Computational Models of Constraint Propagation

Alexander V. Konstantinou *Columbia University*

Candidacy Exam
December 9th, 1999

Presentation Overview

- Introduction
- Constraint Propagation (5)
- Constraint Logic Programming (3)
- Algorithms (6)
 - Interval Propagation (2)
- Systems (6)
- Future Work

December 9th 1999

Alayandar V. Konetantinou

Constraint Example

- Color flag (red, white)
- Maple leaf is red
- Neighbors have different

Variables: X, Y, U, Z

Domains: $D_X = D_Y = D_U = D_Z = \{ \text{ white, red } \}$

Constraints: (1) U = red (3) $X \neq Y$ (2) $Y \neq U$ (4) $U \neq Z$

December 9th, 1999

Alexander V. Konstantinou

Formal CSP Definition

- Constraint is a relation over some domain D
- Constraint graph $G = \langle C, V, D \rangle$
- *Valuation* θ function($v \in V$) \rightarrow elements of D
- Solution S is set of all valuations satisfying all C

E.g., $G = \langle c^*1.8 = f - 32 \rangle$, $\{c, f\}$, $R > 0 = \{c, f ! 0.0, 32.0\}$ $S = \{\{c, f ! 0.0, 32.0\}$ $\{c, f ! -40.0, -40.0\} \dots\}$

December 9th, 199

Alexander V. Konstantinou

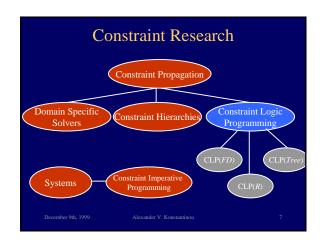
Constraint Graph Representation

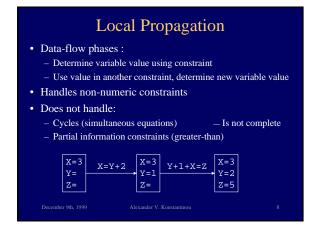
N-ary constraints

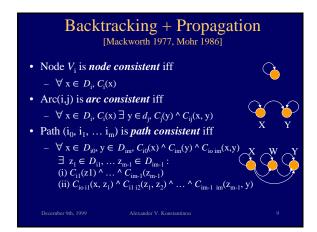
Binary constraints

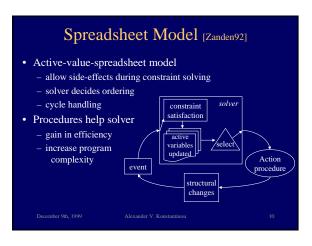
- How are constraints evaluated ?
- F = (5/9)*C + 32 methods : (multi-way constraint)
 - F := (5/9)*C + 32
 - C := (9/5)*(F 32)

December 9th, 199

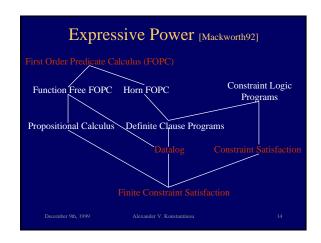

Alexander V. Konstantinou


Constraint Satisfaction

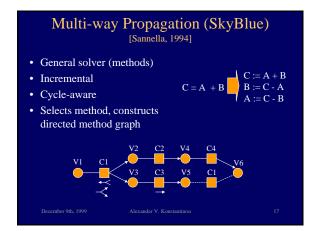

- Generate & Test (NP)
- Local Propagation (P)
 - No cycles (simultaneous equations)
 - No partial information constraints (greater-than)
- Search (NP)
 - E.g., Backpropagation + local propagation
- Domain-specific algorithms (P/NP)
 - E.g., Gaussian elimination (integers)

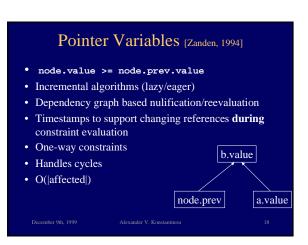

December 9th, 1999

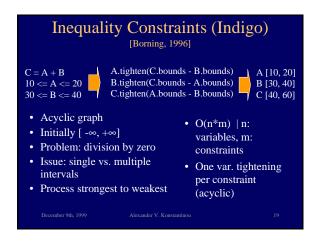
exander V. Konstantinou

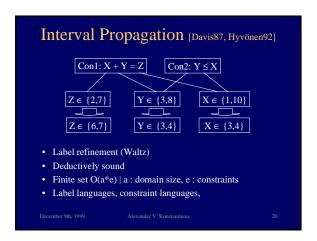


Constraint Hierarchies Overconstrained/underconstrained problems Which variables to alter to satisfy multi-way constraints? E.g., change IP host address, or renumber whole network? Constraint Hierarchies: Labeled constraints (strength [0 ... m]) Comparators (locally-better/globally-better) Weights Annotations (read/write only)

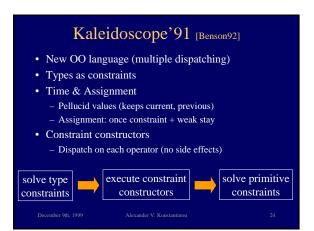

Constraint Logic Programming


Constraint Logic Programming [Cohen90] The equality "1 + X = 3" fails in Prolog Symbol '+' considered unevaluated and unification fails Workarounds exist (use successor, or "is") Solution: replace unification by constraints ... solve([0], C, C) solve([0], Previous_C, New_C):solve([0], Previous_C, Temp_C), solve([0], Previous_C, Temp_C), solve([0], Previous_C, Temp_C), solve([0], Previous_C, Current_C, solve([0], Previous_C, New_C). clause([0], Body, Vurrent_C), mayoe_constraints(Previous_C, Current_C, Temp_C), solve(Boddy, Temp_C, New_C).




Algorithms

Incremental Local Propagation (DeltaBlue) [Gagnet92] • Local propagation • No cycles • One-way constraints • Incremental • Handles constraint hierarchies • Maintains solution graph • Separates planning from evaluation • O(M*N) | N constraints, M max methods/constr. • Implemented in various systems



Systems & Constraint Imperative Programming

Constraints + Object-Orientation
 [Avesani90, Wilk91, Benson92, Lopez94]
 Integration Options:

 Local propagation (known issues)
 Constraints on primitive leaves [Avesani90]
 New constraint solvers (per domain)
 Graph rewriting [Wilk91]
 Constraint constructors [Benson92]
 Other
 E.g., local propagation + iterative relaxation

Future Work

Constraints & Network Mgmt

- Object-relationship configuration model
- Under-constrained system
- Policy directed change propagation
- Domains : integers, strings, relations
- Constraints : equality, interval, set membership, ...
- Expressing constraints & propagation policies
 - Graphical language ?

ember 9th 1999 Alexander V

26