
XFST2FSA:
Comparing Two Finite-State Toolboxes

Yael Cohen-Sygal and Shuly Wintner
Department of Computer Science

University of Haifa

July 30, 2005

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Introduction

Motivation: finite state techniques and toolboxes

The XFST2FSA compiler:

Compilation process
Problems and solutions

Comparison of XFST and FSA:

Usability
Performance

Conclusions and future work

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Motivation

Finite-state technology is widely considered to be the appropriate
means for describing the phonological and morphological
phenomena of natural languages

Descriptive power

Closure properties ⇒ modularity

Computational efficiency

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Motivation

Finite-state toolboxes:

Provide a language for extended regular expressions

Include a compiler from regular expressions to finite state
devices, automata and transducers

Include efficient implementations of algorithms for closure
properties, minimization, determinization, etc.

Implement special operators that are useful for linguistic
description.

Unfortunately, there are no standards for the syntax of extended
regular expression languages and switching from one toolbox to
another is a non-trivial task.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

XFST vs. FSA Utils

XFST FSA Utils

standard operators + +

advanced operators replacement
markup –

restriction

advanced methods compile-replace weighted networks
Flag diacritics Prolog predicates

visualization – +

availability proprietary free, open source

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

The XFST2FSA compiler

Motivation: finite state techniques and toolboxes

The XFST2FSA compiler:

Compilation process
problems and solutions

Comparison of XFST and FSA:

Usability
Performance

Conclusions and future work

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

The XFST2FSA compiler

XFST2FSA: a compiler which translates XFST grammars into
grammars in the language of FSA Utils

Strong parallelism between the languages

Certain constructs are harder to translate and require more
innovation, e.g., replacement, markup and restriction

We focus on the core of the finite state calculus: näıve
automata and transducers (no weights and advanced
methods).

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

! XFST grammar for describing English noun pluralization

! English vowels

define vowel a|e|i|o|u;

! Nouns lexicon

define noun {book}|{case}|{box}|{watch}|{glass}|{copy}|{guy};

! Suffix with s

define AddS noun []:[%+ s];

! If the noun ends with x, ch or s

define esException %+ -> e || x | [c h] |s _;

! If the noun ends with y precedded by non-vowel symbol

define yException [y %+] -> [i e] || \vowel _;

! Basic pluralization

define normal %+ -> [];

! The complete network

define plural AddS .o. esException .o. yException .o. normal;

regex plural;

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

%% This file contains the fsa code for the xfst code in exa1.xfst.

:- multifile macro/2.

:- multifile rx/2.

%% Load macros in macros.pl

:- ensure_loaded(macros).

:- user:bb_put(fsa_regex_cache:vowel,on).

:- user:bb_put(fsa_regex_cache:noun,on).

:- user:bb_put(fsa_regex_cache:AddS,on).

:- user:bb_put(fsa_regex_cache:esException,on).

:- user:bb_put(fsa_regex_cache:yException,on).

:- user:bb_put(fsa_regex_cache:normal,on).

:- user:bb_put(fsa_regex_cache:plural,on).

%% XFST grammar for describing English noun pluralization

%% English vowels

macro(vowel,{’a’ , ’e’ , ’i’ , ’o’, ’u’}).

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

%% Nouns lexicon

macro(noun,{[’b’,’o’,’o’,’k’,[]], [’c’,’a’,’s’,’e’,[]],

[’b’,’o’,’x’,[]], [’w’,’a’,’t’,’c’,’h’,[]],

[’g’,’l’,’a’,’s’,’s’,[]], [’c’,’o’,’p’,’y’,[]], [’g’,’u’,’y’,[]]}).

%% Suffix with s

macro(AddS,[’noun’,([]):(([’+’,’s’]))]).

%% If the noun ends with x, ch or s

macro(esException,cond_rep_or_or((’+’),(’e’),

({’x’ , ([’c’,’h’]),’s’}),([]))).

%% If the noun ends with y precedded by non-vowel symbol

macro(yException,cond_rep_or_or((([’y’,’+’])),(([’i’,’e’])),

(~ (’vowel’) & ?),([]))).

%% Basic pluralization

macro(normal,uncond_rep((’+’),([]))).

%% The complete network

macro(plural,(((’AddS’) o (’esException’)) o

(’yException’)) o (’normal’)).

macro(regex,’plural’).

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

! XFST grammar for Arabic nominative definite and indefinite nouns

! The lexicon - Arabic nouns

define noun {qammar} | {kitaab} | {%$ams} | {daftar};

! Indefinite nouns: add un suffix

define indefinite noun []:[u n];

! definite nouns: add ‘al prefix and u suffix

define definite []:[%‘ a l] noun []:[u];

! Assimilation: the ‘l’ in the prefix assimilates with the first

! letter of the noun when the consonant is $, d, etc.

define shAssim l -> %$ || .#. %‘ a _ %$;

define dAssim l -> d || .#. %‘ a _ d ;

define Arabic [definite .o. shAssim .o. dAssim] | [indefinite];

regex Arabic;

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

%% This file contains the fsa code for the xfst code in exa3.xfst.

:- multifile macro/2.

:- multifile rx/2.

%% Load macros in macros.pl

:- ensure_loaded(macros).

:- user:bb_put(fsa_regex_cache:noun,on).

:- user:bb_put(fsa_regex_cache:indefinite,on).

:- user:bb_put(fsa_regex_cache:definite,on).

:- user:bb_put(fsa_regex_cache:shAssimilation,on).

:- user:bb_put(fsa_regex_cache:dAssimilation,on).

:- user:bb_put(fsa_regex_cache:ArabicExample,on).

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

%% XFST grammar for Arabic nominative definite and indefinite nouns

%% The lexicon - Arabic nouns

macro(noun,{[’q’,’a’,’m’,’m’,’a’,’r’,[]] ,

[’k’,’i’,’t’,’a’,’a’,’b’,[]] ,

[’$’,’a’,’m’,’s’,[]],[’d’,’a’,’f’,’t’,’a’,’r’,[]]}).

%% Indefinite nouns: add un suffix

macro(indefinite,[’noun’,([]):(([’u’,’n’]))]).

%% definite nouns: add ‘al prefix and u suffix

macro(definite,[([]):(([’‘’ , ’a’,’l’])) , ’noun’,([]):((’u’))]).

%% Assimilation: the ‘l’ in the prefix ‘al assimilate with the first

%% letter of the noun when the consonant is $, d, etc.

macro(shAssim,cond_rep_or_or_start((’l’),(’$’),([’‘’,’a’]),(’$’))).

macro(dAssimi,cond_rep_or_or_start((’l’),(’d’),([’‘’,’a’]),(’d’))).

macro(ArabicExample,{(((’definite’) o (’shAssim’)) o

(’dAssim’)),(’indefinite’)}).

macro(regex,’ArabicExample’).

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation process

1 The XFST grammar is parsed, and a tree representing its
syntax is created

A specification of XFST syntax is needed...
but is unavailable

2 Traversing the tree, the equivalent FSA grammar is generated

A specification of XFST semantics is needed...
but is not fully available

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: basic operators

XFST syntax FSA syntax Meaning

A* A* Kleene star
A | B {A,B} union
A & B A & B intersection
A - B A - B A minus B
A/B ignore(A,B) A ignoring B
$A $A containment
A B [A,B] concatenation
A^n does not exist n-ary concatenation
A.x.B A x B crossproduct
A.o.B A o B composition
(A) A^ optionality
[] () precedence
R.i invert(R) regular relation inverse

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

Include replacement, markup and restriction

Have no equivalents in FSA, and therefore have to be
implemented from scratch

This was done using existing documentation.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

Problem 1: not all operators are fully documented

The operator A@<-B (obligatory, lower to upper, left to right,
longest match replacement) is not documented. However:

The operator A<-B (obligatory, lower to upper replacement)
is defined as [B->A].i (where B->A is the obligatory, upper
to lower replacement of the language B by the language A).

Conclusion: A@<-B is constructed as [B@->A].i (where
[B@->A] is the obligatory, upper to lower, left to right, longest
match replacement of the language B by the language A).

The construction of the operator B@->A is documented.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

Problem 2: for some of the documented operators, the published
algorithms are erroneous in some special cases

Consider the replace operator A->B || L _ R (conditional
replacement of the language A by the language B, in the
context of L on the left and R on the right side, where both
contexts are on the upper side).

Consider a rule of the form A->B || _ ?, where A and B are
some regular expressions denoting languages.

This rule states that any member of the language A on the
upper side is replaced by all members of the language B on
the lower side when the upper side member is not followed by
the end of the string on which the rule operates.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

For example, the rule a->b || _ ? is expected to generate
the following automaton:

Compilation process – advanced operators

Example (Cont.):

• For example, the rule a->b || _ ? is expected to generate the following
automaton:

a

?, b

a : b

a
a : b

?, b

• However, a direct implementation of the documented algorithms always yields a
network accepting the empty language, independently of the way A and B are
defi ned.

14

However, a direct implementation of the documented
algorithms always yields a network accepting the empty
language, independently of the way A and B are defined.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

Problem 3: in some cases XFST produces networks that are
somewhat different from the ones in the literature: the relations
(as sets) are equal but the resulting networks (as graphs) are not
isomorphic.
For example, consider the replace rule a->b || c _ d

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operatorsCompilation process – advanced operators

Example (Cont.): a->b || c _ d

?, a, b, d c

?, b, d

c

?, a, b a : ba

c

d

?, a, b, d c

?, b, d

c

?, a, b a : ba

c

d

a : ε

ε : b

XFST network Self-implemented network
(by the documented algorithms)

16

Compilation process – advanced operators

Example (Cont.): a->b || c _ d

?, a, b, d c

?, b, d

c

?, a, b a : ba

c

d

?, a, b, d c

?, b, d

c

?, a, b a : ba

c

d

a : ε

ε : b

XFST network Self-implemented network
(by the documented algorithms)

16

XFST network Self-implemented network
(by the documented algorithms)

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

In some cases multiple accepting paths are obtained

This is probably a result of adding ε-self-loops in order to deal
correctly with ε-symbols in composition

The multiple paths can then be removed using filters

Presumably, XFST implements this strategy

This solution requires direct access to the underlying network,
and cannot be applied at the level of the regular expression
language.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Validation of correctness

Ideally: check that the obtained FSA networks are equivalent
to the XFST ones from which they were generated

Unfortunately, this is only possible for very small networks

Therefore, validation strategy:

Check each operator independently for several instances
Test the compiler on a large-scale grammar: HAMSAH
Exhaustive tests produced the same outputs for both networks.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Comparison

Motivation: finite state techniques and toolboxes

The XFST2FSA compiler:

Compilation process
problems and solutions

Comparison of XFST and FSA:

Usability
Performance

Conclusions and future work

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Comparison of XFST and FSA: Usability

XFST FSA

display formats text (limited) text
GUI

save as binary binary, text, PostScript

Code generation – C, C++, Java, Prolog

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Comparison of XFST and FSA: performance

A true comparison of the two systems should compare two
different grammars, each designed specifically for one of the
two toolboxes, yielding the same comprehensive network

However, as such grammars are not available, we compare the
two toolboxes using a grammar designed and implemented in
XFST and compiled into FSA.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Comparison of XFST and FSA: performance

HAMSAH:

Approximately 2 million states and 2.2 million arcs

Hebrew adjectives: approximately 100,000 states and 120,000
arcs

Hebrew nouns: approximately 700,000 states and 950,000
arcs.

Each network created by composing a series of rules over a
large-scale lexicon

Significant usage of replace rules and compositions

Grammars compiled and executed on a 64-bit computer with
16Gb of memory.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Comparison of XFST and FSA: performance

FSA XFST
Time Space Time Space

Full 13h 43m 11Gb 27m 41s 3Gb
Compilation nouns 2h 29m 11m 4s

adjectives 14m 56s 8m 21s
Full, 350 words – 5s

Analysis nouns, 120 1h 50m 0.17s
adjectives, 50 2m 34s 0.17s

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Conclusion

Motivation: finite state techniques and toolboxes

The XFST2FSA compiler:

Compilation process
problems and solutions

Comparison of XFST and FSA:

Usability
Performance

Conclusions and future work

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Conclusion

Contributions:

Facilitating the use of grammars developed with XFST on
publicly available systems

Providing a closer insight into the theoretical algorithms
which XFST is based on

A full implementation, in FSA, of most of XFST’s operators

Investigation of two similar, but different systems, facilitating
a comparison on compatible benchmarks.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Future work

Construct more XFST operators in FSA

Locate more boundary cases in replace rules

Convert XFST grammars into other formalisms (FSM)

FSA2XFST...

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

