tems are confident or uncertain; or, more generally, to de-
cide whether speakers are expressing ’positive’ or ’negative’
emotions[10, 2, 3, 11]. Other categories of speaker state have
also been the subject of considerable interest, particularly in
the psychological literature. One such state is that of decep-
tion, which has been associated with manifestations of both
fear and elation [7]. However, studies of deceptive behavior
have so far primarily involved human perception studies or de-
scriptive analyses of facial, gestural, and biometric data rather
than acoustic information. Corpus-based, machine learning ap-
proaches to detecting any aspect of deception have yet to be
undertaken. In particular, such approaches have not been possi-
ble in the spoken domain, since corpora to support such studies
have not been available.

In this paper we describe a corpus-based, machine learn-
ing approach to the detection of deceptive speech, using acous-
tic/prosodic, lexical, and subject-dependent cues. In Section 2
we briefly discuss the current state of research on the character-
istics of deceptive speech. In Section 3, we describe the collec-
tion of the Columbia/SRI/Colorado (CSC) Corpus of deceptive
speech for training and testing. In Section 4, we discuss the
features we have extracted for analysis and in Section 5, we de-
scribe our machine learning approach and current results. We
conclude with a discussion of further work (Section 6).
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2. Previous Research
guishing deceptive from non-deceptive speech automati-
s of considerable practical interest, especially to law en-
ent and other government agencies — to identify po-
deception at border crossings and in military scenarios
field and elsewhere, and to evaluate reports from infor-
at embassies and consulates throughout the world. To

the main research efforts in studying deceptive behavior
een pursued in the psychological literature, where the fo-
s largely been on identifying visual cues (body and facial
es) through laboratory experiments (Cf. [6] for a review
ch of this literature.)
few studies have included audio analysis: Ekman et al.

und a significant increase in pitch for deceptive speech
uthful speech. Streeter et al. [18] reported similar results,
tronger findings for more highly motivated subjects. De-
et al., in their meta-study of previous research findings
eption [6], reported significant effects for increased pitch
ocal tension in their overall examination of evidence of
t ’tenseness’ during deception. There is also some litera-

nd much lore among members of law enforcement agen-
d the military identifying auditory and lexical cues to de-

n, the most widely followed including: response latency,
pauses, coherence of discourse, passive voice, and use of
ctions [1, 17]. Voice stress analysis procedures attempt to
pon low level indicators of stress as indirect indicators of
tion [9], and commercial systems promise to distinguish
rom lie — or love from indifference — with little inde-
nt evidence of success. However, despite some evidence
the research community and belief among practitioners,
as been little work on the automatic identification of de-

e speech from such acoustic, prosodic, and lexical cues.

3. The CSC Corpus
f the primary obstacles to research on the automatic de-

of deceptive speech is the lack of a cleanly-recorded
of deceptive and non-deceptive speech to use for train-

d testing. Existing corpora are difficult to analyze due
r recording conditions. While early studies were better
utilize scenarios with ‘high stakes’ deception (in which

ts could be motivated by fear or shame) in the laboratory
ore recent studies have been limited to less stressful sce-
by human subjects protocols and privacy considerations.

se studies subjects are motivated to deceive primarily by
ial reward.
ur collection paradigm was designed to elicit within-
t deceptive and non-deceptive speech from subjects who



had both financial incentive and motivation in terms of what De-
Paulo [6] terms the ‘self-presentational’ perspective to do well
at deception. Thirty-two native speakers of Standard Ameri-
can English were recruited for the study. They were asked to
perform a series of tasks (activities and question-answering) in
six areas. They were told that their performance would be com-
pared to a target profile based on a survey of the twenty-five ‘top
entrepreneurs of America’ performing similar tasks, results of
which they would be shown later. Task difficulty was manipu-
lated so that subjects scored more poorly than the target in two
task areas, better than the target in two others, and the same in
another two of the six; this manipulation was balanced across
task categories.

In the next phase of the experiment, subjects were shown
their own score and the target, which were invariably quite dif-
ferent in four areas. They were told that the study’s actual goal
was to compare people who have certain skills and knowledge
with people who are good at convincing others that they do.
They were told that they could continue to the second stage of
the study and also be eligible for a $100 prize if they could con-
vince an interviewer that, instead of scoring as they had, they
had in fact performed just as the target entrepreneurial profile.
Thus, each subject was motivated to tell the truth in two task ar-
eas and to deceive the interviewer in four others. They were told
that the interviewer had no knowledge either of the target pro-
file or of their performance (the latter true). The interviewer’s
task was to determine how he thought the subjects had actu-
ally performed, and he was allowed to ask them any questions
other than those that were actually part of the tasks they had
performed. Finally, for each question, subjects were asked to
indicate whether the reply was factually true or contained any
false information by pressing one of two pedals hidden from the
interviewer under the table.

The interviews, which lasted between 25 and 50 min-
utes, comprised 15.2 hourse of interviewer/subject dialogue
and yielded approximately 7 hours of subject speech. They
were recorded to digital audio tape on two channels using a
Crown CM311A Differoid headworn close-talking microphone
and downsampled to 16kHz. They were subsequently ortho-
graphically transcribed and sentence-like units (EARS SLASH

UNITS [14]) were labeled. The transcription was then auto-
matically aligned with the audio data. Currently we have di-
vided the data into word, slash unit, ’breath group’ (phrasal
units determined automatically from pause and intensity and
subsequently hand-corrected), and turn units, by combining au-
tomatic procedures and hand transcriptions. There are 79,488
words, 9687 SUS1, 19,170 breath groups, and 3882 SPEAKER

TURNS. Breath group and speaker turn units were derived semi-
automatically. The former were inferred from pausal informa-
tion in the alignment files plus intensity features; some spurious
breaks were subsequently removed by hand. The latter were
derived by comparing the two channels of the recordings.

To our knowledge, this corpus is the first audio corpus
recorded under conditions that will permit sophisticated speech
analyses to be performed (e.g. to extract pitch, intensity, and
voice quality characteristics). It is also unusual in including
ground-truth information indicated by subjects on a per-turn ba-
sis, as well as knowledge of when subjects were trying to de-
ceive the interviewer about how they had performed on the task
area as a whole.2 We term this distinction ‘Little Lie’ versus

1These fi gures include 196 segments from the introductory sections
of the interviews, which are labeled neither truth nor lie.

2For example, claiming to have scored well on the interactive task
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ie’ below. The unit divisions into Little Truth and Lie
ords (47,188/31,200), SUs (5709/3782), breath groups
2/7180), and turns (2230/1573). The Big Truth/Lie di-
s are words (22,435/52,894), SUs (2748/6184), breath
s (5362/11,966), and turns (1092/2358). So, for example,
are 2358 turns in which speakers are trying to persuade
erviewer they performed a task differently from their ac-
rformance, and 1573 turns in which they made factually
rate statements according to their self-report.

4. Feature Extraction and Analysis
us research and practitioner experience suggest that
ic/prosodic and lexico/syntactic cues may signal that
rs when speakers are deceptive. While some of these
re proposed as general, at least within a culture, there is
ome evidence from diverse findings for phenomena such
h variation and disfluency production [6] that there is con-
ble individual variation as well. Deceptive speakers, for
le, may raise or lower their pitch significantly from their
l speaking style. This variation is not surprising, since it
l known to characterize the conveyance of particular emo-
such as anger and frustration. Below we describe lexical
oustic/prosodic cues we have found in our corpus as a

. In Section 5 we will discuss speaker-dependent cues
e have explored.

exical Cues to Deception

often been noted in the literature and by practitioners
eakers who intend to deceive have different patterns of

usage than speakers who are telling the truth ([13], [16],
thus, analysis of lexical content can be used to predict

er or not a speaker is being deceptive or truthful. We
erformed lexical analysis of the CSC corpus using a lexi-

tegorization program, Linguistic Inquiry and Word Count
) ([15]). This program classifies words in a text accord-
textual, semantic, and syntactic categories shown to be

nt for predicting subjects’ deceptive intent (e.g., positive-
n words, words denoting cognitive activity, prepositions,

uns). Of the 68 LIWC categories examined, preliminary
suggest that the presence of positive emotion words is

st indicator of deception; deceptive speech has a greater
rtion of positive emotion words than does truthful speech
0074). Other categories which also appeared promising
ill require further analysis are those of word count and
l items relating to causation.
nother claim in the literature is that FILLED PAUSES (e.g.
) signal discomfort with a topic or signal the beginning of
ptive utterance [19, 20]. Our corpus contains 3614 filled
. Surprisingly, they correlate more strongly with truth-
n with deceptive speech in the Little Lie/Truth condition,
2(1, N = 78, 396) = 26.03, p = .0001. This may be

tent with suggestions by practitioners [17] that deceptive
is more careful or planned. In the Big Lie/Truth condi-

e difference is not significant.
nother tool for lexical analysis that we have used focuses

emotive content of speech, a feature that our early ex-
ents with LIWC have suggested is a promising one for
tion detection. This second tool is Whissell’s Dictionary
ect in Language (DAL) [21]. Its focus is more narrow
IWC in that it only addresses the emotional connotation

(false), the subject might report her years of having played var-
sketball (true) as supporting evidence.



of words along the three dimensions of pleasantness, activation,
and imagery. The dictionary assigns ratings along these dimen-
sions, using a continuous scale that ranges from 1 to 3 (deter-
mined by human judgment), rather than classifying entries cat-
egorically, as is done in LIWC. With 8742 entries, which were
determined by general corpus frequency, it is designed to cover
about 90% of an average English text.

Based on the premise that different emotional states experi-
enced during deceptive vs. truthful speech are reflected in word
choice, we investigated the distribution of DAL scores calcu-
lated for the three dimensions. Preliminary findings appear to
point to pleasantness as the most promising factor in predict-
ing deception. Considering DAL scores on a per-SU basis, we
have found that the minimum pleasantness score per SU appears
to be predictive of deception. Specifically, for each one unit in-
crease in minimum pleasantness score an utterance is 1.20 times
more likely to be deceptive (p = .001). When controlling for SU
length, for each one unit increase in the average pleasantness
score, an utterance is 1.29 times more likely to be deceptive (p
= .001) and for each one unit increase in the pleasantness stan-
dard deviation, an utterance is 54% less likely to be deceptive
(p = 0). A somewhat weaker finding is that for each one unit
increase in maximum pleasantness score, an utterance is 23%
less likely to be deceptive (p = .085). No significant effect was
found for the imagery or activation dimensions.

4.2. Acoustic and Prosodic Features

Observations in the literature suggest that pitch, energy, speak-
ing rate, and other stylistic factors (e.g. “muffled” voice) vary
when speakers deceive. Our features attempt to capture this
variation as well as to explore other potential cues. We consider
wide range of potential acoustic and prosodic features, taking
advantage of tools available from automatic speech recogni-
tion, to extract and model features including durational, paus-
ing, intonational, and loudness, associated with multiple time
scales, from a few milliseconds to an entire speaker turn. Fea-
tures are automatically normalized, taking into account long-
term speaker-specific habits as well as segmental context.

To extract these features, the speech was first segmented
into SUs by chopping at punctuation marks (ellipses, peri-
ods and question marks) in the hand-transcribed corpus. For
each SU, we computed roughly 150 prosodic features involv-
ing pitch, energy, and duration patterns. Pitch and energy
were obtained from the ESPS/Waves pitch tracker get f0; du-
ration features were obtained via forced alignment of hand
transcripts using the SRI automatic speech recognition sys-
tem. Pitch features were computed from the voiced regions
in the SU, and were then used in one of three forms: raw,
median-filtered, or stylized using an approach that fits lin-
ear splines to the median-filtered pitch. From these pitch se-
quences we computed a large set of features, including maxi-
mum pitch, mean pitch, minimum pitch, range of pitch number
of frames that are rising/falling/doubled/halved/voiced, length
of the first/last slope, number of changes from fall to rise, and
value of first/last/average slope. Features were normalized by
five different approaches: no normalization, divide by the mean,
subtract the mean, and z-scores (subtract the mean and divide by
the standard deviation). Two basic energy features were com-
puted. The first was the raw energy in the SU and the second
was the raw energy only of the voiced regions. The second fea-
ture type was used in one of three forms: raw, median-filtered,
or stylized using the linear spline approach. From these values
we computed several derived features, including the maximum,
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, minimum energy, mean energy, and other features sim-
those just mentioned for pitch. Finally several duration

es were computed. The maximum and the average phone
on in the SU were first computed. They were then used
ither as raw values, normalized using speaker specific du-
s or normalized using durations computed from the whole
. The normalization was applied by dividing by the mean
tracting by the mean and dividing by the variance.

5. Machine Learning Experiments
ve performed machine learning experiments on lexical,
ic/prosodic, and speaker-dependent features, using the
r rule-induction classifier [4]. Experiments described be-
ere performed on the 9491 SUs in our corpus for which
ve Little Lie/Truth labels. The baseline error for this task,
we predict the majority class of true, is 39.8%. While
rature suggests that speakers vary in their styles of decep-

esults here pool all our data, although we will reconsider
r dependencies below. We divided the data 90%/10%

aining and test sets five times (with replacement), trained
former and tested on the latter, and then averaged the
for the numbers presented below.

e first examined the usefulness of the acoustic/prosodic
es described in Section 4.2 in distinguishing deceptive
on-deceptive speech. Results for our Acoustic/Prosodic

e-set averaged over our test sets were 38.5% error — only
y below the baseline. The rules which proved important
model included energy and f0 features.
e next considered the predictive power of lexical features,
ing some of those described in Section 4.1, and others de-
from prior descriptive analyses and practitioner observa-
as indicators of deceptive speech. Our Lexical feature-set
es simple part-of-speech and word features, such as the
ce of different types of pronouns, cue phrases, contrac-
verb tense, and particular phrases (e.g. “I did not”), all ob-
to vary importantly in Statement Analysis [1], and a sim-

g-of-words feature. We also looked at positive and nega-
otion words, as described in Section 4.1, for whether or

e utterance was a syntactic question or a question follow-
interviewer question, for the number of words repeated

the interviewer’s previous query, indicating hedging be-
[17], and for the presence of disfluencies (self-repairs or

pauses) or laughter in the phrase [20, 7, 17]. Averaged er-
er our five test sets was also around the baseline at 39.0%.
es used in the rule-sets produced from these experiments
ed the number of words repeated from the interviewer’s
s, verb tense, the presence of filled pauses, and the pres-
f the specific word ‘poor’ in the SU.
e next considered whether a combination of lexical and
ic features might perform better than either feature-set
Indeed, the error on the test set is reduced to 37.2% when

e all of the lexical and acoustic features described above.
ared to a baseline of 39.8% however, this improvement is
ther modest. In all of the rulesets produced in this experi-
the acoustic features dominate over the lexical markedly.
ecause of the intuitions among researchers and practition-
at deceptive speech exhibits a high degree of individual
on, we next considered a speaker-dependent feature-set,
this hypothesis. Our Speaker-Dependent feature-set in-
subject id, subject gender, and a number of subject-

dent ratios, designed to capture subjects’ lexical habits,
ing ratios of filled pauses in Little Lie and Little Truth
ions for a given speaker, and similar ratios of laughter



and cue phrase use, as well as the ratio of phrases containing
filled pauses to all phrases spoken by that speaker, and similar
ratios of laughter and cue phrase use. When we include this
feature-set with our Acoustic/Prosodic and Lexical feature-sets,
we do indeed see a considerable reduction in error, from 39.8%
to 33.6% averaged over the five test sets. Sample rule-sets from
these experiments show that speaker-dependent filled pause and
cue phrase ratios, alone or combined with acoustic energy and
pitch features, produce this reduction in error. These results
support the hypothesis that deceptive behavior in speech is an
individualized phenomenon.

6. Conclusion
In this paper we have described experiments in distinguish-
ing deceptive from non-deceptive speech in the CSC Corpus, a
data collection designed to elicit within-speaker deceptive and
non-deceptive speech. Preliminary analyses of this data indi-
cate several statistically significant differences between the two
classes of speech: differences in the use of positive emotion
words, of filled pauses, and in a pleasantness score calculated
using Whissel’s Dictionary of Affect. In pursuit of our pri-
mary goal of automatic modeling of deceptive speech, we have
also examined three feature-sets for use in machine learning
experiments, including acoustic/prosodic, lexical, and speaker-
dependent sets of features. While neither the acoustic/prosodic
nor the lexical feature sets currently perform much above the
baseline, their combination does exhibit improved performance.
The most dramatic improvement, however, comes with the ad-
dition of speaker-dependent features, which reduces the base-
line error by over 6%. Our future work will focus not only on
exploring new features, such as voice quality features and addi-
tional lexical features, but on developing clustering and feature-
selection techniques which can address the speaker-dependent
nature of deceptive speech.
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