bk

he

ht

e

;:‘ International Journal of Computer Vision 27(3), 203225 (1998)
N o 1008

Kluwer Academic Publishers. Manufactured in The Netherlands.

Rational Filters for Passive Depth from Defocus

MASAHIRO WATANABE
Production Engineering Research Lab., Hitachi Ltd., 292 Yoshida-cho, Totsuka, Yokohama 244, Japan

nabe@cs.columbia.edu

SHREE K. NAYAR
Department of Computer Science, Columbia University, New York, NY 10027

nayar@cs.columbia.edu

Received December 13, 1995; Accepted February 24, 1997

Abstract.

A fundamental problem in depth from defocus is the measurement of relative defocus between images.

The performance of previously proposed focus operators are inevitably sensitive to the frequency spectra of local
scene textures. As a result, focus operators such as the Laplacian of Gaussian result in poor depth estimates. An
alternative is to use large filter banks that densely sample the frequency space. Though this approach can result
in better depth accuracy, it sacrifices the computational efficiency that depth from defocus offers over stereo and
structure from motion. We propose a class of broadband operators that, when used together, provide invariance to
scene texture and produce accurate and dense depth maps. Since the operators are broadband, a small number of
them are sufficient for depth estimation of scenes with complex textural properties. In addition, a depth confidence
measure is derived that can be computed from the outputs of the operators. This confidence measure permits further
refinement of computed depth maps. Experiments are conducted on both synthetic and real scenes to evaluate
the performance of the proposed operators. The depth detection gain error is less than 1%, irrespective of texture
frequency. Depth accuracy is found to be 0.5 ~ 1.2% of the distance of the object from the imaging optics.
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1. Introduction

A pertinent problem in computational vision is the re-
covery of three-dimensional scene structure from two-
dimensional images. Of all problems studied in vision,
the above has, by far, attracted the most attention. This
has resulted in a variety of sensors and algorithms
(Jarvis, 1983; Besl, 1988) that can be broadly classified
into two categories: active and passive. Active tech-
niques produce relatively reliable depth maps, and have
been applied to many industrial applications. How-
ever, when the environment cannot be controlled, as
in the case of distant objects in outdoor scenes, active
methods prove impractical. As a consequence, passive
techniques are always desirable.

Passive sensing methods, such as stereo and struc-
ture from motion, rely on algorithms that establish local
correspondences between two or more images. From
the resulting disparity estimates or motion vectors, the
depths of points in the scene are computed. The pro-
cess of determining correspondence is widely acknowl-
edged as being computationally expensive. In addition,
the above techniques suffer from the occlusion or miss-
ing part problems; it is not possible to compute depths
of scene points that are visible in only one of the im-
ages. Alternative passive techniques are based on focus
analysis. Depth from focus uses a sequence of images
taken by changing the focus setting of the imaging op-
tics in small steps. For each pixel, the focus setting that
maximizes image contrast is determined. This, in turn,
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can be used to compute the depth of the correspond-
ing scene point (Horn, 1968; Jarvis, 1983; Krotkov,
1987; Darrell and Wohn, 1988; Nayar and Nakagawa,
1994).

In contrast, depth from defocus uses only two im-
ages with different optical settings (Pentland, 1987;
Subbarao, 1988; Ens and Lawrence, 1991; Bove, Jr,,
1993; Subbarao and Surya, 1994; Nayar et al., 1995;
Xiong and Shafer, 1995). The relative defocus in the
two images can, in principle, be used to determine
three-dimensional structure. The focus level in the two
images can be varied by changing the focus setting of
- thelens, by moving the image sensor with respect to the
lens, or by changing the aperture size. Depth from de-
focus is not confronted with the abovementioned miss-
ing part and correspondence problems. This makes it
an attractive prospect for structure estimation.

Despite these merits, at this point in time, fast, ac-
curate, and dense depth from defocus has only been
demonstrated using active illumination that constrains
the dominant frequencies of the scene texture (Nayar
et al., 1995; Watanabe et al., 1995). Past investigations
of passive depth from defocus indicate that it can prove
computationally expensive to obtain a reliable depth
map. This is because the frequency characteristics of
scene textures are, to alarge extent, unpredictable. Fur-
thermore, the texture itself can vary dramatically over
the image. Since the response of the defocus (blur)
function varies with texture frequency, a single broad-
band filter that produces an aggregate estimate of de-
focus for an unknown texture cannot lead to accurate
depth estimates. The obvious solution is to use an enor-
mous bank of narrow-band filters and compute depth
in a least-squares sense using all dominant frequen-
cies of the texture (Xiong and Shafer, 1995; Gokstorp,
1994). This requires one to forego computational effi-
ciency. To worsen matters, a depth map of high spatial
resolution can be obtained only if all the filters in the
bank have small kernel sizes. The uncertainty relation
(Bracewell, 1965) tells us that the frequency resolution
of the filter bank reduces proportional to the inverse of
the kernel size used. In short, one cannot design a filter
with narrow enough response if the support area of the
filter kernel is small.

Xiong and Shafer (1995) proposed an attractive way
to cope with this problem. They used moment filters to
compensate for the frequency spectrum of the texture
within the passband of each of the narrowband filters.
This approach results in accurate depth estimates but
requires the use of four additional filters for each of

the tuned filters in the filter bank. This translates to
five times as many convolutions as is needed for any
typical filter bank method. Xiong and Shafer (1995)
use 240 convolutions in total, which makes their ap-
proach computationally expensive.

Ens and Lawrence (1991) have proposed a method
based on a spatial-domain analysis of two blurred im-
ages. They estimate the convolution matrix, which is
convolved with one of the two images to produce the
other image. The matrix corresponds to the relative blur
between the two images. Once the matrix is computed,
it can be mapped to depth estimates. This method
produces accurate depth maps. However, the iterative
nature of the convolution matrix estimation makes it
computationally expensive.

Subbarao and Surya (1994) proposed the S-Trans-
form and applied it to depth from defocus. They mod-
eled the image as a third-order polynomial in spatial
domain, and arrived at a simple and elegant expression
(Subbarao and Surya, 1994):

i?.(x’ y)_il<x1y)
= %(022—63)V2<i2(x’y)+il(x’y)>, (1

2

where, {; and i, are the far and near focused images,
respectively. The blur circle diameters in images i;
and i, are expressed by their second central moments
o7 and o}, respectively. Since an additional relation
between o4 and oy can be obtained from the focus set-
tings used for the two images, o, and oy can be solved
for and mapped to a depth estimate. As we see no
terms that depend on scene frequency in Eq. (1), this
can be considered to be a sort of texture-frequency in-
variant depth from defocus method. It produces rea-
sonable depth estimates for large planar surfaces in
the scene. However, it does not yield depth maps with
high spatial resolution that are needed when depth vari-
ations in the scene are significant. We argue that this
requires a more detailed analysis of image formation as
well as the design of novel filters based on frequency
analysis.

In this paper, we propose a small set of filters, or
operators, for passive depth from defocus. These op-
erators, when used in conjunction, yield invariance to
texture frequency while computing depth. The under-
lying idea is to precisely model relative image blur in
frequency domain and express this model as a rational
function of two linear combinations of basis functions.
This rational expression leads us to a texture-invariait
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Figure 1. Image formation and depth from defocus. The two images, {; and i3, include all the information required to recover scene structure
between the focused planes in the scene corresponding to the two images.

set of operators. The outputs of the operators are used
as coefficients in a depth recovery equation that is
solved to get a depth estimate. The attractive feature
of this approach is that it uses only a small number of
broadband linear operators with small kernel supports.
Consequently, depth maps are computed not only with
high efficiency and accuracy but also with high spa-
tial resolution. Since our operators are derived using a
rational expression to model relative image blur, they
are referred to as rational operators. Rational opera-
tors are general, in that, they can be derived for any
blur model.

The paper is structured as follows. First, the concept
of a texture invariant operator set is described. Next,
all the operations needed for depth from defocus are
discussed, including the use of prefiltering and coeffi-
cient smoothing. An efficient algorithm for obtaining
a confidence measure from the operator outputs is out-
lined. These confidence measures are effectively used
for further refinement of computed depth maps. In
our specific implementation of rational operators, we
have used three basis functions to model the relative
blurring function. This has resulted in a set of three
rational operators with kernel sizes of 7 x 7. This op-
erator set has been used to compute depth maps for
both synthetic scenes and real scenes. The experimen-
tal results are analyzed to quantify the performance of
the proposed depth from defocus approach. Our algo-
rithm generates a depth map with 5 two-dimensional
convolutions, simple smoothing of the coefficient im-
ages, and a straightforward depth computation step.
On a Datacube’s MV200 pipeline processor, for in-
stance, a 512 x 480 depth map can then be computed in
0.16 sec (7 Hz).

2. Depth from Defocus
2.1.  Principle

Fundamental to depth from defocus is the relation-
ship between focused and defocused images (Born and
Wolf, 1965). Figure 1 shows the basic image forma-
tion geometry. All light rays that are radiated by object
point P and pass the aperture A are refracted by the
lens to converge at point Q on the image plane. The re-
lationship between the object distance d, focal length
of the lens f, and the image distance d; is given by the
lens law:

1 1 1

= = 2

itg = 5 )
Bach point on the object plane is projected onto a sin-
gle point on the image plane, causing aclear or focused
image iy to be formed. If, however, the sensor plane
does not coincide with the image plane and is displaced
from it, the energy received from P by the lens is dis-
tributed over a patch on the sensor plane. The result is
a blurred image of P.

It is clear that a single image does not include suffi-
cient information for depth estimation, as two different
scenes defocused to different degrees could produce
identical images. A solution to the depth estimation
problem is achieved by using two images, i; and iz,
separated by a known physical distance 2e (Ens and
Lawrence, 1991; Subbarao and Surya, 1994). The
distance y of the image {; from the lens should also
be known. Given the above described setting, the
problem is reduced to analyzing the relative blurring
of each scene point in the two images and computing
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the position of its focused image. A restriction here
is that the images of all of the scene points must lie
between the far-focused sensor plane i, and the near-
focused sensor plane i;. For ease of description, we
introduce the normalized depth «, which equals —1 at
iy and 1 ati,. Then, using d; = ¥ + (1 +@)e in the lens
law (2), we obtain the depth d of the scene point.

2.2.  Defocus Function

Precise modeling of the defocus function is critical to
accurate depth estimation. The defocus function is de-
scribed in detail in previous works (Born and Wolf,
1965; Horn, 1986). In Fig. 1, (1 £ a)e is the dis-
tance between the focused image of a scene point and
its defocused image formed on the sensor plane. The
light energy radiated by the scene point and collected
by the imaging optics is uniformly distributed on the
sensor plane over a circular patch with a radius of
(1 +ta)ea/d;.! This distribution, also called the pill-
box, is the defocus function:

hx,y)=h(x, y; 1 £a)e, F)

_ 4R?
T (1l a)?e?

F,
i /2 ,2
<(l:i:oz)e XAy ) )

where, + is used for image i}, — is used for image i,,
and T1(r) is the rectangular function which takes the
value 1 for |r| < % and O otherwise. F, is the effective
F-number of the optics. In the optical system shown
in Fig. 1, F, equals d;/2a. In order to eliminate mag-
nification differences between the near and far focused
images, we have used felecentric optics, which is de-
scribed in Appendix A.1.]1 and detailed in (Watanabe
and Nayar, 1995b). In the telecentric case, F, equals
f/2a'.

In Fourier domain, the defocus function in (3) is:

Hu,v) = Hu,v; 1 xae, F,)
2F,
(1l £ a)eu? + v?
x Jy <-———”(1 ia)em> @

Fe

where, J; is the first-order Bessel function of the first
kind, and u and v denote spatial frequency parameters
in the x and y directions, respectively.? As is evident
from the above expression, defocus serves as a low-
pass filter. The bandwidth of the filter decreases as the
radius of the blur circle increases, i.e., as the plane of
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Figure 2. Theeffect of blurring on the near and far focused images.
(a) focused image i and its Fourier spectrum. (b) Pillbox defocus
model h; and the Fourier spectrum /5 of the blurred image. (c)
Pillbox defocus model h| and the Fourier spectrum /; of the image
for larger blurring. f, = +/u? + v? is the radial frequency.

focus gets farther from the sensor plane. Figure 2 illus-
trates this effect. Figure 2(a) shows the image i (x, y)
formed at the focused plane and its Fourier spectrum
I¢(u, v). When the sensor plane is displaced by a dis-
tance (1 — w)e, the defocused image i; is the convo-
lution of the focused image i;(x, y) with the pillbox
hy(x, y), as shown in Fig. 2(b). The effect of defocus
in spatial and frequency domains can be written as:

I2(x,y) = iy(x,y) *h(x,y; (1 —a)e, F,), )
L(u,v) = If(u,v) - H(u, v; (1 —a)e, F,).
Since « can vary from point to point in the image,
strictly speaking, we have a space-variant system
that cannot be expressed as a convolution. Therefore,
Eq. (5) does not hold in a rigorous sense. However, if
we assume that « is constant in a small patch around
each pixel, Eq. (5) remains valid within the small patch.
Hereon, when we use the terms Fourier transform or
spectrum, they are assumed to be those of a small image
patch. For the assumption that ¢ variation in a patch
is small to be valid, the patch itself must be small. In
practice, to realize this requirement, one is forced to
use broadband filters; the kernel size of a linear filter
is inversely proportional to the bandwidth of the filter.
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Figure 3. Relation between the normalized image ratio M /P and the defocus parameter . An upper frequency bound can be determined,
below which, M /P is a monotonic function of the defocus parameter o, For any given frequency within this bound, /P can be unambiguously

mapped to a depth estimate .

Figure 2(c) is similar to (b) except that the sensor
lies at the distance (1 + «)e from the focused plane to
produce the defocused image i;. Again:

i1{x, ) = if(x,y) *hix,y; 1 + a)e, Fo),

(©)
Ii(u, v) = Ir(u,v) - H(u, v; (1 + e, Fo).

Note that in the spectrum plots we have used the polar
coordinates ( f;, fp) for spatial frequencies, rather than
Cartesian coordinates (1, v). This is because the de-
focus function is usually rotationally symmetric. This
symmetry allows us to express the defocus spectrum
using a single parameter, namely, the radial frequency
fr = ~/u? + v, We see in Fig. 2 that, since the image
in{c) is defocused more than the one in (b), the low-pass
response of H,(u, v) is greater than that of H,(u, v).

2.3. Depth from Two Images

We now introduce the normalized ratio, %(u, v; o),
where, M(u, v) = L(u, v) — I (u,v) and P(u,v) =
I (u, v)+ I, (u, v). Equivalently, in the spatial domain,
we have m(x, y) = ia(x, y) — i1(x, y) and p(x, y) =
i2(x, y) -+ i1(x, y). Since the spectrum /;(u, v) of the
focused image, which appears in Egs. (5) and (6), gets
cancelled, the above normalized ratio is simply:
Mu,v; @)
Pu, v; )
_ H@,vi (A —a)e, Fo) — Hu, v; (1 + a)e, F)
© H(@u,v; (1 —ae, F) + H@u, v; (1+a)e, F.)’

)

Figure 3 shows the relationship between the normal-
ized image ratio M/ P and the normalized depth ¢ for
several spatial frequencies. It is seen that M/P is a
monotonic function of & for —1 < « < I, provided
the radial frequency f, = +/u? + v? is not too large.
As a rule of thumb, this frequency range equals tlie
width of the main lobe of the defocus function H when
it is maximally defocused, i.e., when the distance be-
tween the focused image i; and the sensor plane is
2e¢. From the zero-crossing of the defocus function
in Fig. 2, the highest frequency below which the nor-
malized image ratio M/P is monotonic is found to
be:

F,
fr = 0.61?. (8)

For any given frequency within the above bound, since
M/P is a monotonic function of «, M/P can be
unambiguously mapped to a depth estimate £, as shown
in Fig. 3.

Besides serving a critical role in our development,
Fig. 3 also gives us a new way of viewing previous
approaches to depth from defocus: If one can by some
method determine the amplitudes, /1 and I, of the
spectra of the two defocused images at a predefined ra-

dial frequency fo = \/uj + v¢, aunique depth estimate
can be obtained. This is the basic idea that most of the
previous work is based on (Pentland, 1987; Gokstorp,
1994; Xiong and Shafer, 1995), although the ratio used
in the past is simply I;//, rather than the normalized
ratio M/ P introduced here.
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Magnitudes of the two image spectra, at a predefined
frequency, can be determined using linear operators
(convolution). However, this is not a trivial problem.
The image texture is unknown and can include un-
predictable dominant frequencies and hence it is not
possible to fix a priori the frequency of interest. This
problem may be resolved by using a large bank of
narrowband filters that densely samples the frequency
space to estimate powers at a large number of in-
dividual frequencies. However, important trade-offs
emerge while implementing narrowband linear opera-
tors (Gokstorp, 1994; Xiong and Shafer, 1995). First,
such an approach is clearly inefficient from a com-
putational perspective. Furthermore, the uncertainty
relation (Bracewell, 1965) tells us that, when we apply
frequency analysis to a small image area, the frequency
resolution reduces proportional to the inverse of the
area used. To obtain a dense depth map, one must esti-
mate H,I and H,/ using a very small area around each
pixel. A narrow filter in spatial domain corresponds
to a broadband filter in frequency domain. As a result,
any operator output is inevitably an average of the lo-
cal image spectrum over a band of frequencies. Since
the response of the defocus function H depends on the
local depth ¢, and is not uniform within the pass-band
of the operator, the output of the operator is, at best,
an approximate focus measure and can result in large
errors in depth.

Given that all linear operators, however carefully de-
signed, end up having a pass-band, it would be desir-
able to have a set of broadband operators that together
provide focus measures that are invariant to texture.
Further, if the operators are broadband, a small num-
ber of them could cover the entire frequency space and
avoid the use of an extensive filter bank. The result
would be efficient, robust, and high-resolution depth
estimation. In the next section, we describe a method
to accomplish this.

3. Rational Operator Set

3.1. Modeling Relative Defocus
using a Rational Expression

We have established the monotonic response of the nor-
malized image ratio M/ P to the normalized depth (or
defocus) « over all frequencies (see Eq. (7) and Fig. 3).
Our objective here is to model this relation in closed
form. In doing so, we would like the model to be
precise and yet lead us to a small number of linear op-
erators for depth recovery. To this end, we model the

function M/ P by a rational expression of two linear
combinations of basis functions:

M(u, v; @) _ Yot Gpi(u, v)bpi(x)
P(u,v; @) T G (u, v) bgi ()

+e(u, v, o),
)

where, bpi(a) (=1,...,np) and by () (=1,
..., hy) are the basis functions, Gp;(u,v) and
G pi(u, v) are the coefficients which are functions of
frequency (u, v), and (u, v, ) is the residual error of
the fit of the model to the function M/ P. If the model
is accurate, the residual error is negligible, and it be-
comes possible to use the model to map the normalized
image ratio M/ P to the normalized depth . The above
expression can be rewritten as:

M(u, v; o) _ 2y Gpi(u, v)bpi(B)
P(u,v; a) T Gmi(u, v) b (B)
= R(B: u, v). (10)

Here, « onthe left hand side represents the actual depth
of the scene point while 8 on the right is the estimated
depth. A difference between the two can arise only
when the residual error is non-zero. If the normalized
ratio on the left side is given to us for any frequency
(u, v), we can obtain the depth estimate 8 by solving
Eq. (10).

The above model for the normalized image ratio is
general. In principle, any basis that captures the mono-
tonicity and structure of the normalized ratio can be
used. To be specific in our discussion, we use the ba-
sis we have chosen in our implementation. Since the
response of M/ P to « is odd-symmetric and is almost
linear for small radial frequencies f, (see Fig. 3), we
could model the response using three basis functions
that are powers of B:

np=2, ny=1, bp(B)=4, (11)
br2(B) = B, bun(B) = 1.
Then, Eq. (10) becomes:?
M, v,ia)  Gpi(w,v) . Gpau,v) 5
Pu,v;a)  Gp(u,v)  Gan(u,v)
= R(B;u,v). (12)

The term including 83 can be seen as a small correction
that compensates for the discrepancy of M /P from a
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linear model. From the previous section, we know
that the blurring model completely determines M /P
for any given depth « and frequency (u, v). The above
polynomial model, R(8; u, v), can therefore be fit to
the theoretical M/P in Eq. (7) by assuming S to be
«. This gives us the unknown ratios Gp/Gan and
G pa/ G as functions of frequency (u, v). Inthe case
of a rotationally symmetric blurring model, such as the
pillbox function, these ratios reduce to functions of just
the radial frequency f,.

Now, if we fix any one of the coefficient func-
tions, say, Gp;(u, v), all the other coefficients can
be determined from the ratios.* Therefore, it is pos-
sible to determine all the coefficient functions that en-
sure that the above polynomial model accurately fits
the normalized image ratio M/P given by Eq. (7).
Figure 4 shows an example set (based on an arbitrary
selection of G p;(u, v)) of the coefficient functions,
Gpy, Gpa and Gy, for the case of the pillbox blur
model.

In the general form of the rational expression in
Eg. (9), the coefficients of the rational expression can
only be determined up to a multiplicative constant at
each frequency. Therefore, we have:

Gpi(u,v) = Gpi(u, v) uu,v), (13)

Gupi(u, v) = Gppi(u, v) pu(u, v).
Here, p(u, v) is the unknown scaling function of all
the coefficient functions and Gp;(u, v) and Gy (1, v)
represent the structures of the ratios obtained by fitting
R(B; u,v) to %(u, v, o). The frequency response of
the unknown scaling function p(u, v) is needed to de-
termine all the coefficient functions without ambiguity.

Gulf, fs) x 1115

- Gulf f)

A

Grifs, fo) x 20

>
\/

Figure 4. An example set of the coefficient functions obtained by
fitting the polynomtal model to the normalized image ratio M/P.
Here, G p;(u, v) was chosen and the remaining two functions deter-
mined from the fit.
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How this can be accomplished for the general rational
expression will be described in Section 4.1.

We now examine how well the polynomial model fits
the plots in Fig. 3 of the normalized ratio %(u, v, o).
More precisely, we are interested in knowing how well
the model can used to estimate depth. To this end, for
each frequency, we select a “true” depth value o« and
find the corresponding ratio M /P using the analyti-
cal expression in (7). This ratio is then plugged into
the polynomial model of (12) to calculate the depth
estimate S using the Newton-Raphson method. This
process is repeated for all frequencies.

Let us rewrite Eq. (12) as:

po(u, v; ) = pr(u, V)B + pa(u, v)B>.  (14)

As the third-order term can be considered to be a small
correction, the following initial value can be provided
to the Newton-Raphson method:

Bou, vy = Lo v @) (15)
pl(u» U)

Then, the solution after one iteration is:

Bu, v) = Polu, v)
_ —po(u, v; @) + pi(u, V)Bo+ pa(u, VB
p1(u,v) +3ps(u, v)B3

p3(uv U)ﬁg
p1(u, v) + 3palu, v) B2

= ﬂo(uv U) -

(16)

Figure 5 shows that the estimated depth 8 is, for all
practical purposes, equal to the actual depth, indicating
that the polynomial model is indeed accurate. Further,
the estimated depth is invariant (insensitive) to texture
frequency as far as the radial frequency f, is below
Sfrmax- Above this frequency limit f; . the response
of i}’,’—(u, v; ) to «, shown in Fig. 3, becomes non-
monotonic within theregion —1 < o < 1 and hence an
accurate depth estimate is not obtainable. In practice,
any image can be convolved using a passband filter to
ensure that all frequencies above f, . are removed.
The rule of thumb used to determine f, max is given by
Eq. (8). However, for the pillbox blur model, we have
found via numerical simulation that f; yax isin fact 1.2
times larger® than the limit given by Eq. (8).

F, F
frmax = 1.2-061 = =073=. (17)
e e

This is a valuable side-effect of introducing the nor-
malized image ratio M /P; we can utilize 20% more
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B FROM i max
M/P(c) - R(B) =0 -
1~ a=1.0 ;
! :
=06 :
=072 E
0 x=-02 : >
2=-0.6 3
_1 a=-1.0 é
/i

INVARIANCE TO fr

Figure 5. Depth 8, estimated using the polynomial model in Eq. (12), is plotted as a function of spatial frequency for different values of actual
depth o. We see that the estimated depth equals the actual depth and is invariant to frequencies within the upper bound f; nax given by Eq. (17).

frequency spectrum information than conventional
methods which use the ratio 1; /5.

3.2.  Rational Operator Set

‘We have introduced a rational expression model for the
normalized ratio M /P and shown that the solution of
Eq. (10) gives us robust depth estimates for all frequen-
cies within a permissible range. Thus far, this robust-
ness was demonstrated for individual frequencies. In
this section, we show how the rational model can be
used to design a small set of broadband operators that
can handle arbitrary textures.
Taking cross-products in Eq. (10), we get:

M

Z M, v; )G i (u, V)b (B)
i=1

np
= > P, v;@)Gpi(u,v) bpi(B). (18)
i=1
By integrating over the entire frequency space, we get:
na s
D emile)bui(B) =Y cpil@)bpi(B),  (19)
i=1 i=1

where:

cyila) = / / Mu, v; @)G i (1, v) dudy,
oo oo (20)
cpi(a) :/ / Pu,v; 0)Gp;(u, v)dudy.

Here, we invoke the power theorem (Bracewell, 1965):

/ / F(u, v)Gu,vydudv

:/ / flx, gl—x, —yydxdy, (21)

where, F(u, v) and G (u, v) are the Fourier transforins
of functions f(x, y) and g(x, y), respectively. Since
we are conducting a spatial-frequency analysis, that
is, we are analyzing the frequency content in a small
area centered around each pixel, the right-hand side of
Eq. (20) is nothing but a convolution. This implies that
cyi (o) and cp; (o) are actually functions of (x, y) and
can be determined by convolutions as:

o o
cmi(x, y; a)=/ / m(x’,y'; )
—0 —00

X gmi(x —x',y —y)dx'dy',

oo o
cpi(x, y; a)=/ / px,ys @)
—00 —0

xgpilx —x',y—yYdx'dy,

(22)

where, g (x, y) and gp;(x, ¥) are the inverse Fourier
transforms of Gy (1, v) and G p;(u, v), respectively.
In short, all the coefficients needed to compute depth
using the polynomial in Eq. (19) can be determined
by convolving the difference image m(x, y) and the
summed image p(x, y) with linear operators that are
spatial domain equivalents of the coefficient functions.
We refer these as rational operators. The outputs of
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these operators at each pixel (x, y) are plugged into
Eq. (19) to determine depth B(x, y).

As an example, if we use the model in Eq. (12), the
depth recovery Eq. (19) becomes:

e (x, y; ) = cpi(x, y; a)B + cpalx, y; a) 8.
(23)

By substituting Eq. (22), we have:

emx, y) xmx, y; o)
= gpi(x,y)* plx,y; a)p
+gp(x, ) xplx,y; ). (24)

Again, the above rational operators are nothing but in-
verse Fourier transforms of the coefficient functions
shown in Fig. 4. We see that, though the operators are
all broadband (see Fig. 4), the above recovery equa-
tion is independent of scene texture and provides an
efficient means of computing precise depth estimates.

4. Implementation of Rational Operators

The previous section described the theory underlying
rational operators. In this section, we discuss vari-
ous design and implementation issues that must be ad-
dressed to ensure that the rational operators produce
accurate depth from defocus. In particular, we describe
the design procedure used to optimize rational operator
kernels, the estimation of a depth confidence measure,
prefiltering of images prior to application of the ratio-
nal operators, and the post-processing of the outputs of
the operators.

Since the rational expression model of Eq. (9) is too
general, we focus on the simpler model of Eq. (12)
which we used in our experiments. However, the pro-
cedures described here can be applied to other forms
of the rational model.

4.1.  Design of Rational Operators Kernels

Since our rational operators are broadband linear filters,
we canimplement them with small convolution kernels.
This is beneficial for two reasons: (a) low computa-
tional cost and (b) high spatial resolution. However, as
we shall see, the design problem itself is not trivial.
Note that, after deriving the operators, the functions
Gpi(u, v) and Gy (1, v) in Eq. (13) must have a ratio
that equals the one obtained by fitting the polynomial
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model to the normalized image ratio. Any discrepancy
in this ratio would naturally cause depth estimation
errors. Fortunately, the base form function p(u, v) of
Eq. (13) remains at our discretion and can be adjusted
to minimize such discrepancies. This does not imply
that w(u, v) will be selected arbitrarily, but rather that
it will be given a convenient initial form that can be
optimized. Clearly, the effect of discrepancies in the
ratio would vary with frequency and hence depend on
the textural properties of the scene. The design of the
operator kernels is therefore done by minimizing an
objective function that represents ratio errors over all
frequencies. The relation between depth estimation
error and ratio error is derived in Appendix A.2. We
argue in the Appendix that, for the depth error to be
kept at a minimum, the ratio errors must satisfy the
following condition:

G (u, v)
Pu,v,2)Gpy(u, v)
1
P, v;a)Gpi(u, v)’

0Gy, (U, V) =«

(25)

0g,, (U, v) =«

0¢, (1, v) and og,,(u,v) determine the weighting
functions to be used in the minimization of errors
in Gpi(u,v) and Gpo(u, v). Here, « is a constant
and in the derivation of these expressions we have set
w(u, v)equalto Gpi(u, v),ie., Gpy(u, v) = 1. There-
fore, from Eq. (13) we have u(u,v) = Gp{u,v),
Gui(u, v) = Guni(u, v)Gp1(u,v) and Gpa(u, v) =
Gpa(u, V)G pi(u, v).

Now, we are 1n a position to formulate our objective
function for operator design as follows:

X2 = Z (gfm(ui,vi) _ng(ui:Ui))z
(41,01 2(0.0) G, (i, V;)

(g:vz(uh Vi) — Gpalu;, Ui))Z]
_+_
Og;)](ui: U[)

N (G’M](O, 0) — GMI(O,O))Z,

OGMlo

(26)

where, G}, (u, v) and Gy, (i, v) are the actual ratios of
the designed discrete kernels, Gy (1, v) and Gp; (1, v)
are the ratios obtained in the previous section by fitting
the polynomial model to the normalized image ratio,
and og,,, 1s a constant used to ensure that the mini-
mization of x2 does not produce the trivial result of
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zero-valued operators. G, (0, 0) is the actual DC
response of the designed discrete kernel g, and
G (0, 0) is its initial value. In the above summa-
tion, the discrete frequency samples (#;, v;) should be
sufficiently dense. When the kernel size is n X n, the
frequency samples should be at least 2n x 2n in order to
avoid the Gibbs phenomenon (Oppenheim and Schafer,
1989). In our optimization, we use 32 x 32 sample
points for 7 x 7 kernels. Since x? is non-linear, its
minimization is done using the Levenberg-Marquardt
algorithm (Press et al., 1992).

We still need to define P (u, v; @) in Eq. (25), which
is dependent on the unknown texture of the image.
However, since P(u,v; ) is only used to fix the
weighting functions in Eq. (25), a rough approxima-
tion suffices. To this end, we assume the distribution
of the image spectrum to be:

1 (fr, fol o 1/f. 27

In our optimization we have used n = 1.5, which
corresponds to Brownian motion.® Though P (i, v; )
changes with o, we can use the approximation P (u,
v, ) = I(u,v).

The last issue concerns the base form function
w(u,v)=Gpi(u,v) in Eq. (25). An initial selec-
tion can be made for this function that will be re-
fined by the optimization of x2. As Gu(u,v) =
Gan(u, v)/Gpy(u, v) is infinity” when |(u, v)| — 0,
G p1(0, 0) must be 0 in order to realize Gy (4, v) =
Gu1(u, v)Gpr(u,v) using a finite kernel. Also,
G py(u, v) must be smooth (without rapid fluctuations)
to obtain rational operators with small kernels. In our
implementation, we have imposed rotational symme-
try as an added constraint and used the Laplacian of
Gaussian to initialize G p; (u, v):

\ i\
G ) = 1 - ,
ri1(fe) (fpeak) exp( (fpeak) ) (28)

where, fpear is the radial frequency at which G p; is
maximum. This frequency is set to 0.4 fnyquise in our
optimization. Once again, the above function is only
used for initialization and 1s further refined by the op-
timization of x2. An example set of discrete rational
operators obtained from the optimization of x> will be
presented shortly.

4.2. Prefiltering

We now discuss prefiltering that needs to be applied to
the input images £, (x, y) and i2(x, y), or, p(x, ¥) and
m(x, y). The purpose is to remove the DC component
and very high frequencies before applying the rational
filters. The DC component is harmful because a sinall
change in the illumination, between the two images,
i1(x,y) and i3(x, y), can cause an unanticipated bias
in the image m(x, y). Such a bias would propagate
errors to the coefficient image ¢ (x, y) since the Gy,
operator applied to m(x, y) is essentially a low-pass
filter. This, in turn, would cause depth errors. At the
other end of the spectrum, radial frequencies greater
than f, max (see Eq. (17)) are also harmful as they violate
the monotonicity property of M /P, which is needed
for rational operators to work. Therefore, such high
frequencies must also be removed.

Although it is possible to embed the desired prefilter
within the rational filters (given that prefiltering can be
done using linear operators), we have chosen to use a
separate prefilter for the following reason. Since the
prefilter attempts to cut low and high frequencies, it
tends to have a large kernel. Embedding such a pre-
filter in the rational operators would require the op-
erators also to have large kernels, thus, resulting in
low spatial resolution as well as unnecessary additional
computations.

As with the rational operators, the design of the pre-
filter can be posed as the optimization of an objec-
tive function. Let us define the desirable frequency
response of the prefilter as f (u, v). For reasons stated
earlier, this frequency response must cut both the DC
component and high frequencies. In addition, the fre-
quency response should be smooth and rotationally
symmetric to ensure a small kernel size. A function
with these desired properties is again the Laplacian of
Gaussian given by the right-hand side of Eq. (28), but
using fpeak = 0.4 fr max. We define the objective func-
tion as:

2
2 Fus, vi) — flug, vp)
Xp= -
(u;,v;) € passband pass
/ ) — . 2
+ <f (ui’ U,) f(uts U,)) (29)
(u;.vi) € stopband Ostop

where, f'(u, v) is the frequency response of the de-
signed prefilter kernel. oy, and ogep represent the
weights assigned to the passband and the stopband
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regions of the prefilter, respectively. The stop-

band is (u;, v;)=(0,0) and /u? + v?> f, max. The

Levenberg-Marquardt algorithm (Press et al., 1992) is

used to determine the prefilter kernel that minimizes
2

Xp-

4.3.  An Example Set of Discrete Rational Filters

Figures 6 and 7 show the kernels and their frequency
responses for the rational operators and the prefilter,
derived with kernel size set to 7x7 and ¢/ F, = 2.307
pixels. In order to make the operators uniformly sen-
sitive to textures in all directions, we imposed the con-
straint that the kernels must be symmetric with respect
to the x and y axes as well as the lines y = x and
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grees of freedom (DOF) in the kernel design problem.
In the case of a 7x7 kernel, the DOF is reduced to 10.
This further reduces to 6 for a 6x6 or a 5x35 kernel.
This DOF of 6 is too small to design operators with the
desired frequency responses. Therefore, the smallest
kernel size was chosen to be k; = 7. Note that the pass-
band response of the prefilter in Fig. 7 can be further
refined if its kernel size is increased.

The final design issue pertains to the maximum fre-
quency f;max. Since the discrete Fourier transform of
a kernel of size k, has the minimum discrete frequency
period of 1/k,, it is difficult to obtain precisely any
response in the frequency region below 1/k,. Further,
the spectrum in this region is going to be suppressed by
the prefilter as it is close to the DC component. There-
fore, the maximum frequency f; .« must be well above

y = —x. These constraints reduce the number of de- 1/k;. Weexpress this condition as f; max > 24 Using

~0.00133 00453 0.1799 0297  0.1799  0.0453 —0.00133

0.0453 04009 08685 1093 08685 04009  0.0453

01799  0.8685 2957 4077 2957  0.8685  0.1799
g = 0297 1093 4077 6005 4077 1093 0297

0.1799 08685 2.957 4077 2957  0.8685  0.1799

; 0.0453 04009 08685 1.093  0.8685 04009  0.0453

—0.00133 00453 01799 0297  0.1799 00453 —0.00133

~0.03983 —0.09189 ~0.198 —0.259 —0.198 —0.09189 —0.03983

) —0.09189 ~0.3276 —0.4702 —0.4256 —0.4702 —0.3276 —0.09189
—0.198 —04702 03354 1393  0.3354 —0.4702 —0.198
gpy = | —0.259 04256 1393  3.385 1393 —0.4256 —0.259
~0.198 —04702 03354 1393 03354 —0.4702 —0.198

—0.09189 —0.3276 -0.4702 —0.4256 —0.4702 —0.3276 —0.09189
-0.03983 —0.09189 -0.198 —-0.259 —0.198 —0.09189 —0.03983

i
!

0.05685 —0.02031
—0.02031 -0.06831

—0.06835 ~0.06135
0.05922 0.1454

—0.06835 —0.02031 0.05685
0.05922 —0.06831 —0.02031

—0.06835 0.05922 0.1762 -0.01998 0.1762  0.05922 —0.06835
gp2 = —0.06135 0.1454 -0.01998 —0.698 ~—0.01998 0.1454 —0.06135
—0.06835 0.05922 0.1762 -0.01998 0.1762  0.05922 —0.06835
—0.02031 —0.06831 0.05922 0.1454  0.05922 —0.06831 —0.02031
0.05685 —0.02031 —0.06835 —0.06135 —0.06835 —0.02031 0.05685
—0.143 -0.1986 —0.1056 —0.07133 —0.1056 —0.1986 —0.143
—0.1986 —0.1927  0.01795 0.07296 0.01795 —0.1927 —0.1986
—0.1056  0.01795 0.2843 0.4601 0.2843  0.01795 —0.1056
prefilter = —-0.07133 0.07296 0.4601  0.6449 0.4601  0.07296 —0.07133
—0.1056  0.01795 0.2843  0.4601 0.2843  0.01795 —0.1056
-0.1986 —0.1927  0.01795 0.07296 0.01795 —0.1927 -0.1986
~0.143 —0.1986 -0.1056 -0.07133 -0.1056 —0.1986 —0.143

Figure 6. Rational operator kernels derived using kernel size of 7x7 and ¢/F, = 2.307 pixels. Regardless of scene texture, passive depth
from defocus can be accomplished using this small operator set.
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Figure 7. Frequency responses of the rational operators shown in Fig. 6.

Eq. (17), we obtain:

2 < 0.73k (30)
7 = 073k :
This condition can be interpreted as follows: The max-
imum blur circle diameter 2¢/ F, must be smaller than
73% of the kernel size k,. This is also intuitively rea-
sonable as the kernel should be larger than the blur
circle as it seeks to measure blur.®

4.4.  Coefficient Image Smoothing

By applying the prefilter and the rational operators in
Fig. 6 to the images m(x, y} and p{(x, y), we obtain
coefficients that can plugged into Eq. (23) to compute

depth 8. However, a problem can arise in solving
for depth. If cpi(x, y) = gpi(x, y)* p(x, y, &) in
Eq. (24) is close to zero, the depth estimate becomes
unstable as is evident from the solution step in Eq. (15).
Since the frequency response of gpi(x,y) cuts the
DC component (Fig. 5(a)), zero-crossings are usually
common in the coefficient image cp(x, y; @). Itis
also obvious that, for image areas with weak texture,’
cpy{x, y; @) approaches zero.

To solve this problem, we apply a smoothing oper-
ator to the coefficient image. This enables us to avoid
unstable depth estimates at zero-crossings in the co-
efficient image, which otherwise must be removed by
some ad hoc post-filtering. To optimize this smoothing
operation, so as to minimize depth errors, we need an
analytic model of depth error. Using the depth recovery
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Eq. (23), we get:

deyy = depy B+cp1dB
+dcpy B +3cpy B2 dB. (31)

Here, we have dropped the parameter (x, y) for brevity.
Solving for dB, we get:

_deyy —depy B —dep

d
P cpy + 3cpap?

(32)

As cpy is only a small correction factor, the following
approximation can be made:

_deyy —dep B —depy
cp1 '

dp (33)

‘We denote the standard deviations (errors) of cas1, €p1
and cpy by o%,,,, 0¢,, and og,, , respectively. To sim-
plify matters, it is assumed that the errors are indepen-
dent of each other. Then, we get (Hoel, 1971):

2 2,2 6.2
aCm +'B GCP] +/5 aCPz

2
€1

of = (34)

This expression is useful as it gives us an estimate of
depth error. The inverse of this estimate, 1 /crg, can be
viewed as a depth confidence measure and be used to
combine adjacent depth estimates in a maximum like-
lihood sense to obtain more accurate depth estimates.
Also, when one wishes to apply depth from defocus
at different scales using a pyramid framework (Jolion
and Rosenfeld, 1994; Burt and Adelson, 1983; Darrell
and Wohn, 1988; Gokstorp, 1994), the above confi-
dence measure can be used to combine depth values at
different levels of the pyramid.

InEq. (34), o¢,,,» 0c;,, and o, are constants because
they are defined by the readout noise of the image sen-
sor used and the frequency responses of the rational
operators. On the other hand, 8 can be assumed to be
locally constant, since depth can be expected to vary
smoothly at most points in the image. These facts lead
us to:

1
of X = (35)
2
Pl

With the above error model in place, we can develop
a method for coefficient image smoothing. If we mul-
tiply Eq. (23) by cp1(x, y; @), and sum up depth values
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in the neighborhood R of each pixel, we get:

Z cpi(x, ys a)emn(x, y; )

(x.y)eR

= Z chy (x, ¥ @)y

(x,y)eR

+ Y em(xn yiaden(x, ;i 0)pl. (36)

(x.»)eR

where, 8, is the depth estimate after coefficient smooth-
ing. Since the last terms in Egs. (36) and (23) are small
corrections, B, can be approximated by:

_ Lper(Crix yi)emn (x, y; @)
Bu = Z 2 ( .
@w.yer Cp1 (X, Y )

2 . e (x,yie)
_ Z(x.y)ek (CPl(x’ Y. a) cP:(x.y:cr))

Z(x.)’)eR 3y (x, y; @)
- Z(x‘y)eR (C%D[(x: y;)B(x, y; a))
Z(x.y)ER C?f’l(x' ¥y a)

(37

From Eq. (35), we see that 8, is the weighted average
of raw depth estimates S in the neighborhood R, where
the weights are 1/a§(x, ¥y ).

From statistics (Hoel, 1971) we know that the op-
timal weighted average of independent variables X;
(i = 1,...,N) whose variances are aiz, 1s obtained
by weighting the X; with 1/a2. Therefore, the above
weighted average of depth estimates can be viewed as
optimal. The variance o2 of the resulting depth esti-
mate f, is given by: :

1

—. (38)
i=1..N Gi2

z:q,\,l —-

Hence, the coefficient smoothing of Eq. (36) is op-
timal, in that, it minimizes!? the error in estimated
depth B,. In addition, the resulting smoothed coef-
ficient cpy(x, y; ) is proportional to the inverse of the
variance of 8,,1.¢., 1/05“, whichisclear fromEgs. (35),
(37) and (38). Therefore, the smoothed coefficient
cp1(x, y; @) can be used as a confidence measure to
post-process computed depth maps.

4.5. Algorithm

Figure 8 illustrates the flow of the depth from de-
focus algorithm we have implemented. The far and
near focused images are first added and subtracted
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Figure 8. The flow of the depth from defocus algorithm. Using
Datacube’s MV200 pipeline processor, the entire algorithm can be
executed in as little as 0.16 sec to obtain a 512 x 480 depth map.

to produce p(x,y) and m(x, y), respectively. Then
they are convolved with the prefilter and subsequently
with the three rational operators. The resulting co-
efficient images are then smoothed by local aver-
aging. The final step is the computation of depth
from the coefficients using a single iteration of the
Newton-Raphson method using Eqgs. (15) and (16).
Alternatively, depth computation can be achieved us-
ing a precomputed two-dimensional look-up table. The
look-up table is configured to take ¢}, (x, y)/cp (x, ¥)
and cp,(x, y)/cp,(x, ) as inputs and provides depth
B(x, y) as output. In summary, a depth map is gener-
ated with as few as 5 two-dimensional convolutions,
simple smoothing of the coefficient images, and a
straightforward depth computation step.

The above operations can be executed efficiently us-
ing apipelined image processor. If one uses Datacube’s
MV200 pipeline processor, all the computations can be
realized using as few as 10 pipelines. The entire depth
from defocus algorithm can then be executed in 0.16 sec
for an image size of 512 x 480. The efficiency of the al-
gorithm, which comes from the use of the rational oper-
ator set, is far superior to any existing depth from defo-
cus algorithm that attempts to compute accurate depth
estimates (Xiong and Shafer, 1993; Gokstorp, 1994).

5. Experiments
5.1.  Experiments with Synthetic Images

We first illustrate the linearity of depth estimation and
its invariance to texture frequency using synthetic im-
ages. The synthetic images shown in Fig. 9 correspond
to a planar surface that is inclined away from the sensor
such that its normalized depth value is 0 at the top and
255 at the bottom. The plane includes 10 vertical strips
with different textural properties. The left 7 strips have
textures with narrow power spectra whose central fre-
quencies are 0.015, 0.03, 0.08, 0.13, 0.18, 0.25 and
0.35, from left to right. The eighth strip is white noise.
The next two strips are fractals with dimensions of 3
and 2.5, respectively (Peitgen and Saupe, 1988). The
near and far focused images were generated using the
pillbox blur model. The defocus condition used was
e/ F, = 2.307 pixels. In all our experiments, the digi-
tal images used are of size 640 x 480. The depth map
estimated using the 7 x 7 rational operators and 5 X 5
coefficient smoothing is shown as a gray-coded image
inFig. 9(c) and a wireframe in Fig. 9(d). As is evident,
the proposed algorithm produces high accuracy despite
the significant texture variations between the vertical
strips.

Figure 10 summarizes quantitative results obtained
from the above experiment. The figure includes plots
of (a) the gradient of the estimated depth map, (b) RMS
(root mean square) error (o ) in computed depth, and (¢)
the averaged confidence value. Each point (square) in
the plots corresponds to one of the strips in the image,
and is numbered from left to right (see numbers next to
the squares). Note that the gradient of the estimated
depth map is nothing but the depth detection gain.
Figure 10(a) shows that the gain is invariant except for
the left three strips. The slight gain error in the left three
strips is because the ratio Gy (4, v)/ G p1 (1, v) ishigh
for low frequencies. As aresult, Gp; (i, v) is small in
the low frequency region and a small errorin G p; (¢, v)
causes a large error in the ratio. The low values of
G p1 (u, v) for low-frequency textures is reflected by the
extremely low confidence values for the corresponding
strips. However, as such low frequencies are cut by
the prefilter, depth errors are suppressed if there exist
other frequency components. When one wants to uti-
lize low frequencies, a pyramid (Jolion and Rosenfeld,
1994; Darrell and Wohn, 1988) can be constructed and
the rational filters can applied to each level of the pyra-
mid. Depth maps computed at different levels of the
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(c) gray-coded depth map

(d) wireframe of depth map

Figure 9. Depth from defocus applied to synthetic images of an inclined plane. Depth is accurately recovered despite the significant texture

variations.

pyramid can be combined in a maximum-likelihood
sense using confidence measures which are easily com-
puted along with the coefficient image using Eq. (34).
Figures 10(b) and (c) show a rough agreement be-
tween the confidence measure plot and the function
1/02.

In Fig. 11, the synthetic images were generated as-
suming a staircase like three-dimensional structure.
The steps of the staircase have textures that are the
same as those used in Fig. 9. The computed depth
map is again very accurate. The depth discontinuities
are sensed with sharpness preserved, demonstrating
the high spatial resolution of the proposed algorithm.
Spikes in the two left strips are again due to extremely
low depth confidence values in these areas. In the case

of natural textures with enough texture contrast, such
low confidence values are unlikely as other frequen-
cies in the texture will provide sufficient information
for robust depth estimation.

5.2.  Experiments on Real Images

Images of real scenes were taken using a SONY XC-
77 monochrome camera. The lens used is a Cosmicar
B1214D-2 with f = 25 mm. The lens was converted
into a telecentric lens by using an additional aperture
to make its magnification invariant to defocus (see Ap-
pendix and Watanabe and Nayar, 1995b). As a result
of telecentricity, image shifts between the far and near
focused images are lower than 1/10 of a pixel. The lens



218 Watanabe and Nayar

D UL U G

1.06 ; 1.06 1.0 . 1.0
i [ - - [
1.05 I\ 1.05 I 0.8 T 0.8 ‘
1.04 1.04 9 \ L T !
'Eloall\ %10. AT oo
50 510 S g | &
s E 04 E 0.4
1.02 c\ 1.02 5 R, o5 | ¢ P
. s
4
1.01 S 7 1.01 fgfmoeBrd) 0.2+ 0.2
1.00 1.00
0 02 04 UV P ys 0 0.2 04 MFO 1l 1ftS s
center freq. freq. distribution center freq. freq. distribution ¥
(@) (b)
120 120
L 5 -
100 R 100
Q / ) ]
S 80 i g 8o
3 [\ S ool * i
2 60 b B 60
5 i IR PN :
o 40 }4 sl 4q 8 i
3
20 20— 1
L/ - s
0 0.2 0.4 (VIR V RV
center freq. freq. distribution
©

Figure 10. Analysis of depth errors for the textured inclined plane shown in Fig. 9. Each point (square) in the plots corresponds to a single
texture strip on the inclined plane (numbered 1~10.) (a) The gradient of the computed depth map which corresponds to the depth detection
gain. The invariance of depth estimation to image texture is evident. (b) The RMS error (o) in computed depth. (¢) The depth confidence value
which is seen to be in rough agreement with 1 /02,
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(a) gray-coded depth map (a) wire frame plot of the depth map

Figure 11. Depth from defocus applied to synthetic images of a stairczse. The textures of the stairs are the same as those of the strips in Fig. 9.
The depth discontinuities are estimated with high accuracy reflecting high spatial resolution produced by the proposed algorithm.
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(c) gray-coded depth map without post-filtering
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(d) wireframe plot of (c)

Simneiey

(e) wireframe plot after 9x9 median filtering

Figure 12.  The depth from defocus algorithm applied to areal scene with complex textures.

aperture was set to F/8.3. The far-focused image i;
was taken with the lens focused at 869 mm from the
camera, and the near-focused image i, with the lens
focused at 529 mm. These two distances were chosen
so that all scene points lie between them. The above
focus settings result in a maximum blur circle radius
of ¢/F, = 2.307 pixels. For each of the two focus
settings, 256 images were averaged over 8.5 sec to get
images with high signal-to-noise ratio.

Figure 12 shows results obtained for a scene that in-
cludes a variety of textures. Figures 12(a) and (b) are
the far-focused and near-focused images, respectively.
Figures 12(c) and (d) are the computed depth map and
its wireframe plot. Depth maps of all the curved and
planar surfaces are detected with high fidelity and high
resolution without any post-filtering. After 9x9 me-
dian filtering, we get an even better depth map as shown
in Fig. 12(e).
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(e) (confidence value)!/2 map

(b) near-focused image

(d) wireframe of the depth map

(f) wireframe after adaptive coefficient

smoothing

Figure 13. Depth from defocus applied to a scene that includes very weak texture (white background). The larger errors in the region of weak
texture is reflected by the confidence map. An adaptive coefficient smoothing algorithm uses the confidence map to refine depth estimates in

regions with weak texture.

Figure 13 shows results for a scene which includes
areas with extremely weak textures, such as, the white
background and the clay cup. Figures 13(a) and (b) are
the far-focused and near-focused images, respectively.

Figures 13(c) and (d) are the computed depth map and
its wireframe plot. All image areas, except the white
background area, produce accurate depth estimates.
The RMS depth error o 1n the textured background
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is 0.5% of the object distance.!! The error on the ta-
ble surface is 1.0% relative to object distance. Even
the white background area has a reasonable depth map
despite the fact that its texture is very weak. We see
that the confidence map in Fig. 13(e) reflects the lack
of texture in the white background. This has motivated
us to develop a modified algorithm, called adaprive
coefficient smoothing, that repeatedly averages the co-
efficients computed by the rational operators until the
confidence value reaches a certain acceptable level.
Fig. 13(f) shows the depth map computed using this
algorithm.

The last experiment seeks to quantify the accuracy of
depth estimation. The target used is a plane paper sim-
ilar to the textured background in the scene in Fig. 12.
This plane is moved in steps of 25 mm and a depth
map of the plane is computed for each position. Since
the estimated depth 8 i1s measured on the image side,
it is mapped to the object side using the lens law of
Eq. (2). The optical settings and processing conditions
are the same as those used in the previous experiments.
The plot in Fig. 14 illustrates that the algorithm has
excellent depth estimation linearity. The RMS error of
a line fit to the measured depths is 4.2 mm. The slight
curvature of the plot is probably due to errors in optical
seftings, such as, focal length and aperture.

Depth values for a 50 x 50 area were used to estimate
the RMS depth error for each position of the planar
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fitting error(RMS) = 4.2 mm e
errorbar=+ ¢
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actual depth (mm)

Figure 14. Depth estimation linearity for a textured plane. The
plane is moved in increments of 25 mm, away from the lens. All
plotted distances are measured from the lens. The RMS error relative
to object distance is 0.4% ~ 1.2%.
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surface. In Fig. 14 the RMS errors are plotted as +o
error bars. The RMS error relative to object distance
is seen to vary with object distance. It is 0.4% ~ 0.8%
for close objects and 0.8% ~ 1.2% for objects farther
than 880 mm. This is partly because of the mapping
from the depth measured on the image side to depth
on the object side. The other reason is that the error
in estimated depth o is larger for a scene point with
larger 8, as seen from Eq. (34). Note that this RMS
error depends on the coefficient smoothing and post-
filtering stages. We found empirically that the error has
a Gaussian-like distribution. Using this distribution,
one can show that the error reduces by a factor of 1/8
if the depth map is convolved with an 8 x § averaging
filter.

6. Conclusions

‘We proposed the class of rational operators for passive
depth from defocus. Though the operators are broad-
band, when used together, they provide invariance to
scene texture. Since they are broadband, a small num-
ber of operators are sufficient to cover the entire fre-
quency spectrum. Hence, rational operators can replace
large filter banks that are expensive from a computa-
tional perspective. This advantage comes without the
need to sacrifice depth estimation accuracy and res-
olution. We have detailed the procedure used to de-
sign rational operators. As an example, we constructed
7 % 7 operators using a polynomial model for the nor-
malized image ratio. However, the notion of rational
operators is more general and represents a complete
class of filters. The design procedure described here
can be used to construct operators based on other ra-
tional models for the normalized image ratio. Further,
rational operators can be derived for any desired blur
function.

In addition to the rational operators, we discussed a
wide range of issues that are pertinent to depth from de-
focus. In particular, detailed analyses and techniques
were provided for prefiltering near and far focused im-
ages as well as post-processing the outputs of the ra-
tional operators. The operator outputs have also been
used to derive a depth confidence measure. This mea-
sure can be used to enhance computed depth maps. The
proposed depth from defocus algorithm requires only
a total of 5 convolutions. We tested the algorithm us-
ing both synthetic scenes and real scenes to evaluate
performance. We found the depth detection gain er-
ror to be less than 1%, regardless of texture frequency.
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Depth accuracy was found to be 0.5 ~ 1.2% of object
distance from the sensor.

These results have several natural extensions. (a)
Since some scene areas are expected to have very low
texture frequency, it would be meaningful to embed
the proposed scheme in a pyramid-based processing
framework. Image areas with dominant low frequen-
cies will have higher frequencies at higher levels of the
pyramid. The proposed algorithm can be applied to all
levels of the pyramid and the resulting depth maps can
be combined using the depth confidence measures. (b)
Given the efficiency of the algorithm, it is worth im-
plementing a real-time version using a pipeline image
processing architecture such as the Datacube MV200.
We estimate that such an algorithm would result in at
least 6 depth maps per second of 512480 resolution.
(¢) In our present implementation, we have varied the
position of the image sensor to change the focus setting.
Alternatively, the aperture size can be varied. Rational
operators can be derived for such an optical setup us-
ing the basis functions bp| (&) = o?, bpa(a) = «* and
by () = 1 (see, Watanabe and Nayar, 1995a). (d)
Finally, it would be worthwhile applying the algorithm
to outdoor scenes with large structures.

Appendix A
A.l.  Problem of Image Registration

For the rational operators to give accurate results, the
far-focused image i, and near-focused image i, need to
be precisely registered (within 0.1 pixel) with respect
to one another. However, in most conventional lenses,

magnification varies with focus setting and hence mis-
registration is introduced. Further, in our experiments,
we have mechanically changed the focus setting and, in
the process, introduced some translation between the
two images. If the lens aberrations are small, the mis-
registration is decomposed into two factors—a global
magnification change and a global translation. Of the
two factors, magnification change proves much more
harmful. This change can be corrected using image
warping techniques (Darrell and Wohn, 1988; Wolberg,
1990). However, this generally introduces undesirable
effects such as smoothing and aliasing since warping
is based on spatial interpolation and resampling tech-
niques. We have used an optical solution to the problem
that 1s described in the following section and detailed
in (Watanabe and Nayar, 1995b).

A.l.1. Telecentric Optics. In the imaging system
shown in Fig. 1, the effective image location of point P
moves along the principal ray R as the sensor plane is
displaced. This causes a shift in image coordinates of
the image of P. This variation in image magnification
with defocus manifests as a correspondence like prob-
lem in depth from defocus, as corresponding points in
images iy and i, are needed to estimate blurring.

We approach the problem from an optical perspec-
tive rather than a computational one. Consider the
image formation model shown in Fig. 15. The only
modification made with respect to the model in Fig. 1
is the use of the external aperture A’. The aperture is
placed at the front-focal plane, i.e., a focal length in
front of the principal point O of the lens. This sim-
ple addition solves the problem of magnification vari-
ation with distance « of the sensor plane from the lens.
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Figure I5. A constant-magnification imaging system for depth from defocus is achieved by simply placing an aperture at the front-focal plane
of the optics. The resulting telecentric optics avoids the need for registering the far-focused and near-focused images (Watanabe and Nayar,

1995b).
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Simple geometrical analysis reveals that a ray of light
R’ from any scene point that passes through the center
O’ of aperture A’ emerges parallel to the optical axis
on the image side of the lens (Kingslake, 1983). As a
result, despite blurring, the effective image coordinates
of point P in both images i; and i, are the same as the
coordinate of its focused image Q on iy. Given an
off-the-shelf lens, such an aperture is easily appended
to the casing of the lens. The resulting optical system
is called a telecentric lens. While the nominal and ef-
fective F-numbers of the classical optics in Fig. 1 are
f/a and d; /a, respectively, they are both equal to f/a’
in the telecentric case. The magnification change can
be reduced to an order of less than 0.03%, ie., 0.1
pixel for a 640x480 image. A detailed discussion on
telecentricity and its implementation can be found in
(Watanabe and Nayar, 1995b). We recently used this
idea to develop a real-time active depth from defocus
sensor (Nayar et al., 1995; Watanabe et al., 1995).

A.1.2. Translation Correction. We have seen in
the previous section how magnification changes be-
tween the far-focused and near-focused images can be
avoided. When the focus setting is changed, transla-
tions may also be introduced. Translation correction
can be done using image processing without introduc-
ing any harmful image artifacts. However, the process-
ing must be carefully implemented since we seek 0.1
pixel registration between the two images. The pro-
cedure we use is briefly described here and is detailed
in (Watanabe and Nayar, 1995b). We use FFT-phase
based local shift detection to estimate shift vectors with
sub-pixel accuracy. We divide the Fourier spectra of
corresponding local areas of the two images. Then
we fit a plane to the phases of the ratio of the spec-
tra. The gradient of the fitted plane is nothing but the
relative shift between the two images. Once we get
shift vectors at several positions in the image, similar-
ity transform is used to model the shift vector field.
By fitting the vectors to the similarity model, we can
estimate the global translation and any residual mag-
nification changes, separately (Watanabe and Nayar,
1995b). The residual magnification is corrected by
tuning the aperture position of the telecentric optics.
The translation is corrected by shifting both images in
opposite directions. As we need sub-pixel accuracy,
we interpolate the image and resample it to generate
the registered images. The interpolating function is
the Lanczos4 windowed sinc function (Wolber, 1990).
Since the translation correction remains constant over
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the entire image, a single shift invariant convolution
achieves the desired shift. Though this convolution dis-
torts the image spectrum, since both images undergo
the same amount of shift, the distortion is the same
for both images. This common distortion is eliminated
when the normalized image ratio M/P is computed
before the application of the rational filters. After the
above translation correction, we found the maximum
registration error in our experiments to be as small as
0.02 pixels.

A.2.  Operator Response and Depth Error

The deviation of the ratio functions Gp; (i, v) or
Gui(u, v) after filter design, to those obtained from
fitting the polynomial model to the normalized image
ratio, varies with frequency (u, v), and hence depends
on the texture of the scene. For the filter design de-
scribed in Section 4.1, we need a relation between the
above ratio error and the depth estimation error. Start-
ing with Eq. (12), we get:

Gun(u, v)
Gpi(u,v)

= Pu,v;a)Bs(u,v)
Gpa(u, v)
Gpy1(u,v)

M(u,v; )

+ P(u, v; @) Bru,v)*. (39)

Here, B (u, v) is the depth estimated at a single fre-
quency (u,v). Since u(u,v) in the ratio condition
(13) has not been fixed, we can define Gpy(u, v) =
m(u, v), Gy (u, v) =Gay (u, V)pu(u, v)and G pa (u, v)
= Gpa(u, v)1u(u, v). Then, Eq. (39) becomes:
M (u, v; @)Gu (1, v)
= Pu,v,a)Bs(u,v)
+ P(u, v; @)Gpa(u, v) By (u, v)>.  (40)

By differentiation we get:

M@, v, 0)dG (u, v)
= P(u,v; a)dBs(u,v)
+ P, v; @) By (1, v)’dGpa (u, v)
+3P(u, v; @)Gpa(u, v) By (u, v)’dBy (i, V),
(41)
where, M(u,v; @) and P(u, v; @) can be treated as

constants since we wish to find the error in S8y (u, v)
caused by errors in Gy (4, v) and Gpa(u, v). Solving
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for dBy(u, v), we get:

dBy(u, v)
M, v @)dGpy(u, v) — Pu, v ) By lu, v)3dGpalu, v)
P(u, v; a)(1 + 3Gpa(u, v)By(u, v)?)

(42)

Since Gpo(u, v) is a small correction factor, it can be
approximated by:

dﬂf(u, v)
M@ v e)dGai (u, v) = Plu, vi @)By(u, v) dGpa(u, v)
- P(u, v; )
M(u, v;
= HdGMl(u, v) — Bylu, 3dGpa(u, v)
o~ M(igm(u, v) — Bylu, V)3dGpalu, v)
Ga(u, v @)
_ Brlu, v) _ 3
= Gy A9 ) = Bl v’ dGpa v). (43)

From Eqs. (20) and (23), since cpy < cp; (cpo TEpIE-
sents a small correction), the depth estimate 8 can be
approximated by integrating over all frequencies:

S 15, Mu, v ) Gagi(u, v) dudy
f_woo o0 Plu, v )G py(u, v)du dv

B~
S5 3 Pl vi @) G (u, vy B dy dy

Puvia)Gpru.v)
S [0 Plu, v )G pi(u, v)du dv

Joo0 S22 P(u, v )Gy (u, v)B (i, v) du dy
- ffoocffooo P(u,v;a)Gp1(u, v)dudv ’

(44)
Hence, the error in 8 caused by the error in B (u, v)

18:

48 = oI P(u,v; )Gy (u, v)dB s (u, v) du dv
a 2[5 P, v; )G py(u, v) du dv

(45)

Combining this expression with Eq. (43), we have:

dp

k. This gives us the following bounds on dGyy (¢, v)
and dGpy(u, v):

Gan (1, v)
Plu,v;a)Gp(u, v)
1
Pu,via)Gpi(u,v)’

0g,, (U, V) =«

(47)

0gp, (U, V) =k

where, the | 8¢ (u, v)| was set to | as this represents the
worst case, 1.e., largest normalized depth error.
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Notes

1. This geometric model is valid as far as the image is not exactly
focused, in which case, a wave optics model is needed to de-
scribe the point spread function. Further, it is assumed that lens
induced aberrations are small compared to the radius of the blur
circle (Born and Wolf, 1965).

2. In the past, most investigators have used the Gaussian model
instead of the pillbox model for the blur function. This is mainly
to facilitate mathematical manipulations; the Fourier transform
of a Gaussian function is also a Gaussian which can be converted
into a quadratic function by using the logarithm. As we will see,
in our approach to depth from defocus, any form of blur function
can be used.

3. We found that replacing bp2 () by (¢ — % tanh aa) gives us a
slightly better fit when the defocus model is the pillbox func-
tion. Yet, to reduce the computational cost of solving Eq. (10)
for depth B, we have chosen this simple polynomial model.

~ S 2o (P(u‘U:Q)CJG»:;l(z(lu,LU))ﬂf(“'wdQMl (u, v) = P, v; )G p1 (1, V) By (1, V) dGpa(u, v)) du dv

What are the optimal values of dGp (1, v) and dGps
(u, v) that would minimize the depth error d8? This
question is not trivial as dGys (u, v) and dGpy(u, v)
influence each other in a complex way. To avoid either
of the two terms in the integrand in the numerator from
taking on a disproportionately large value, we have
decided to assume both terms to be constant of value

ffooo ffooo Pu, v, 2)Gp(u, v)dudv

(46)

4. In practice, G pj (4, v) cannot be selected arbitrarily. There are
other restrictions that need to be considered. The exact selection
procedure is discussed later in Section 4.1.

5. This number can be increased from 1.2 to 1.3 if a larger number
of Newton-Raphson iterations are used. However, depth results
in this additional range are not numerically stable in the presence
of noise since the response curves of M /P tend to flatten out.
Hence, we use only one iteration.




6. Ifwe denote fractal dimension (Peitgen and Saupe, 1988) by Dy,,
in the two dimensional case the relation n = 4 — Dy, holds true.
Dy = 3, n = 1 corresponds to the case of extreme fractal, Dy, =
2.5, n = 1.5 corresponds to Brownian motionand Dy, =2, n =
2 corresponds to a smooth image. Finally, n = 0 corresponds
to white noise (completely random image).

7. In Eq. (12), M/P is zero when |(u, v)] — 0. Since a can be
non-zero, 1/Gar1(u, v) = Gpy(u, v)/ Gy, v) must be zero
for Eq. (12) to be valid.

8. Since the above conditions related to kernel size are rough, we
suggest that the linearity of depth estimation be checked (us-
ing synthetic images) to find the best kernel size k;. Such an
evaluation is reported in the experimental section.

9. Weak texture is equivalent to low spectrum power in the high
frequency region.

10. Another method to cope with zero-crossings in the ¢ p; coeffi-
cient image is based on the Hilbert transform (Bracewell, 1965;
Oppenheimn and Schafer, 1989). This approach is detailed in
(Watanabe and Nayar, 1995a).

11. This definition of error is often used to quantify the performance
of range sensors.
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