The NESTOR Project

Automating Configuration Mgmt

Alexander V. Konstantinou Yechiam Yemini

Distributed Computing & Communications Laborato Columbia University

DARPA ANETS PI Meeting, Orlando, FL, 5 Dec 2001

Self-Organizing Networks

Self-organizing = adapt to changes

ANets are self-organizing: change is the only constant

Adaptation requires independent mechanism

NESTOR provides self-organizing capabilities to networks

- Maintains a model of network: objects-relationships
- Detects changes
- Adapts to changes by propagation among related objects
- Controls propagation through constraints

nbia University, DCC Lab, 5 Dec 200

Results

Technology Results

- NESTOR core technologies:
 - * Unified data & semantic model for self-configuring networks
 - * Programmable change policies: change propagation + constraints
 * Architecture
- Network Management apps: enable mobile users
- Security apps: maintain security through changes in use
- Impact
- Telcordia Technologies: smart firewalls
- ANET Demos: UCLA/Utah/UCB
- ABONE [soon]

mbia University, DCC Lab, 5 Dec 2001

NESTOR Constraints & Propagation
 Constraints on valid configuration (declarative) Example: IP interface netmask must match address
<pre>IpInterface - allInstancesselect(i (i.address != null) and</pre>
 Configuration propagation rules (operational) Example: Video active app. packet size ← interface MTU
<pre>MyVideoAA->allInstances ->forAll(app app.packetSize :=</pre>
Columbia University, DCC Lab. 5 Dec 2001

- Simple navigation of relationships
- Propagation cycles
 - Change propagates over relations
 - Static analysis may be too conservative
- Bounding propagation

mbia University, DCC Lab, 5 Dec 2001

Distribution of computation

Anetd Adapter
 Read/write configuration instrumentation

NESTOR @ ABONE

- Public "live" configuration browsing
 Audit of configuration changes
- Virtual Active Networks (VANs)
- Columbia 12-node VAN/ABONE test-bed
- EE/AA Author Instrumentation Kit
 - Load/unload/monitor EEs
 - Discover system configuration
 - Export instrumentation/constraints

olumbia University, DCC Lab, 5 Dec 200

Telcordia Smart Firewalls

- DARPA DC Program (S. Rajagopalan PI)
 Difficult to ensure high-level service access policies
 Manual configuration requiring security expertise
 Networks are too dynamic
 - Current configuration tools cannot validate
 - Security polices must be enforced across multiple admin. domains
- Example: can someone telnet into network?

Telcordia Smart Firewalls (2) Security policies High level goals (allow/deny) Invariants that must hold (not conditions-actions) Validation and Secure Change Management Policy engine validates entire network configuration Supports what-if queries Automatic policy enforcement using NESTOR Network discovery/update, transactional commit

Centralized user interface for network security administration

mbia University, DCC Lab, 5 Dec 200

API Summary

- Repository discovery
- Nestor Repository
 - Create transaction
 - Create object

Session

- Lookup objects (by class/attribute)
- Subscribe for changes
- Standard Model
 Link, Network, Application layer objects
- Link, Network, Application layer object
 Agont utilities
 - Agent utilitiesMorphing and polling
 - mbia University DCC I ab 5 Dec 2001

Summary of Results

Prototype implementation

- Java/Jini based (>100K lines)
- Distributed object-relation repository + standard API + standard model
- Model compiler & constraint/propagation interpreter
- Adapters: Linux, CISCO IOS, SNMP, LDAP, VAN, Anetd
- Browser: repository, performance & topology visualization
- Packaged & stable
- Demonstrations
 - DARPA (Princeton 1997, Seattle 1999, Atlanta 2000), USENIX Lisa'99
 - Telcordia demonstrations
- Technology Transfer
 - Telcordia Technologies: DARPA distributed firewall project
 - UCLA/UCB/Utah: DARPA Active Network integration demo
 - Soon: ABONE deployment
- olumbia University, DCC Lab. 5 Dec 2001

Current Research & Plans

Security features

- Propagation path analysis
 - Formal propagation model
 - Propagation domain analysis
- Public ABONE deployment
- Operational configuration recovery
- Auditina

olumbia University, DCC Lab, 5 Dec 2001