
 1

Abstract

Current networks require ad-hoc operating
procedures by expert administrators to handle
changes. These configuration management operations
are costly and error prone. Active networks[2, 3]
involve particularly fast dynamics of change that
cannot depend on operators and must be automated.
This paper describes an architecture called NESTOR
that seeks to replace labor-intensive configuration
management with one that is automated and software-
intensive. Network element configuration state is
represented in a unified object-relationship model.
Management is automated via policy rules that control
change propagation across model objects.
Configuration constraints assure the consistency of
model transactions. Model objects are stored in a
distributed repository supporting atomicity and
recovery of configuration change transactions.
Element adapters are responsible for populating the
repository with configuration objects, and for pushing
committed changes to the underlying network
elements. NESTOR has been implemented in two
complementary versions and is now being applied to
automate several configuration management scenarios
of increasing complexity, with encouraging results.

Index Terms -- configuration management, network
modeling, change propagation, polic, self-organizing
systems, active networks, directory services.

1 INTRODUCTION

Current networks require ad-hoc operating procedures
by expert administrators to handle changes -- from
installing or removing network elements, to reconfiguring
them. These configuration change management operations
are costly, error prone, can result in unpredictable failures
and inefficiencies, may involve costly recovery and limit
the speed of network change dynamics. Active

* Research sponsored by DARPA contract DABT63-96-C-0088
† Parts of this paper have been previously published in [1]

networks[2, 3] involve particularly fast dynamics of
changing element configurations due to the downloading
and executing of Active Applications (AAs). An AA
needs to configure its own parameters, and change those
of its Execution Environment (EEs); the EE, in turn, may
have to change node configuration parameters. These
changes cannot depend on operators and must be
automated as part of launching an AA. Furthermore, the
software that automates configuration change management
may need to be dynamically updated as new AAs are
loaded and executed; it is therefore active itself and
requires specialized configuration management AAs. In
general, a self-configuring network is one that automates
configuration management. This paper describes self-
configuring network technologies developed by the
NESTOR project[4].

Several factors make the design of self-configuring
networks challenging:

1. The change propagation problem: A configuration
management task typically requires changes in multiple
interdependent elements. For example, provisioning a
frame relay virtual circuit to support an IP link between
two routers requires configuration changes in underlying
multiplexers, frame relay switches and routers. Self-
configuring software needs to:

• Recognize these different elements, their
relationships and configuration states – network
topology discovery;

• Represent the knowledge of the sequence of changes
in these elements – change propagation rules;

• Effect the changes in each element through
heterogeneous widely varying proprietary
instrumentations, configuration tools and operational
procedures; and coordinate these changes with those
caused by built-in element procedures – handle
element heterogeneity and spontaneous changes; and

• Enable recovery and undoing of changes, in case of
failures – recoverability.

 2. The configuration policy problem: Configuration
changes may lead to inconsistent configuration states
resulting in operational failures and inefficiencies. For

Towards Self-Configuring Networks*†

Alexander V. Konstantinou, Danilo Florissi, Yechiam Yemini
 DCC Lab, Computer Science Department, Columbia University

{akonstan, df, yemini}@cs.columbia.edu

 2

example, consider an active network AA to prevent denial-
of-service (DOS) attack through traffic filtering. This AA
requires configuration of the respective EE, the node OS
and the network hardware classifiers. A mismatched
configuration could lead to inefficient allocation of
underlying resources, turning the active node into a traffic
bottleneck, potentially increasing the damage of a DOS
attack. An inconsistent configuration may cause not only
traffic loss, but also intermittent crash of the node.
Therefore, a self-configuring network needs to:

• Represent policy knowledge about configuration
consistency relationships – represent policy
constraints

• Enforce these policy constraints to assure consistent
configurations – enforce policies

• Enable organizations to program policy constraints to
effect their operational policies – programmable
policies

3. The composition problem: A self-configuring
network needs to adapt the change propagation rules and
policy constraints to the network configuration. It must
compose these rules and constraints from component
change propagation rules and policy constraints associated
with individual elements. For example, when an IP link is
provisioned over a frame-relay VC, the change
propagation rules and policies associated with underlying
multiplexers, frame relay switches and routers must be
composed to effect the configuration changes associated
with these elements.

Figure 1: Architecture of a Self-Configuring Network

These problems suggest a four-layered architectural
organization of self-configuring networks as depicted in
Figure 1. Applications that access or activate self-
configuration tasks execute at the top layer. The Self-
Configuration Management layer maintains and applies
change propagation rules and policy constraints to the
Configuration Model. The Configuration Modeling layer
consists of software to discover and maintain network
topology and element configuration data. The
Configuration Modeling layer uses adapters to monitor
and control the underlying network elements. At the
lowest layer reside the Network Elements to be managed.

In a typical scenario, say provisioning a frame-relay
VC between IP routers, a provisioning application

activates the Self-Configuration Management layer
software. This software computes and affects the
respective change propagation rules on the Configuration
Model, and enforces policy constraints. The Self-
Configuration Management software propagates changes
to the Configuration Model of the underlying multiplexers,
frame relay switches and routers. The Self-Configuration
Management layer performs composition as follows.
When an element is discovered, its model is instantiated
by the Configuration Modeling Layer, which maintains the
topology of its relationships with other elements. The
change propagation rules and policy constraints associated
with this element are then compiled with change
propagation and constraints of related elements. These
change propagation rules and policy constraints are then
affected whenever a respective change applies to the
element. Committed changes to the Configuration
Modeling layer are then pushed to the actual network
elements through adapters.

For example, consider an active network using an AA
for protection against denial-of-service (DOS) attack.
When the Configuration Modeling Layer discovers a new
source of traffic:

1. The model is updated to indicate the relationship of
this new source to the active nodes in the network;

2. The DOS protection application, at the Application
layer, may dispatch AAs to several of these active
nodes to filter traffic from the new source;

3. This results in updates to the Configuration Model to
reflect these new AAs;

4. When these AAs are installed at the respective active
nodes, the change propagation rules of the Self-
configuration Management layer are activated to
configure the EEs and node resources;

5. Similarly, policy constraints are enforced to assure
that the AA, EE and node configurations are
consistent with operations policies;

6. Once this configuration change transaction is
completed, the Configuration Modeling layer affects
these changes to network elements and activates the
AAs.

Notice that the architectural model enables multiple
approaches to organize such active DOS protection. It is
possible that the control logic of the protection AAs
resides entirely with the active DOS protection
applications, and the Self-Configuration layer is only used
to propagate configuration changes and enforce operations
policies; this is depicted in Figure 2. Alternatively, it is
possible that the logic of the active DOS protection
entirely resides with the Self-Configuration Management
layer. Under this model, the deployment of DOS-
protection-AAs is controlled by change propagation rules

Applications Layer

Self-Configuration Management Layer

Configuration Modeling Layer

Network Elements

 3

and en
new so
feasibl

In
discus
respec
system
above.

NE

challen
a. H

d
m
b

b. H
r
th

c. H
o

d. H
b
u

NE
networ

• A
a
o

• S
th
m

• D
n
w

• A
c

automatically without complex actions by operations
administrators.

• Operations administration becomes scalable, with
operations administration staff and expertise
leveraged to manage a network of any size through
programmed self-configuring configuration
management rules and policies.

The rest of the paper is organized as follows. Sections
2 and 3 introduce the role of data and semantic modeling
in network management. Section 4 presents the NESTOR,
architecture and illustrates its operations through an
example. Section 5 discusses the prototype NESTOR
implementation, followed by Section 6 on related work,
Section 7 on future work. The paper concludes with a

Applications
Layer

AA AA

Discovery

Active DOS
Protections

AA

AA EE Node

Change rules

New Traffic
Source

Self-Config.
Mgmt Layer

Applications
Layer

Modeling
Layer

Network
Element AA AA

F
igure 2: Self-configuring Active Protection
Against Denial-of-Service Attacks
forced by policy constraints whenever a suspicious
urce of traffic is discovered. Other architectures are
e.
what follows we proceed with a more detailed

sion of a self-configuring network architecture and
tive technologies, developed by the NESTOR
 to implement the architectural strategy introduced

STOR is concerned with several technical
ges:
ow to unify access to heterogeneous configuration
atabases and repositories so that configuration
anagement tasks can be programmed and executed

y software rather than manually,
ow to code knowledge of configuration consistency

ules in a composable form, and enforce these rules
rough configuration changes,
ow to support rollback and/or recovery of
perational configuration states,
ow to detect and handle emergent inconsistencies
etween configuration states and states controlled by
nderlying built-in procedures.
STOR provides comprehensive self-configuring
k software:
ll configuration changes can be systematically

utomated reducing the complexity, time and cost of
perations administration,
ystem integrity and configuration consistency
rough changes can be assured, unlike current
anual operations,
ynamic changes can be entirely automated; a
etwork can change subject to very rapid dynamics,
hich is not possible with current manual operations,
 network can be restored to a consistent

onfiguration and recover from failure modes

summary section.

2 CONFIGURATION DATA MODELING

The goal of configuration modeling is to provide a
unified view of all data and knowledge needed to support
automated configuration management. Currently,
configuration information is spread across different
element-specific repositories. Relationships between
different configuration elements are implicit and require
the development of special tools to be discovered.
Gathering, correlating, and visualizing a system-wide
picture of configuration is a daunting and sometimes
impossible task. Different repositories contain replicated
and interdependent configuration information, which can
often be inconsistent. Unlike network monitoring, which
has benefited from the wide adoption of the Simple
Network Management Protocol (SNMP)[5], there has
been no widely accepted standard for network
configuration. Each repository employs a different and
vendor-specific mechanism for accessing and
manipulating configuration information. Configuration
modeling addresses these issues by providing a unified
semantic layer enabling the creation of portable, vendor-
independent configuration tools.

Configuration models in the NESTOR system are
expressed using the Resource Definition Language (RDL).
RDL is an object-oriented interface language that supports
the specification of resources as objects and their
relationships. Object-orientation provides important
clustering of configuration and behavior through interface
inheritance and hierarchy mechanisms. Interfaces define
generic behaviors of objects and inheritance supports
abstraction of common features. Relationships between
objects capture interdependencies through hierarchical
structures, as well as of distribution. Finally, objects
encapsulate the methods for accessing the underlying
element instrumentation. Object-based approaches have

 4

been previously applied in modeling networks in various
systems including NETMATE[6], SMARTS InCharge[7],
CMIP/GDMO[8], Dolphin[9] and DEN[10]/MOF[11].

The current implementation of RDL is a subset of
MODEL[12, 13], a language for modeling network
systems for event correlation. MODEL extends the
CORBA Interface Definition Language (IDL)[14] with
support for instrumented and computed attributes,
declaration of problems (events), and association
relationships for modeling event propagation.
Instrumented attributes are bound to values stored in the
managed element, whereas computed attributes are bound
to an expression that is evaluated dynamically.

interface anets::ActiveNode

: nestor::system::NetworkedSystem {
readonly attribute String nodeOSVersion;
relationshipset serves,

ExecutionEnvironment,
servedBy;

}
interface anets::ExecutionEnvironment

: nestor::system::Process {
attribute int anepID "Anet ID";
relationship servedBy, ActiveNode,

serves;
relationshipset serves,

ActiveApplication,
servedBy;

}
interface anets::ActiveApplication { … }

Figure 3: Resource Definition Language Examples

Figure 3 depicts fragments of the model of an Active
Network[15] node expressed in RDL. Interfaces are pure
abstract classes, which may be scoped in a package.
Packages are a requirement in an environment where
models are likely to be imported from external sources,
such as vendors or standards bodies. Interface definitions
may include attribute, and relationship declarations. In the
ActiveNode example, the first statement declares a
read-only string attribute named “nodeOSVersion”,
which stores the version of the Active Networks
NodeOS[16] specification supported by this Active Node.
The second statement declares a to-many association
between this interface and classes implementing the
interface ExecutionEnvironment. Associations are
declared by naming both ends (role names), the type of the
association class, and the multiplicity of the association
(to-one, to-set, or to-sequence). In the example, the
association between ActiveNode and Execution
Environment is specified as one-to-many. The model
reflects the fact that objects of type ActiveNode may
host one or more Active Execution Environments (EEs).
The relationship servedBy goes in the other direction,
from an ExecutionEnvironment to an Active

Node. The “nestor::system” scope in the
declaration of ActiveNode denotes the NETMATE[6]
schema, which serves as the base classes for the
construction of NESTOR classes.

These resource models constructed using RDL
incorporate essential information for self-management and
self-organization that is otherwise hidden in obscure
operational manuals, requires complex discovery
mechanisms, or is just unavailable. The models enable
simple, uniform, and secure access and manipulation of
resource information. For example, consider the hostname
attribute of the ActiveNode interface inherited from
NetworkedSystem (omitted for brevity). The method
for accessing and updating the name of a host is platform-
dependent. Moreover, it may involve multiple operations,
such as updating a configuration file and then invoking a
system utility to update the operating system data
structures. In some cases, the modeled element may not
even support a name attribute, and the value may be stored
in third-party repository. By viewing configuration
through the unified model, all this complexity can be
hidden, enabling managers to focus on the task at hand.

3 CONFIGURATION SEMANTIC
MODELING

While object models capture structure and
relationships, via inheritance and associations, they do not
make any statements on the values of the modeled objects.
For example, the anepID[17] attribute definition in
Execution Environment does not state any
restrictions on the value of the attribute in one instance in
relation to other instances. Similarly, an Active
Application may need to configure itself to transmit IP
datagrams that do not exceed the maximum transfer unit of
the local link-layer interface. In the NESTOR system, such
restrictions and relations are respectively expressed as
constraints and propagation rules on the values of one or
more objects.

Constraints on configuration objects and relationships
enrich the model, and can be used to automate detection
and reaction to inconsistencies. For example, constraints
may express that a specific anepID has been reserved to
a specific EE as identified by the signature on the EE
executable. An attempt to deploy an EE registering the
same anepID that has not been signed by the matching
principal would be rejected and rolled-back.

The Constraint Definition Language (CDL) is a
declarative expression language for stating assertions over
the valid values of objects in RDL. As an inherent
language feature, statements in CDL cannot modify any
attributes or relationships in the model and do not cause

 5

side effects. Constraints may be composed from
restrictions on the configuration of component devices or
services. E.g., “all user home directories must be backed
up”. This statement applies to two services that are
usually separate, a network information service for user
accounts, and the configuration of network backup
services. Another example is “the IP interface
configuration of every node connected to a switch must
match the VLAN configuration active on its port”.

The current implementation of CDL is based on the
Object Constraint Language (OCL)[14]. OCL was
developed as part of the Unified Modeling Language
(UML) standard in order to formally define the semantics
of the UML. Unlike OCL statements, CDL separates the
object model from the constraint definitions for two
reasons. First, the most interesting constraints are the ones
that make statements about the configuration of multiple
RDL interfaces. In such cases, it may not be clear which
object should “own” the constraint. For example, the
aforementioned backup constraint is as much a property of
the user account as of the backup service. Second, the
same manager will not always perform model authoring
and constraint authoring. Device and service models will
usually be obtained from the vendor, or may be bundled in
some standard model package. Attaching domain-specific
constraints to RDL interfaces will limit the sharing of
these models.

nestor::system::NetworkedSystem::->allInstances
->select(h | h.hostname <> null)
->forAll(h1, h2 | h1 <> h2 implies

h1.hostname <> h2.hostname);

Figure 4: Constraint Definition Language Example

A simple CDL constraint is shown in Figure 4. The
constraint states that for all object instances implementing
the RDL interface nestor::system::Networked
System, those who have a non-null name should all have
different names. In the OCL syntax, the right arrow
operator (->) operates on collections of objects (sets,
bags, and sequences). The allInstances operator
collects over all classes implementing a particular
interface. Select is an operator that filters out elements in
a collection that do not satisfy the Boolean expression
condition. In this case, select will remove all IP hosts that
have a null name. Finally, the forAll operator states
that for every pair of IP host instances, the following
Boolean expression on the remaining IP host instances
must be valid: “if two host objects are different (different
instances), then their names must be different”.

The Policy Definition Language (PDL) is used to
assign values to configuration model objects based on the

configuration of related objects. For example, the
maximum datagram size of an Active Application may be
set to the minimum MTU of the Active Node's link-layer
interfaces. In the NESTOR system, such dependencies are
expressed as acyclic spreadsheet-style change propagation
rules. PDL rules use the same OCL syntax used by CPL
constraints, only the result does not have to be a Boolean
value and must be assigned to an attribute of the object
instance selected. A PDL rule example is shown below in
Figure 5. This rule states that the maxDatagramBytes
configuration attribute of a particular Active Application
must be set to the minimum of the Active Node's non-local
(excludes loop-back) interfaces. Note the navigation from
the AA to the enclosing EE using the servedBy relation
and then the enclosing Active Node to obtain the list of
link interfaces. More complex policies can be expressed.
For example, if the AA has a concept of a peer, its
maxDatagramBytes attribute may be set to the
minimum MTU on the path to the peer. It is possible to
discover this minimum MTU value by navigating the
relations in the unified configuration model.

columbia::MyActiveApplication->allInstances
->assign(a | a.maxDatagramBytes,

min(a.servedBy.servedBy.linkInterfaces
->select(i |

not i.isLoopBack).mtu))

Figure 5: Policy Definition Language (PDL) Example

4 NESTOR ARCHITECTURE AND
OPERATIONS

The overall architecture of the NESTOR system is
depicted in Figure 6. In the top layer, self-configuring
Applications access a unified semantic configuration
model to discover the configuration of their environment
and to export their own configuration state, operational
constraints, and change propagation rules. Examples of
such applications include Active Networks applications
and Execution Environments, network and systems
management utilities, intrusion and denial of service
detection applications, as well as topology aware
applications such as peer-to-peer applications. Systems
administrators may interactively access the configuration
repository through graphical or text-based user interface
tools, or they may execute scripts or programs tailored
specifically for a particular task. NESTOR Applications
access the repository using the Directory Access Protocol
(DAP), a remote interface permitting applications to
execute either locally or remotely.

 6

NESTOR uses protocol proxies to interface with
legacy dynamic configuration protocols. Existing
configuration servers, such as Dynamic Host
Configuration Protocol (DHCP)[18] servers, are replaced
by NESTOR protocol proxies. Clients connecting to the
proxy server continue to receive the same service with the
difference that changes are effected through the NESTOR
repository. In the DHCP example, it is the NESTOR
DHCP proxy server which picks up the host discover
request. The proxy server then initiates a repository
transaction, looks up the IpLeasing instance
responsible for the host’s network and invokes the lease
method. Depending on the implementation of the
IpLeasing object, the request may be handled by
contacting a real DHCP server, or by implementing the IP
leasing policy internally. Before returning the IP leased
address (if one was found) the IpLeasing object will
update its map of unique client identifiers (commonly
Ethernet hardware addresses) to addresses. Once the lease
method returns, the DHCP proxy will attempt to commit
the update transaction. If no constraints have been
violated, the transaction will be successfully committed,
and the DHCP proxy will return the leased address to the
requesting host. In most cases, however, the configuration
changes effected by the IpLeasing service will need to
be propagated within the repository. This can be by
adding a propagation rule from the current address of an
IP interface and its permanent name into the model of the
matching DNS address record.

The Directory Management Protocol (DMP) is used
between NESTOR Resource Directory Servers to support
distribution, replication, and caching of resource objects.
Similarly to directory services, NESTOR offers mission-

critical services that must be available even in the face of
server or network failures. Distribution of NESTOR
services is also important for several reasons. (1)
Although similar repositories[7] used in event correlation
have been shown to scale well (to the order of hundreds of
thousands of objects), there is ultimately a limit to the
number of modeled objects that can be stored and
maintained in a single server. (2) The wide geographical
dispersion of some networks requires distribution for
timely response. (3) Finally, the breakdown of
administrative domains often forces the distribution of
services that may not be technically required otherwise.

The Self-Configuration Management layer consists of
a constraint and change propagation manager responsible
for authorizing changes in the model, maintaining
consistency through change propagation, and assuring that
the composition of the change propagation rules does not
lead to cyclical changes. The constraint and propagation
manager subscribes for changes in the model and has the
right to abort configuration transactions, or to effect
additional changes. Its actions are controlled by CPL
constraints and PDL rules. Applications may install
additional constraints and propagation rules; however,
additional rules may not create cycles in attribute
dependencies. The manager assures network configuration
consistency because configuration model changes are not
applied to the real world configuration repositories unless
all affected propagation rules have been evaluated and all
constraints are satisfied.

The Configuration Modeling layer is responsible for
maintaining the model and supporting the advanced model
operations. The Resource Directory Server (RDS)
maintains an object repository that stores and controls

F

Ethernet

SwitchRouter
Link Layer
Broadcast
Domain

Active
Execution

Environment

E E

Active
Node

Network
Element

Layer

Configuration
Modeling

Layer

Self-Configuration
Management

Layer

Applications
Layer

Host

ASP Linux CISCO Nortel TopologyAnetd

 Resource Directory Server
 (Configuration Model)

Transaction
Manager

Constraint & Propagation
Manager

commit/
abort

notify

join

subscribe

Remote
Manager

Active
Application

IpNode
String name

IpInterface
IPAddr addr

partO
f

Adapters

Auditing
Application

subscribe updatepost
model

DAP

DHCP
Protocol
Proxy
igure 6: NESTOR Architecture

 7

access to model object instances. Repository objects
reflect configuration settings at the real network elements
plus meta-information that is supplied or inferred from
multiple sources. For example, a model object
representing a network host may contain information
instrumented from the host, such as network interface
configuration, meta-information such as host ownership,
and values such as the host’s name which are replicated in
various repositories. The DAP interface provides
operations for creating, committing, and aborting
transactions, supports object queries, as well as operations
for creating, updating, and deleting objects.

The Protocol Adapter Layer provides instrumentation
for network elements that are not NESTOR-enabled.
Adapters are responsible for propagating information,
forward and backward, between the RDS repository and
the managed element or service. Use of protocol adapters
separates the task of mapping the unified model attributes
to the real element attributes, from the protocols realizing
that mapping. For example, the SNMP[5] adapter may be
used to simplify the implementation of an object
supporting the NetworkedSystem interface. Access
requests to host attributes can be translated into SNMP
GET/SET operations. The host’s name attribute, for
instance, may be mapped to the SNMP
System.sysName object. Multiple adapters may be
used in instrumenting the attributes and methods of a
particular object. Unfortunately, in some cases, especially
at the network layer, protocols do not support remote
access to all configuration parameters. For example, the
original DNS protocol did not provide an update operation
and relied on an implementation specific configuration
(usually performed by editing the zone file). In such
cases, adapters have to be customized for the particular
service implementation, taking into account the host
operating system and particular service version. NESTOR
supports adapters of the following standard protocols:
SNMP, DNS, DHCP, LDAP[19], NIS/NIS+[20],
NDS[21] and Windows NT Active Directory[22].

4.1 EXAMPLE: ANETD MANAGEMENT

The operations of NESTOR will be illustrated through
an example of managing the Active Networks Daemon
(Anetd)[23]. Anetd is currently being used to deploy and
manage EEs on the DARPA ABONE[24].

The first step in managing a resource in NESTOR is to
identify the relevant model classes. In the case of Anetd, a
class will be associated with each Anetd process, and will
be related to processes (EEs) owned by ABONE users,
and executing on the Internet ABONE host. The standard
NESTOR model contains class abstractions for Internet

hosts, users and processes. The Anetd-specific classes will
be expressed in the Resource Definition Language (RDL)
as extensions to the base model and the AN-related classes
shown in Figure 3. In this example, fragments of two
interfaces are shown in Figure 7, one for modeling an
Anetd process (Anetd), and another for the EEs hosted
(AnetdProcess).

interface anetd::Anetd

: system::Application {
attribute String version;
attribute boolean isPrimary;
relationshipset manages, AnetdProcess,

managedBy;
// Also: port, javaVM, childPort, …
}
interface anetd::AnetdProcess

: anets::ExecutionEnvironment {
relationship managedBy, Anetd, manages;
attribute boolean isPermanent;
// Inherits: anepID, servedBy(Node),
// serves(AA)
// Also: filePreloadURL, workDirectory
// isAutoKill, standardInputFile, …

}

Figure 7: Anetd daemon and process RDL definitions

Note that the service provided by Anetd is partially,
but not fully, that of the Node OS. Therefore, instead of
extending the anets::ActiveNode class we establish
a new "manage" relation between an AnetdProcess
and an Anetd instance. An AnetdProcess object
inherits the generic Execution Environment
functions, and extends them with Anetd-specific
parameters, such as the work directory, and whether the
process is permanent (persistent across restarts).

anets::ActiveNode->allInstances
->collect(an | an.servesApplications)
->select(app: System::Application |

app.oclIsKindOf(anetd::Anetd))
->select(ad : anetd::Anetd | ad.isPrimary)
->size = 1

Figure 8: Exactly one primary Anetd per Active Node
(CDL constraint)

Once the RDL data model has been designed, the
model author may add intrinsic constraints and
propagation rules expressed in the Constraint Definition
Language (CDL) and the Propagation Definition
Language (PDL). For example, it may be stated that there
should be exactly one primary Anetd within each
ActiveNode. Similarly, a propagation rule may state
that if the Java installation changes in the ActiveNode,
this should be propagated to the configuration of the local
Anetd objects. A CDL example for the former constraint
is shown in Figure 8. It states that for each instance of

 8

ActiveNode, identify the Anetd processes it is hosting,
and assert that exactly one of these processes is primary.

In case of failure of the primary Anetd, the above
constraint will be violated (size = 0). NESTOR enables
automated recovery from such failures via a propagation
rule that restarts the failed Anetd daemon, or assigns a
new primary. The propagation rule shown in Figure 9
performs the latter by selecting the process with the lowest
port number to act as primary. The rule operates by
identifying the Anetd objects in each ActiveNode,
sorting them by port number, and iteratively assigning true
to the first object's isPrimary attribute, and false to the
others.

It is also possible, that the failure of a non-primary
Anetd process will break the forwarding chain. Recovery
from such inconsistent states can also be automated via a
propagation rule. The propagation rule shown in Figure 10
sorts the list of Anetd objects in reverse and sets the
childPort attribute of each object to that of the
previous one (the tail is assigned port 0). Note that both
rules shown must agree on the election process, that is,
that the sort is based on the port number. However, the
order in which the rules are applied is not important since
there are no cyclical dependencies. The NESTOR
propagation manager checks for cyclical definitions and
rejects such rules, similarly to spreadsheets.

anets::ActiveNode->allInstances
->collect(an | an.servesApplications)
->select(app |

app.oclIsKindOf(anetd::Anetd))
->sortBy(ad: anetd::Anetd |

ad.port, int.less-than)
->iterate(ad: anetd:Anetd;

count: int = 0 |
if (count = 0)
assign(ad.isPrimary, true,

count + 1)
else
assign(ad.isPrimary, false,

count + 1)
endif

Figure 9: Primary Election (PDL propagation rules)

anets::ActiveNode->allInstances
->collect(an | an.servesApplications)
->select(app |

app.oclIsKindOf(anetd::Anetd))
->sortBy(ad | ad.port, int.greater-than)
->iterate(ad : anetd::Anetd;

port : int = 0 |
assign(ad.childPort, port, ad.port))

Figure 10: Forwarding chain (PDL propagation rules)

Once the data and semantic models have been defined,
an adapter must be provided that will instrument Anetd

processes as objects in the repository. In particular, this
adapter must support bi-directional instrumentation, with
read as well as write capabilities.

The adapter functionality may be integrated into the
Anetd source code, by embedding NESTOR directory
management API functions, or may be provided externally
via some polling or publish-subscribe mechanism. By
embedding the NESTOR model into the service it is
possible to obtain fast response to changes, with the lowest
polling overhead. It is also possible to avoid storing any
persistent configuration data by taking advantage of the
NESTOR repository persistence capabilities. In many
cases, such as proprietary hardware and software, it may
not be possible to modify the service itself. In such cases,
the adapter must be executed as an external process that
polls and sets the configuration of the service using some
external protocol. Examples include adapters using
protocols such as SNMP and LDAP, those simulating
terminal input such as CISCO IOS adapters, and those
parsing and modifying configuration files, such as an
HTTPd adapter.

The Anetd adapter developed in this example will be
external and will utilize the Anetd SC[17] control
protocol. The protocol supports remote polling and
configuration of Anetd processes. Ideally, the adapter will
provide its own native implementation of the SC protocol
client. An alternative would be to use the existing Anetd
distribution SC binary client as a system process and then
read its console text output. In either case, the external
daemon must be able to send SC queries and parse their
response so that they can be mapped to the appropriate
NESTOR model class instances.

 At startup time, the adapter will have to discover the
NESTOR repository (RDS) where the objects will be
instantiated. In the current NESTOR system, the location
of the repository may be either configured, or discovered
using Jini[25] discovery. The choice of which repository
to use is an open issue that is currently being investigated.

Once the repository has been discovered, the adapter
will first have to look for existing objects that may fully,
or partially represent the managed resources. For example,
the agent will have to lookup the object for the
ActiveNode that should have been instrumented by the
NodeOS adapter. Also, the agent will have to check for
any objects that it has created previously, whose lease has
not expired. In order to perform these lookups, the adapter
must identify key attributes that can uniquely identify the
relevant model objects. For objects previously created, it
is possible to use the agent's unique ID. Currently, there
are open issues relating to model composition and they are
being investigated. The discovery, lookup, poll and apply
process is illustrated in Figure 11.

 9

The
changes
committe
the Anet
possible
multiple
have com
to lump
the trans
changes

Due
configur
configur
of perfo
occur in
NESTOR
some dy
addressin
managed
be noted
API are
isolated

The
propagat
transacti
illustrate
the mode
and all
checks i
an agent
indicates
In the
objects,
AnetdP
adapter.
necessar
attribute
modifica
may crea
then add
Anetd ob
it will in
EE. Sim
removal

2. Poll

3. Apply/
 Commit

1.Discover/
 Lookup

Anetd
Adapter

RDS
Repos.Anetd

3. Push 2. Propagate

Anetd
Adapter RDS

Repos.
Anetd

Mgmt.
Appl.

1. Set/Commit

F F n
igure 11: Anetd Read Instrumentation
adapter then enters a polling loop in which any
in the underlying resources are applied and
d to the model. It should be noted that because

d SC remote interface is not transactional, it is not
to determine if the polled state represents

real-world threads of change, or that these threads
pleted execution. Therefore, the adapter is forced
all detected changes into a single transaction. If
action is aborted due to a constraint violation, all
will need to be rolled-back.
to the lack of locking mechanisms in most

ation protocols, it is also possible that the
ation of a real element may change in the process
rming or committing a transaction. This may
 cases where systems administrators bypass the
 system in changing configuration, or due to

namic element reconfiguration. Mechanisms for
g this issue by stating requirements on concurrent
 resource access are being investigated. It should
, that changes occurring through the repository
always transactional and therefore can always be
and controlled.
second function of a NESTOR adapter is to
e changes initiated by NESTOR application-layer
ons, or change propagation rules. The process is
d in Figure 12. Once a transaction is committed to
l, that is, all propagation rules have been applied,
constraints have been verified, the repository

f any of the effected objects are instrumented by
. A special to-one relation with an agent object
 that changes to the object need to be propagated.
Anetd example, changes to the instrumented

such as instances of Anetd and
rocess will be collected and transmitted to the
The adapter will use this information to effect the
y changes by issuing SC requests. In addition to
value modifications, the log will contain relation
tions. For example, to deploy a new EE, a user
te an AnetdProcess object, set its values, and
 that object to the "manages" relation of an
ject. When this change log is sent to the adapter,
terpret this action as a request to deploy a new
ilarly, an EE may be terminated through its
from the "manages" relation.

An al
primary A
would d
would be
transactio
Figure 9
would b
constrain
committe
then to th
reliance
cannot b
state. In
used to k

Autho
complex
services
(such as
event bas
support f
NESTOR
performin
of two o
automate
SNMP. F
SNMP a
between
attributes

5 IM

An in
using th
provided
Event-Co
compiled
used to
functiona

Exper
current N
the acc
operation
ECA rule
with a sm
igure 12: Anetd Set Instrumentatio
ternate scenario would involve the failure of the
netd process on the ActiveNode. The adapter

etect this failure and the corresponding object
 removed in a repository transaction. Before the
n was committed, the propagation rule from

 would be fired, and an alternate Anetd process
e selected as a primary. Assuming that no
ts were violated, the transaction would be
d and the changes propagated to the adapter, and
e actual Anetd processes. It should be noted that

on the SC protocol means that an Anetd instance
e configured if it is unreachable or in a stopped
such cases, the ActiveNode adapter may be
ill the Anetd process and start a new one.
ring of agents is a labor-intensive and potentially
process. It is envisioned that in the future

will support standardized configuration languages
 XML[26]) and some form of transaction and
ed configuration protocol that will provide better
or identifying real-world threads of change. The
 system provides additional library support for
g common agent tasks, such as a minimal merge

bject graphs (polled to repository objects), and
d agent creation for popular protocols such as
or example, it is possible to provide a generic

dapter that can be configured with a mapping
MIB tables and objects, and OIDs and object
.

PLEMENTATION

itial prototype of the NESTOR system was built
e MODEL language and InCharge repository
 by SMARTS[13]. The prototype employed the
ndition-Action (ECA) rules (which can be
 from declarative constraints). The prototype was
 demonstrate Internet node plug & play
lity, as reported in [1] .
ience with this first prototype helped guide the
ESTOR design. The complexity of coding both

ess mechanisms and the schema mapping
s led to the addition of the protocol adapter layer.
s quickly proved to be difficult to manage even
all number of high-level constraints defined. It

 10

was found that more than one rule was required to support
a single constraint, and that it was not uncommon to write
simple definitions that would lead to cycles in execution.
Declarative expressive constraints are used in the current
design and are safely compiled internally to ECA style
rules.

The second NESTOR prototype has been written in
Java using Sun’s Jini infrastructure[25]. In this prototype
the RDS exports its services using a Java Remote Method
Invocation (RMI) interface. The remote RDS interface
enables managers to create distributed transactions, and
perform object operations (lookup, create, destroy).
Application layer management applications employ the
Jini lookup and discovery mechanism for obtaining a
reference to the remote RDS service object. When an
application invokes the create transaction method on the
remote RDS interface, the RDS server returns an object
implementing the Jini transaction interface. Internally, the
Java RDS prototype implements the Jini transaction
manager interface and semantics for performing
distributed two-phase commits.

Management application object lookups occur in the
context of a transaction and return a proxy object
implementing the same interfaces as the ones of the
requested repository objects (maintaining in addition a
lock on the requested objects). Unlike the real repository
objects, proxy objects contain copies of the configuration
values and do not propagate changes to the managed
element, even though all method invocations are stored in
the transaction log. Proxy object references are initially
returned as “hollow” objects whose values are retrieved
from the repository at the time of the first object access.

Constraints and rules are first class objects. When the
management application commits an update transaction,
RDS invokes the constraint and propagation manager with
a reference to the transaction log. The manager analyzes
the log and determines the PDL rules that need to be
reevaluated, and proceeds to compute and assign their
values. As part of that process additional rules may need
to be re-evaluated. This process is guaranteed to terminate
since cyclical rule definitions are disallowed. Once all
rules have been evaluated, the constraints are asserted. If
all constraints are maintained the manager commits the
transaction (the constraint manager is a member of every
repository update transaction) the logged updates will be
applied to the real repository objects in the order in which
they were made. In cases where the same attribute has
been updated multiple times due to the execution of policy
scripts, only the last update is written.

Other components of the prototype system include the
model compiler and constraint and rule interpreter. The
model compiler transforms MODEL interface definitions

into Java interface definitions. As part of the
transformation, MODEL attribute declarations are mapped
to pairs of set/get methods, and relationships are converted
into references to classes implementing the OCL
collection semantics. In the current version, the constraint
and rule expressions are stored in string form instead of
being translated into a Java language method. The
constraint and propagation manager contains a built-in
OCL interpreter that evaluates each expression when
detecting a possible violation. Future versions will
explore the performance gains of compiling OCL
expressions, and optimizing the triggering of constraint
and rule evaluation.

Adapters supported in the current NESTOR prototype
include Linux (interfaces, routing, processes, firewall
rules), SNMP (MIB-II), CISCO IOS (switch VLAN and
interfaces, router interfaces, routes and firewall rules),
Virtual Active Networks[27] (VAN), and Anetd. In
addition, the prototype includes a graphical browser
supporting navigation and manipulation of the NESTOR
repository, as well as visualization of layer-2 topology.

The current implementation also supports security
features including user authentication, fine-grained
capability and access control-based authorization, as well
as connection encryption. Authentication and connection
encryption are based on the SSL/TLS[28] protocol. The
SSL X.509 certificates are associated with a first-class
user object instances that are belong to one or more
groups. Groups are assigned repository-wide permissions
such as connect, search, subscribe, lock, etc. Associating
permissions with each object, or adding capabilities to the
user or group objects controls object-level permissions.
Examples of object-level permissions are get, set, shared-
lock, exclusive-lock, delete and may be associated with all
or some specific object attributes.

Because user, group and permission objects are first
class objects, NESTOR constraints and propagation rules
may operate on them. As a result, it is possible to affect
dynamic configuration of security permissions. For
example, it is possible to award a user with special
permissions on all hosts that are physically co-located with
the machine in which he/she is logged on the console.
Note that such general rules can only be expressed thanks
to the unified configuration model.

A screen-shot of the NESTOR prototype browser is
shown in Figure 13. On the left panel, the browser
displays a tree whose first level are repositories, the
second level includes the list of available MODEL
interfaces, and the third layer contains object instances.
The browser subscribes for notification of class loading/
unloading events on each repository. When a class node is
first expanded, the browser subscribes for object

 11

create/remo
selects an
panel. In t
shown. The
does not ob
is notified o
be navigate
selecting on
(EEs) one
browser can
for change
WebStart[2
server.

The Jav
managemen
in [30]. It
Technologi
firewall ba
NESTOR
Networks
instrumenta

6 REL

Other
managemen
ABLE[33]

The S
Packets[35]
environmen
In SENCO
program co
across the
Managemen
path, and/o

EE. Management EE functions may be extended through
the deployment of loadable libraries.

The ABLE research aims to provide AN-based
management supporting deployment of distributed IP
network management applications. Agents are dispatched
to Active Engines that operate as management EEs and are
associated with sessions. Agents are executed in a safe
(isolated) and secure (authenticated) environment.
Management functions are exported through narrow APIs
providing access to SNMP MIBS. ABLE extends previous
research[36] with packet-based agent delivery, and packet
path-based discovery.

Both the SENCOMM and ABLE projects focus on
deployment of management agents that collect local
performance and configuration information, and may only
effect global change through agent-specific protocols. In
Figure 13: NESTOR Browser
ve events on the particular class. If the user
object instance, it is displayed on the right
his particular example, an Anetd instance is
 object is read in a caching transaction, that
tain any locks. The browser (NESTOR client)
f any changes to cached objects. Relations can
d by clicking on the "Go". For example, by
e of the Anetd "threads" relation members
can access the EE object configuration. The
 switch to an update transaction mode to allow

s. The browser can be executed as a Java
9] service directly from the repository HTTP

a NESTOR prototype was first applied to the
t of security in dynamic networks, as described
has also been used by researchers at Telcordia
es as a platform for developing a distributed
sed on security policies[31]. Currently, the
prototype is being deployed on the Active

Backbone (ABONE) network for
tion of Active Nodes, EEs and AAs.

ATED WORK

projects in the area of Active Networks
t include the SENCOMM[32] project, the
engine, and the ANCORS[34] project.
ENCOMM project builds on the Smart
 research that developed a safe language and
t supporting network management functions.
MM, Smart Probes containing immutable
de, and mutable probe data are transmitted
 network and executed in SENCOMM
t EEs. Probes may collect data across their

r may continue functioning in the management

contrast, the NESTOR approach is focused on enabling
and controlling the interaction of agents, rather than
providing pure isolation. NESTOR supports navigation of
relations across managed systems in a unified model,
expression of inter-agent constraints, and propagation
rules, as well as, semantic-based fine-grained access
control. NESTOR supports both AN-based management,
through the deployment of model objects and semantic
constraints and propagation rules, as well as management
of ANs by allowing AAs and EEs to export their
configuration data and semantic models.

The ANCORS project merges technologies from
network management and distributed simulation to
provide support for runtime assessment of network
protocols and operations. ANCORS addresses the
integration issues of EEs and AAs by supporting
simulation of their operations so that their operations can
be closely monitored, and evaluated prior to actual
deployment. This is a black-box approach to exposing
dependencies between services, and preventing potential
resource conflicts. The advantage of this approach is that
services need not declare their integrity constraints and
propagation rules. The main disadvantage is that
simulation can only provide proof of failure, but its results
cannot be readily used to support conflict resolution. In
such cases, the offending service must either be
terminated, or migrated somewhere in the network.
NESTOR requires that services expose their configurable
properties and semantic constraints and propagation rules.
This permits both conflict detection and prevention
(without simulation) as well as dynamic conflict
resolution. It may be desirable to combine the two
approaches, especially in cases where the service models
have not been tested out, or are partially incomplete.

NESTOR builds on earlier efforts in the use of object-
oriented models to support operations management has

 12

been pursued by others. The OSI CMIP proposal was
based on Object-Oriented (OO) models to organize
instrumentation of managed resources at agents. Various
research projects[6, 37-39] and some commercial products
(SMARTS InCharge, HP OpenView, Tivoli TME) have
used OO resource models successfully to simplify the
development of management applications. NESTOR
broadens this effort to build on modeling technologies that
can create unifying heterogeneous configuration
information directory structures to support automated
management. The semantic model[38] in NESTOR
captures detailed configuration needed to build self-
management/organization software.

NESTOR also profits from the large body of recent
work on directory services. This work has traditionally
focused on directories of high-level objects, such as
documents and files. More recently, the advantage of
centralizing management information in a unified schema
has led to the creation of a standardized information
model, initially pursued by the ad-hoc group on Directory
Enabled Networks (DEN)[10] and more recently by the
DMTF (Distributed Management Task Force)[40]. Future
NESTOR versions will support Meta Object Facility
(MOF)[11] import/export functions, to assist in leveraging
the standards work.

The most closely related management architecture to
NESTOR is the ICON system[41, 42] which uses the
active database style Event-Condition-Action (ECA) rules
to state restrictions on objects instrumented by SNMP
MIB values. Both systems borrow ideas from active-
database management systems (ADBMS)[43]. NESTOR
extends these approaches to incorporate multi-protocol
access to heterogeneous resource information,
configuration transactions, declarative constraints, and
constraint propagation through policy scripts.

The Dolphin project[9] developed a declarative
language for modeling network configuration and
operation for fault analysis. Emphasis was placed on
deducing the cause of failures after the fact, by verifying
the propagation of operational rules in the model.
NESTOR strives to prevent such failures by checking
constraint violations before they adversely affect the
consistent configuration of the system.

In the area of configuration management automation,
the GeNUAdmin[44] system is an off-line tool for
extracting network configuration information into a
centralized database, performing updates on that database
which are checked for consistency, and pushing the
changes back into their respective configuration files.
Simple consistency checks are performed to assure that
added values are valid and that key values are unique.
The RPI service dependency tool[45] detects service

dependencies and generates up to date server listings. The
goal of the system is to prevent unforeseen service
interruptions caused by hidden service dependencies.
NESTOR can support this functionality given an
appropriate set of constraints on the unified configuration
model. Ganymede[46] is an extensible and customizable
directory management framework applied to the central
management of user and host data, which is distributed in
different databases. Ganymede supports transactions on
the central repository objects, but does not provide a
constraint mechanism beyond a few built-in security, and
deletion propagation checks.

The Constraint Satisfaction Problem (CSP) has been
studied extensively in a variety of applications[47, 48].
Previous work on constraint-based management has been
pursued[49, 50]. The focus of these projects has been on
employing constraints for the diagnosis of network faults
and on algorithms for constraint satisfaction. NESTOR
could benefit from these technologies to build its policy
script-based propagation of configuration changes across
network elements. The NESTOR architecture does not
include a specific CSP solver as a core component, but it
supports programmatic interfaces for policy scripts to
employ their own solvers (including CSP).

Simple scripting solutions to network configuration
automation are dependent on network topology and the
particulars of element configuration mechanisms that
differ across vendors and even between versions of the
same platform. A single change in network topology or
equipment upgrade may necessitate changes in multiple
scripts. For these reasons, scripts cannot be easily shared
among different installations without significant
customization. Errors in script execution can result in
inconsistent network configuration states, from which it is
difficult to recover manually. It is hard in the context of
traditional scripts to enforce exclusive access to
configuration repositories. In addition, automatic
discovery of relationships not directly instrumented is not
practical. The NESTOR architecture supports the safe use
of scripts through the binding of the DAP to libraries for
popular interpreted languages, such as Perl[51].

7 FUTURE WORK

Future NESTOR research will focus on discovery,
model composition, rule and constraint distribution, as
well as maintenance of the mapping between the model
and the real world.

It is envisioned that the NESTOR repositories will be
highly distributed to support scalable operation as well as
recovery during failures. Future research will determine
the granularity of distribution (service, node, LAN,

 13

department), and the location of repositories for non-
programmable devices, such as hubs, switches, and COTS
routers. Distribution of the repositories and adapters will
require merging of partial models. For example, a switch
adapter may discover an Ethernet node identified by a
unique MAC address and proceed to generate a simple
EthernetInterface object. Later, an adapter may be
provided for the host, and the interface may be recognized
as an EncryptingEthernetInterface supporting
hardware based datagram encryption. In some cases it may
also be possible to infer relations, such as co-location,
based on information collected from multiple elements.
The mechanisms for merging models and performing
model-based discovery are currently under investigation.

The current NESTOR prototype supports a distributed
repository with centralized constraint verification and
change propagation. Mechanisms for distributing these
functions are currently under investigation. Finally, the
mapping of the real world to the model is a difficult
problem of great practical significance. Besides the
practical problems imposed by the non-transactional
management APIs currently in use (SNMP, Telnet,
LDAP), there are fundamental issues that need to be
addressed. Unlike databases, changes in network elements
cannot always be locked-out. For example, an Ethernet
link cannot be guaranteed since it depends on a physical
service. Different levels of contracts between network
services and the model are being investigated.

8 SUMMARY

The manual process with which computer networks are
currently managed is quickly reaching its limits as
networks enlarge, add new mission-critical services, and
spread to new environments such as private homes.
Network management automation is increasingly
becoming a requirement in many different types of
networks. Large networks are becoming too complex to
manage; mission critical networks cannot afford operator
errors; and small home networks must minimize
management due to limited resources. Current practices
will become unmanageable in future networks supporting
active reconfiguration and programmability for service
deployment. The NESTOR system addresses these needs
by combining several techniques from object modeling,
constraint systems, active databases, and distributed
systems in novel management architecture.

In the NESTOR system, management applications
operate on a unified object-relationship model of the
network using a rich set of operations that support rollback
and/or recovery of operational configuration states.
Declarative constraints prevent known configuration

inconsistencies and in conjunction with policy rules may
automatically propagate changes to maintain consistency.
Protocol proxies are used to provide much of this
functionality with little or no changes in the network
clients. A protocol for replication and distribution of the
directory assures availability and operational efficiency.
NESTOR has been implemented in two complementary
versions and is now being applied to automate several
configuration management scenarios of increasing
complexity, with encouraging results.

REFERENCES

[1] Y. Yemini, A. Konstantinou, and D. Florissi, "NESTOR: An
Architecture for Self-Management and Organization," IEEE
JSAC, vol. 18, 2000.

[2] D. L. Tennenhouse and D. J. Wetherall, "Towards an Active
Network Architecture," Computer Communication Review,
vol. 26, 1996.

[3] DARPA ITO, "Active Networks
(http://www.darpa.mil/ito/research/anets/)."

[4] DCC Laboratory Columbia University, Y. Yemini, A.
Konstantinou, and D. Florissi, "NESTOR
(http://www.cs.columbia.edu/dcc/nestor)."

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin, "A Simple
Network Management Protocol," IETF RFC 1067, 1988.

[6] A. Dupuy, S. Sengupta, O. Wolfson, and Y. Yemini,
"NetMate : A Network Management Environment," IEEE
Network Magazine (special issue on network operations and
management), 1991.

[7] System Management Arts (SMARTS), "InCharge," 1.5.2 ed.
White Plains, NY, 1997.

[8] ITU-T, "Information technology - open systems
interconnection - structure of management information :
guidelines for the definitions of managed objects,"
Recommendation X.722, ISO/IEC 10165-4, 1992.

[9] A. Pell, K. Eshgi, J. J. Moreau, and S. Towers, "Managing in
a distributed world," presented at Fourth IFIP/IEEE
International Symposium on Integrated Network
Management, 1995.

[10] S. Judd and J. Strassner, "Directory-enabled Networks :
Information Model and Base Schema," DEN Ad Hoc
Working Group Version 2.0.2-2, 1998.

[11] OMG, "Meta Object Facility (MOF) Specification,"
Version 1.3, 1999.

[12] D. Ohsie, A. Mayer, S. Kliger, and S. Yemini, "Event
Modeling with the MODEL Language : A Tutorial
Introduction," SMARTS (System Management Arts), 14
Mamaroneck Ave., White Plains, New York, 10601, White
Plains.

[13] System Management Arts, "MODEL Language Reference
Manual," White Plains, NY 1996.

[14] OMG, "Object Constraint Language Specification," Object
Management Group (OMG) ad/97-08-08 (version 1.1),
September 1, 1997 1997.

[15] K. L. Calvert, "Architectural Framework for Active
Networks (Version 1.0)," University of Kentucky July 27,
1999 1999.

http://www.darpa.mil/ito/research/anets/).
http://www.cs.columbia.edu/dcc/nestor).

 14

[16] L. Peterson and Active Networks Node OS Working
Group, "NodeOS Interface Specification," Princeton
University January 10, 2001 2001.

[17] S. Dawson, F. Gilham, M. Molteni, L. Ricciulli, and S.
Tsui, "User Guide to Anetd 1.6.9," SRI
(http://www.csl.sri.com/ancors/anetd/), 2001.

[18] R. Droms, "Dynamic Host Configuration Protocol," IETF
RFC 1531, 1993.

[19] W. Yeong, T. Howes, and S. Kille, "Lightweight Directory
Access Protocol," IETF RFC 1777, March 1995 1995.

[20] Sun Microsystems, "NIS : Network Information Service."
[21] Novell Inc., "Netware Directory Services."
[22] Microsoft Corp., "ADSI : Active Directory Services

Interfaces." Redmond, WA.
[23] L. Ricciulli, "Anetd: Active NETworks Daemon (v1.0),"

SRI http://www.csl.sri.com/ancors/anetd/, 1998.
[24] DARPA ITO, "Active Network Backbone (ABone)," ISI

(http://www.isi.edu/abone).
[25] Sun Microsystems, "Jini Architecture Specification," Palo

Alto, CA 1998.
[26] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler,

"The Extensible Markup Language (XML) 1.0," W3C
Recommendation 2000.

[27] G. Su and Y. Yemini, "Virtual Active Network (VAN),"
DCC Laboratory, Columbia University
(http://www.cs.columbia.edu/dcc/van/), 2000.

[28] T. Dierk and C. Allen, "The TLS Protocol version 1.0,"
IETF RFC 2246, 1993.

[29] Sun Microsystems, "Java WebStart," 1.0.1 ed:
http://java.sun.com/products/javawebstart, 2001.

[30] A. V. Konstantinou, Y. Yemini, S. Bhatt, and S.
Rajagopalan, "Managing Security in Dynamic Networks,"
presented at 13th USENIX Systems Administration
Conference (LISA'99), Seattle, WA, USA, 1999.

[31] J. Burns, P. Gurung, D. Martin, S. Rajagopalan, P. Rao, D.
Rosenbluth, and A. V. Surendran, "Management of Network
Security Policy by Self-securing Networks," presented at
DARPA Information Survivability Conference and
Exposition (DISCEX II), Anaheim, California, 2001.

[32] A. W. Jackson, J. P. G. Sterbenz, M. N. Condell, and R. R.
Hain, "Active Network Monitoring and Control: The
SENCOMM Architecture and Implementation," presented at
DARPA Active Networks Conference and Exposition
(DANCE), California, 2002.

[33] D. Raz and Y. Shavitt, "An Active Network Approach for
Efficient Network Management," presented at IWAN,
Berlin, Germany, 1999.

[34] L. Ricciulli, P. Porras, P. Lincoln, P. Kakkar, and S.
Dawson, "An Adaptable Network COntrol and Reporting
System (ANCORS)," presented at DARPA Active Networks
Conference and Exposition (DANCE), California, USA,
2002.

[35] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D.
Rockwell, and C. Partridge, "Smart Packets: applying active
networks to network management," ACM TOCS, vol. 18,
2000.

[36] Y. Yemini, G. Goldszmidt, and S. Yemini, "Network
Management by Delegation," presented at Second IFIP/IEEE
International Symposium on Integrated Network
Management, Washington, D.C., 1991.

[37] S. Sengupta, A. Dupuy, J. Schwartz, and Y. Yemini, "An
Object-Oriented Model for Network Management," in
Object Oriented Databases with Applications to CASE.
Englewood Cliffs, NJ: Prentice-Hall, 1991.

[38] Y. Yemini, A. Dupuy, S. Kliger, and S. Yemini, "Semantic
Modeling of Managed Information," presented at Second
IEEE Workshop on Network Management and Control,
Tarrytown, NY, 1993.

[39] F. Teraoka, Y. Yakote, and M. Tokoro, "A Network
Architecture Providing Host Migration Transparency,"
Computer Communication Review, vol. 23, 1991.

[40] Distributed Management Task Force (DMTF), "Common
Information Model (CIM) Specification," Version 2.2, June
14, 1999 1999.

[41] S. K. Goli, J. Haritsa, and N. Roussopoulos, "ICON: A
System for Implementing Constraints in Object-based
Networks," presented at Integrated Network Management,
IV, 1995.

[42] J. Haritsa, M. Ball, N. Roussopoulos, A. Datta, and J.
Baras, "MANDATE: MAnaging Networks using DAtabase
TEchnology," IEEE Journal on Selected Areas in
Communications, vol. 11, pp. 1360-1371, 1993.

[43] J. e. Widom and S. e. Ceri, Active database systems:
triggers and rules for advanced processing. San Francisco,
CA: Morgan Kaufmann, 1996.

[44] M. Harlander, "Central system administration in a
heterogeneous unix environment," presented at 8th USENIX
System Administration Conference (Lisa VIII), 1994.

[45] J. Finke, "Automation of site configuration management,"
presented at 11th USENIX System Administration
Conference (Lisa '97), 1997.

[46] J. Abbey and M. Mulvaney, "Ganymede: An Extensible
and Customizable Directory Management Framework,"
presented at LISA XII, Boston, MA, 1998.

[47] E. C. e. Freuder and A. K. e. Mackworth, Constraint-based
reasoning: MIT Press, 1994.

[48] E. Tsang, Foundations of Constraint Satisfaction:
Academic Press - Harcourt Brace & Company, 1993.

[49] M. Sabin, R. D. Russel, and E. C. Freuder, "Generating
Diagnostic Tools for Network Fault Management," presented
at The Fifth IFIP/IEEE International Symposium on
Integrated Network Management (IM'97), San Diego, CA,
1997.

[50] M. Sabin, A. Bakman, E. C. Freuder, and R. D. Russel,
"Constraint-Based Approach to Fault Management for
Groupware Services," presented at International Symposium
on Integrated Network Management (IM'99), Boston, MA,
1999.

[51] L. Wall, T. Christiansen, R. Schwartz, and S. Potter,
Programming Perl, 2 ed: O'Reilly & Associates, 1996.

http://www.csl.sri.com/ancors/anetd/)
http://www.csl.sri.com/ancors/anetd/
http://www.isi.edu/abone)
http://www.cs.columbia.edu/dcc/van/)
http://java.sun.com/products/javawebstart

	Introduction
	CONFIGURATION DATA MODELING
	CONFIGURATION SEMANTIC MODELING
	NESTOR ARCHITECTURE AND OPERATIONS
	EXAMPLE: ANETD MANAGEMENT

	IMPLEMENTATION
	RELATED WORK
	FUTURE WORK
	SUMMARY

