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Abstract. Conventional vision systems and algorithms assume the imaging system to have a single viewpoint.
However, these imaging systems need not always maintain a single viewpoint. For instance, an incorrectly aligned
catadioptric system could cause non-single viewpoints. Moreover, a lot of flexibility in imaging system design can
be achieved by relaxing the need for imaging systems to have a single viewpoint. Thus, imaging systems with
non-single viewpoints can be designed for specific imaging tasks, or image characteristics such as field of view and
resolution. The viewpoint locus of such imaging systems is called a caustic.

In this paper, we present an in-depth analysis of caustics of catadioptric cameras with conic reflectors. We use a
simple parametric model for both, the reflector and the imaging system, to derive an analytic solution for the caustic
surface. This model completely describes the imaging system and provides a map from pixels in the image to their
corresponding viewpoints and viewing direction. We use the model to analyze the imaging system’s properties
such as field of view, resolution and other geometric properties of the caustic itself. In addition, we present a
simple technique to calibrate the class of conic catadioptric cameras and estimate their caustics from known camera
motion. The analysis and results we present in this paper are general and can be applied to any catadioptric imaging
system whose reflector has a parametric form.

Keywords: catadoptric system, conic section, non-single viewpoint, caustics, viewpoint surface, self-calibration,
sensor resolution

1. Introduction

Traditionally, imaging systems have been designed to
maintain a single viewpoint. In other words, all the
rays of light entering the imaging system intersect at a
single point, called the effective viewpoint. This single
viewpoint model is extensively used in many vision al-
gorithms. Most dioptric (lens-based) imaging systems
are assumed to maintain a single viewpoint. The per-
spective lens based camera is a special type of a single
viewpoint imaging system. Note that, imaging systems
with a single viewpoint are not limited to dioptric
systems alone. Catadioptric (combination of lens and

mirrors) imaging systems have also been designed with
the aim of maintaining a single effective viewpoint.

Single viewpoint catadioptric cameras include
multi-sensor planar mirror systems for panoramic
imaging (Nalwa, 1996) as well as for stereo ap-
plications (Gluckman and Nayar, 1999). Curved
mirrors have also been used in the past. For instance,
hyperbolic (Rees, 1970; Yamazawa et al., 1993) and
parabolic (Nayar, 1997; Baker and Nayar, 1998; Peri
and Nayar, 1997) mirrors have already been shown to
produce single viewpoint catadioptric sensors. These
systems consist of a perspective or telecentric1 lens
and a reflector. The pinhole (entrance pupil) of the lens
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is positioned at one of the focal points of the reflector,
making the other focal point the effective viewpoint.
However, such systems require precise assembly of
the imaging components, failing which the viewpoint
deviates from a single point.

Cameras need not always obey the single viewpoint
constraint. Relaxing this constraint, gives greater flex-
ibility in designing imaging systems. Thus, if we allow
for deviations from a single viewpoint we can trade-off
image characteristics such as field of view and spatial
resolution. Catadioptric cameras that do not maintain
a single view point include the spherical and coni-
cal reflector based designs (Hong et al., 1990; Yagi
and Yachida, 1991; Yagi et al., 1994; Bogner, 1995;
Murphy, 1997; Charles et al., 1987; Bolles et al., 1997;
Derrien and Konolige, 2000). Chahl and Srinivasan
(1997) developed a specially shaped reflector in so that
the visible solid angle at each pixel is the same. Hicks
and Bajcsy (2000) developed a wide angle perspective
projection camera system also using specially shaped
reflectors. In Nayar and Karmarkar (2000), a conical
mirror system was proposed to capture a high reso-
lution 360 × 360 degree stereo panorama. In Hicks
(2002), Srinivasan (2003), a new class of imaging sys-
tems were presented that directly acquire a cylindrical
panorama. None of these imaging systems maintain
a single viewpoint. However, the images acquired by
such imaging systems were processed ignoring non-
single viewpoint effects. Ideally, the imaging geome-
try must be understood in order to correctly process
the acquired images.

When an imaging system does not maintain a single
viewpoint, a locus of viewpoints in three dimensions
is formed, called a caustic (Born and Wolf, 1965). The
caustic is defined as a singularity in the space of the
scene rays. The caustic represents the envelope of all in-
coming scene rays which are eventually imaged. Each
pixel in the image maps to a point on the caustic sur-
face. Also, every point on the caustic maps to an unique
light ray from the scene which eventually gets imaged.
Thus, caustics completely describe the geometry of an
imaging system.

Certain applications demand the imaging system to
have a specific viewpoint surface. In such cases, one
can imagine designing specific imaging systems keep-
ing this desired viewpoint locus in mind. For instance,
Baker and Nayar (1998) the caustic was restricted to a
single point. Peleg et al. (2000), a stereo sensor was de-
signed by constraining the caustic of the camera to be
a circle. Also, mosaics constructed under camera mo-

tion using perspective or non-single viewpoint cameras
have been used for stereo reconstruction (Pajdla, 2002;
Seitz, 2001). Non-single viewpoint sensors have also
been designed to provide specific imaging geometries,
such as near-perspective projection for a specific plane
in the scene (Hicks and Bajcsy, 2000), specific reso-
lution distributions (Hicks and Perline, 2002; Gaspar
et al., 2002; Gachter et al., 2001), amongst other appli-
cations (Weinshall et al., 2002; Pajdla, 2001, 2002).

This paper analyzes caustics of conic catadioptric
systems. By this we mean that the profile of the mir-
ror is a conic section. Conic reflector based cameras
are widely used in vision as well as in astronomical
applications. Also, most surfaces can be locally ap-
proximated by quadrics. It is therefore important to
analyze the viewpoint loci of such imaging systems. In
particular, we raise the following questions:

• What happens to the viewpoint locus when a system
deviates from a single viewpoint? Note that in spite
of using a perspective lens, the catadioptric system
need not have a single viewpoint. Instead, the view-
point locus is described by a caustic surface.

• How does this viewpoint surface affect optical res-
olution characteristics. Specifically, how does the
mirror shape, and relative positioning of the lens
elements affect resolution?

• Finally, given a viewpoint model, is there a simple
way to calibrate such non-single viewpoint systems?
Note that in spite of using a perspective lens and re-
flector, the system as a whole need not maintain a
single viewpoint. Calibration entails finding the map
between every pixel in the image and its correspond-
ing viewpoint.

We begin by deriving the caustic surface for a family
of conic catadioptric systems. By careful parameteriza-
tion of the reflector profile, we present a simple deriva-
tion of the viewpoint locus as a three parameter family
of curves. These caustic surfaces are then analyzed for
their effects on resolution, field of view, and geometric
singularities. In our analysis we consider the principal
rays passing through the entrance pupil of the camera
lens to describe the geometry of the imaging system.
Secondary effects such as blurring2 (due to bundles of
rays) do not interfere with the geometric analysis we
present. Finally, we present a simple self-calibration
technique to estimate the parameters that describe the
caustic surface numerically for a catadioptric camera
using known camera motion. Although every pixel has
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Figure 1. The caustics formed due to light (a) reflecting off the inside of a metal ring and (b) refracting through a spherical lens. Bright
patterns of light on the table illustrate a section of the caustic surface formed. These bright patterns are due to the close bunching together of
light rays near the caustic’s surface. Adapted from Jensen (1996).

an unique viewpoint, calibration of such non-single
viewpoint sensors is reduced to estimating only a few
parameters.

2. Caustics: Loci of Viewpoints

When a light ray interacts with either a reflective or
refractive interface, it may bend and thus alter its path.
These reflected or refracted rays often form an enve-
lope, called the caustic surface (Hamilton, 1828; Born
and Wolf, 1965). A caustic can be defined as a locus
of singularities of these ray (Arnold, 1978; Burkhard
and Shealy, 1973). Caustics formed by reflecting ele-
ments are called catacaustics and those by refractive
elements are called diacaustics. Figure 1 illustrates
caustics formed by (a) reflection by a metal ring and
(b) refraction through a transparent sphere. Near the
caustic, the rays of light bunch up together, thus form-
ing bright patterns as seen in the images. Henceforth,
we use the term caustic to mean both the catacaustic as
well as the diacaustic.

With respect to imaging devices, caustics represent
their loci of viewpoints. The single viewpoint is a de-
generate case of a point caustic. Each point on the
caustic surface represents the three-dimensional posi-
tion of a viewpoint and its viewing direction. Thus,
the caustic completely describes the geometry of the
camera. One can represent compound imaging sys-
tems consisting of multiple imaging components, such
as lenses and reflectors, by simply their effective caus-

tics (see also (Swaminathan et al., 2001; Grossberg and
Nayar, 2001)).

2.1. Computing the Caustic

We now study caustics of catadioptric imaging systems
consisting of a perspective or telecentric lens and a sin-
gle reflector whose profile is a conic section. Although
we use the perspective or telecentric (orthographic pro-
jection) lens, the imaging system as a whole (including
the reflector) need not maintain a single viewpoint.

In analyzing these imaging systems, we follow the
framework of geometric optics. Therefore, for every
pixel we only consider the chief or principal ray asso-
ciated with it. In reality, every pixel is associated with
a bundle of rays from the scene. These rays are needed
to analyze secondary effects such as blurring which
are, however, beyond the scope of this paper.

Many techniques have been proposed to derive the
caustics of reflecting and refractive systems including
the ones based on a local conic approximations (Bruce
et al., 1981) and the Jacobian method (Burkhard and
Shealy, 1973). In (Bruce et al., 1981), the central idea
lies in fact that for conic sections the light rays em-
anating from one of the focal points all meet at the
second focal point. To estimate the caustic point cor-
responding to a point on an arbitrary curve, we first
approximate the curve locally by a conic section such
that one of the foci lies at the entrance pupil of the lens.
Thus, the second focal point (derived analytically) is
the corresponding point on the caustic curve. However,



214 Swaminathan, Grossberg and Nayar

Figure 2. An imaging system consisting of a conic reflector and a perspective lens based camera. The entrance pupil of the lens is located at
distance d from the origin, along the axis of symmetry of the conic section. The reflector profile is also defined in this coordinate frame. A light
ray from the scene reflects off the reflector surface and is imaged after passing through the entry pupil. A telecentric lens is modeled by taking
the limit d → ∞. Note that this imaging system can have a non-single viewpoint in spite of using a perspective lens.

this approach does not extend to three dimensions as
is required in asymmetric systems (see (Swaminathan
et al., 2001) for details).

We use the more general definition of caustics
as points of singularity in the space of scene rays.
Burkhard and Shealy (1973) used this definition and
derived a simple Jacobian based constraint to derive
the caustic. We use the same approach to derive and
analyze caustics of imaging systems.

We first present caustics of rotationally symmetric
catadioptric systems, where the entrance pupil of the
lens is located along the axis of symmetry of the
reflector (see Fig. 2) at a distance d from the origin
O. Telecentric lenses are modeled by taking the limit
d → ∞ i.e. modeling an orthographic projection.
The reflector profile is also defined in this coordinate
frame. Since the system is rotationally symmetric,
the analysis reduces to two dimensions (a vertical
cross section of the imaging system). However, for
rotationally asymmetric systems, we must derive
caustics in three dimensions.

2.1.1. The Reflector Surface. Parameterization of
the reflector surface is an essential step towards com-
puting the caustic surface analytically. Indeed, what-
ever the parameterization for the reflector, a solution
for the caustic surface exists. We found that standard
parameterizations used for conics lead to complicated
solutions that are difficult to analyze. In contrast, the
following generic parameterization yields a simple so-
lution to the caustic surface. Referring to Fig. 2, we
define:

z(t) = t
(1)

γ (t) =
√

(e2 − 1)t2 + 2pt − p2

where, e is the eccentricity and p the focus of the
conic section. This represents elliptic (e<1), parabolic
(e=1) and hyperbolic (e>1) reflectors. The vertex
of the reflector is given by p

1+e . The �-axis is the
directrix of the conic reflector. A point on the reflector
surface is then Sr(t) = [z(t), γ (t)]. Although this
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parameterization has a singularity for spherical reflec-
tors, it makes it easier to analyze and describe the var-
ious geometrical properties of the family of viewpoint
loci. In Appendix A, we derive caustics using a more
generic parameterization which includes the sphere.

2.1.2. The Rotationally Symmetric Caustic Surface.
Figure 2 shows a single reflector based catadioptric
system. The entrance pupil of the lens is located d
units above the origin as shown. The focal point of the
conic reflector lies p units below the origin. A point
in the scene is imaged on the detector, after reflecting
at some point on the mirror surface. From Fig. 2, the
vector along the reflected ray (entering the lens pupil)
is given by:

Vr(t) = [t + d,
√

(e2 − 1)t2 + 2pt − p2]. (2)

Since we know the geometry of the reflector, its surface
normal Nr(t) can be derived analytically. Reflecting

Vr(t) about the surface normal Nr(t) we derive the
pencil of incident rays Vi(t) as:

Vi(t) = Vr(t) − 2Nr(t)(Nr(t) · Vr(t)). (3)

A point along the incident ray (along Vi(t)) parame-
terized by its distance r from the point of reflection
Sr(t) is then given by: Sr(t) + r · Vi(t). The caustic is
tangential to the ray along Vi(t) and hence for some rc

the caustic point lies at (see Fig. 3):

Sr(t) + rc · Vi(t)./vspace ∗ −3pt (4)

A point on the caustic is defined as a singularity in the
space of scene rays, parameterized by (rc, t) (Arnold,
1978). Thus, in the limit, traversing infinitesimally
along Vi(t) (change in rc) at the caustic, is equiva-
lent to traversing from one ray to the next (change
in t). At this point, the determinant of the Jacobian
J (Sr(t) + rc · Vr(t)) must vanish. Let us now denote
the Z and � components of Sr(t) by Sr(t)z and Sr(t)γ ,

Figure 3. Section of the reflector showing incident rays from the scene reflected into the lens. The incident ray Vi(t) is tangential to the caustic
surface. The distance of the point on the caustic from the point of reflection is denoted by rc. At the caustic point, if we travel infinitesimally
along Vi(t), we would also move from one ray onto the next. This is because the caustic is also the envelope of the scene rays (incoming rays).
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respectively, and those of Vi(t) by Vi(t)z and Vi(t)γ .
Enforcing the vanishing constraint on Eq. (5) we get:

det

([ .
Sr(t)z + rc · .

Vi(t)z Vi(t)z.
Sr(t)γ + rc · .

Vi(t)γ Vi(t)γ

])

= 0, (5)

where,
.
Sr(t) = dSr(t)

dt and
.
Vi(t) = dVi(t)

dt . Solving for rc

we get:

rc(t) =
.
Sr(t)γ Vi(t)z − .

Sr(t)zVi(t)γ
.

Vi(t)zVi(t)γ − .
Vi(t)γ Vi(t)z

. (6)

For the class of conic catadioptric cameras, we substi-
tute Eqs. (2, 2) into Eq. (6), to get rc:

rc(t) = t(2p + t(e2 − 1))(t(d(1 − e2) + p) − p(d + p))

2p2(p2 − d2) − 6tp2(d + p) − 3t2 p(d + p)(e2 − 1) − t3(e2 − 1)(d(e2 − 1)d − p)
. (7)

Substituting Eq. (7) in Eq. (4), we get the caustic pro-
file for the family of rotationally symmetric conic cata-
dioptric cameras as a three parameter (e, p, d) family
of curves:

zc = Nz

Dc
,

(8)

γc = Nγ

Dc
, where,

Nz = 2p3(d + p)2 + 6(d(e2 − 1) − p)p2(d + p)t

+ 3p(d + p)(d(2 − 3e2 + e4) + 2p)t2

+ (d2(e2 − 2)(e2 − 1)2 − d(4 − 7e2 + 3e4)p

+ 2(e4 + e2 − 1)p2)t3,

Nγ = 2(d + p)(d − de2 + p + e2 p)

((e2 − 1)t2 + 2pt − p2)
3
2 ,

Dc = e2(2(d − p)p2(d + p) + 6p2(d + p)t

+ 3(e2 − 1)p(d + p)t2 + (e2 − 1)

(d(e2 − 1) − p)t3).

The caustic produced due to a telecentric lens and a
conic reflector is obtained by taking the limit d→∞ in
Eq. (8):

z∞
c = (2p3 + 6(e2 − 1)p2t + 3(2 − 3e2 + e4)pt2

+ (e2 − 2)(e2 − 1)2t3)/(2e2 p2), (9)

γ ∞
c = (

(1 − e2)((e2 − 1)t2 + 2pt − p2)
3
2
)
/(e2 p2).

We observe from Eq. (8) that the caustic surface is de-
pendent on the distance d of the entry pupil with respect

to the reflector, the reflector geometry parameterized
by eccentricity e, and the focal point p. Since conic
reflector based catadioptric systems also produce sin-
gle viewpoint imaging systems (see Baker and Nayar,
1999), we ask: At what distance d0 of the entranced
pupil would the system produce a point caustic (single
viewpoint) at the focus (d, 0) of the reflector? From
Eq. (8), we set zc = p, and �c = 0 and solve for d0:

d0 = p
e2 + 1

e2 − 1
. (10)

In Eq. (10), setting e =1 (parabolic reflector) gives
d0 = ∞, necessitating the use of a telecentric lens as
in Nayar (1997). Solutions for elliptical (e < 1) and

hyperbolic (e > 1) reflectors require the use of perspec-
tive lenses located at the focal point of the reflectors.
Thus, using the caustic surfaces derived above, we can
describe single viewpoint systems as a special case of
the general solution.

2.1.3. The Asymmetric Caustic Surface. As noted
above, when the imaging system is rotationally sym-
metric, we can compute its caustic surface as a 2D pro-
file. This simplifies computation and provides a sim-
ple solution for the three dimensional caustic surface.
However, when the system is not rotationally symmet-
ric, we need to compute the caustic in three dimensions
(see Swaminathan et al. (2001) for details). This asym-
metry occurs when the entrance pupil is not along the
axis of the reflector or the reflector itself is not rota-
tionally symmetric. We now present the derivation of
the caustic surface for this generic setting.

Referring to Fig. 4, let Sr(t, u) be a point on the three
dimensional reflector, parameterized by (t, u). Let O
denote the position of the entrance pupil of the lens. For
any such point Sr(t, u) on the reflector, the direction of
the ray entering the pupil can be derived analytically
as:

Vr(t, u) = O − Sr(t, u). (11)

From the known reflector geometry we can derive the
vector Vi(t, u) along the incoming light ray from the
reflection equation, similar to Eq. (3).

Again, we denote the distance from the point of
reflection at which the caustic lies along Vi by rc. The
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Figure 4. A lens based camera placed off-axis with respect to a
rotationally symmetric conic reflector parameterized by (t, u). The
viewpoint locus (caustic surface) of such imaging systems is not ro-
tationally symmetric and hence must be derived in three dimensions.
The light ray from the scene Vi(t, u) reflects off the reflector surface
at Sr(t, u) and is imaged after passing through the entrance pupil O
along the reflected ray Vr(t, u).

caustic surface then is given by:

Sc(t, u) = Sr(t, u) + rc · Vi(t, u) (12)

Applying the Jacobian method (Burkhard and Shealy,
1973), we get:

det [J (Sr (t, u) + rc · Vi (t, u))] = 0

det











∂Sr(t, u)X

∂t
+ rc · ∂Vi(t, u)X

∂t

∂Sr(t, u)X

∂u
+ rc · ∂Vi(t, u)X

∂u
Vi(t, u)X

∂Sr(t, u)Y

∂t
+ rc · ∂Vi(t, u)Y

∂t

∂Sr(t, u)Y

∂u
+ rc · ∂Vi(t, u)Y

∂u
Vi(t, u)Y

∂Sr(t, u)Z

∂t
+ rc · ∂Vi(t, u)Z

∂t

∂Sr(t, u)Z

∂u
+ rc · ∂Vi(t, u)Z

∂u
Vi(t, u)Z











= 0, (13)

where, the X,Y and Z components of the vectors are
denoted as Sr(t, u)X , Sr(t, u)Y and Sr(t, u)Z , respec-
tively. Solving the above equation yields a quadratic
equation in rc, the roots of which give us the ana-
lytic solution for rc. The root of the equation can be
substituted in Eq. (12) to derive the analytic form of
the caustic in three dimensions. We do not explicitly
present this result as the equations are quite unwieldy.

2.2. Examples of Caustic Surfaces

We now present the viewpoint loci for typical conic
catadioptric systems. Figures 5(a), (d) and (g) illus-
trate viewpoint loci (gray curves) for a catadioptric
sensor consisting of a perspective lens and an elliptic,
a parabolic and an hyperbolic reflector (dark curves),
respectively. The dotted curves in Fig. 5(a) denote the
part of the elliptic reflector that is self-occluded as
well as its corresponding “virtual-caustic”. Similarly,
Fig. 5(b), (e) and (h) show profiles for catadioptric
systems consisting of a telecentric lens and an elliptic,
parabolic and hyperbolic reflector, respectively. Note
that in Fig. 5(e) the caustic degenerates to a point as
expected.

Figure 5(c) is a three-dimensional plot of the caus-
tic surface for a symmetric system consisting of a
parabolic reflector and a perspective lens. Figure 5(f)
depicts the caustic surface in three dimensions for an
asymmetric (pupil not on axis of symmetry) catadiop-
tric system. Figure 5(i) is the viewpoint locus for a
catadioptric system including a hyperbolic reflector
and a telecentric lens. Unlike the other caustic sur-
faces that are bounded by their reflectors’ sizes, this
caustic surface expands radially.

From the above examples it is clear that the view-
point locus can be potentially large and at times as large
as the reflector itself. To process the image formed by
such a system, one must first understand the geometry
of the imaging system. The viewpoint locus derived
using the framework of caustics completely describes
the geometry of the imaging system.

3. Properties of Caustic Surfaces

We now present some characteristic properties of caus-
tics such as surface singularities and field of view along
with their relevance to the design of imaging systems.
These apply to both convex reflectors and concave re-
flectors. Most of the observations made are relevant
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Figure 5. Viewpoint loci for conic catadioptric systems. Column one: Caustics for symmetric systems consisting of a perspective lens and an
(a) elliptic, (d) parabolic and (g) hyperbolic reflector. Column two: Viewpoint loci for catadioptric systems consisting of a telecentric lens and an
(b) elliptical, (e) parabolic and (h) hyperbolic reflector. Column three: (c) Caustic surface in 3D for a symmetric catadioptric system consisting
of a parabolic reflector and perspective lens. (f) Caustic surface for an asymmetric catadioptric camera consisting of an off-axis perspective
lens and a parabolic reflector. (i) Caustic surface for a telecentric and hyperbolic reflector system. All caustics were derived using the Jacobian
technique described in Section 2.

to both rotationally symmetric as well as asymmetric
imaging systems. However, derivations are shown for
the rotationally symmetric systems for clarity.

3.1. Singularities on the Caustic Surface

As seen from Fig. 6, caustic surfaces have singu-
larities which we refer to as cusps. These corre-

spond to the points on the reflector where its sur-
face normal coincides with the reflected light ray
(along Vr(t, u)) which enters the entrance pupil of the
lens (see Fig. 6). This constraint in general is given
by:

Vr(t, u) = −Nr(t, u).
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Figure 6. Typical catadioptric camera consisting of a reflector
and a perspective lens. The caustic has a singularity denoted by ZC
which we call the cusp. Also shown is the tangent ray to the reflector
surface. The point of tangency T is also a point on the caustic surface.

For rotationally symmetric systems with convex or
concave reflectors, we get:

Vr(t) = −Nr(t). (14)

In such systems, the cusp lies along the optical axis.
Referring to Fig. 6, we only need to compute the Z
coordinate of the cusp. From Eqs. (8) and (14) we
solve for the Z coordinate of the cusp:

ZC = p((1 + e)(2 + e + e2)d + 2(1 + e + e2)p)

(1 + e)(2(1 + e)d + (2 + e + e2)p)
.

(15)

3.1.1. The Cusp and Rotationally Symmetric Systems.
We now discuss the significance of the cusp to the de-
sign of imaging systems whose caustics are rotationally
symmetric. We pose the problem of creating a spherical
or cylindrical panorama from the image acquired from
such a non-single viewpoint sensor. In such cases, a sin-
gle center of projection is assumed. Since our sensor
does not have a single center of projection, parallax ef-
fects (due to the multiple viewpoints) are introduced in
the panorama called caustic distortions (Swaminathan
et al., 2003). The location of the cusp can be used to ap-
proximate a single viewpoint to create near perspective
views.

We observe that any incoming light ray, which even-
tually gets imaged by the detector, meets the optical

axis at some point. At the cusp, the light ray passes
along the optical axis into the lens. As we move ra-
dially outwards, all incoming light rays (tangent to
the caustic profile) intersect the optical axis at a point
which moves towards the entrance pupil of the lens.
Finally, at the very extreme end of the caustic surface,
where it touches the reflector, the incoming ray grazes
the reflector and meets the optical axis at the entrance
pupil. Thus, all the light rays entering the imaging sys-
tem (tangent to the caustic surface) intersect the optical
axis between the entrance pupil and the cusp. The cusp
and the entrance pupil therefore bound the possible lo-
cations of the virtual center of projection (single view-
point). More importantly, the density of light rays near
the cusp is highest. Thus, more viewpoints lie closer to
the cusp than at any other point along the optical axis.
This makes the cusp location a good candidate for the
single viewpoint approximation.

As the entrance pupil moves closer to the reflector,
the cusp moves towards the entrance pupil. However,
when the lens moves farther from the reflector, the cusp
moves in the opposite direction. In Eq. (15), taking the
limit d → ∞, we find that the position of the cusp
converges to:

Z∞
C = p(2 + e(1 + e))

2(1 + e)
. (16)

Thus, even if the exact location of the entry pupil is
unknown, one can estimate an upper bound on the
cusp’s location.

3.2. Caustics and Field of View

Catadioptric systems consisting of convex reflectors
have a pencil of rays which graze the reflector surface
(see Fig. 7). These rays define the limit of the field of
view of the camera. We now show that for reflectors
without points of inflection, the point of tangency of
the grazing ray on the reflector surface, corresponds to
its caustic point.

Theorem 1. The point on the reflector at which a
light ray passing through the entrance pupil pupil of
the lens grazes the reflector, is also its caustic point.

Proof: Let any point on the reflector be given by
Sr(x, y) = {x, y, Z (x, y)}. Let the position of the en-
trance pupil of the lens be given by P = {U, V, W }.
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Figure 7. A catadioptric system consisting of an hyperbolic re-
flector. A entry pupil at df possesses a ray which is tangent to the
hyperbola at a point along the reflector. However, no light ray enter-
ing the pupil d∞ can be tangential to the reflector.

The light ray entering the pupil is then given by:

Vi(x, y) = Sr(x, y) − P (17)

For the known reflector, the surface normal is derived
as:

Nr(x, y) = 1
√

1 + ∂ Z (x,y)
∂x

2 + ∂ Z (x,y)
∂y

2

×
{

− ∂ Z (x, y)

∂x
,−∂ Z (x, y)

∂y
, 1

}
(18)

Since we know that the reflected ray along Vr(x, y)
grazes the reflector surface, it must lie in the plane
tangent to Sr(x, y). We can thus select an appropriate
coordinate frame such that the XY-plane corresponds to
the tangent plane, giving ∂ Z (x,y)

∂x = 0 and ∂ Z (x,y)
∂y = 0.

Also, since the pupil P lies in the XY-plane, we have
W = 0.

Using the method described in Burkhard and Shealy
(1973) we compute the desired Jacobian as:

J (Sr(x, y) + rc · Vr(x, y))

=






−U 1 + rc 0
−V 0 1 + rc

0 −2rc

(
V

∂2 Z (x, y)

∂x∂y
+ U

∂2 Z (x, y)

∂2x

)
−2rc

(
V

∂2 Z (x, y)

∂2 y
+ U

∂2 Z (x, y)

∂x∂y

)




 . (19)

Solving for rc (when the determinant of the Jacobian
vanishes) we get:

rc = 0

rc = −1
(20)

The solution rc = 0 corresponds to the point of reflec-
tion on the reflector. This proves that the caustic point
and the point of tangency coincide. �

We showed that in three dimensions the grazing ray
is tangent to the reflector at a point which is also a
point on the caustic surface. A similar result has been
already shown for caustics of 2D curves with respect
to a point in a plane (see Bruce et al., 1998).

3.2.1. Location of the Tangent Point. We now de-
rive the exact parametric form for the location of the
“tangent point” using the constraint rc = 0 for the class
of rotationally symmetric conic catadioptric systems.
Setting Eq. (6) to be zero, we solve for the point of
tangency parameterized by tr=0:

tr=0 = p(d + p)

d + p − de2
. (21)

Within the class of conic reflectors, only hyperbolic
mirrors do not always have a grazing ray because the
reflector is asymptotic. Referring to Fig. 7, if the en-
trance pupil of the lens is placed between the vertex
of the reflector and the point of intersection between
its two asymptotes, a tangent ray (grazing ray) exists
which touches the reflector at a finite point. In contrast,
if the entrance pupil is located farther away, then there
is no tangent ray to the reflector. The caustic of such
an imaging system is also asymptotic, and approaches
but never touches, the reflector surface.

For conic reflector based catadioptric imaging sys-
tems, we observe that the caustic is generally contained
within the reflector. Thus, the grazing point on the re-
flector surface, generally also bounds the caustic size.
This bound is important when analyzing distortions
due to parallax in “perspective” views computed from
images acquired with such non-single viewpoint imag-
ing systems.
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4. Resolution

So far we analyzed the geometry of the viewpoint sur-
face, its singularities and its field of view. We now
analyze the effect of such viewpoint surfaces on the
resolution characteristics of the sensor. We derive an
analytic expression for resolution and show how small
changes in the design impact resolution dramatically.
Baker and Nayar (1999) showed that conic reflector
based single viewpoint catadioptric cameras possess
radially increasing resolution. Such imaging systems
are a special case of conic catadioptric cameras. We
now extend their analysis to include non-single view-
point imaging systems as well.

4.1. Single Reflector with Perspective Lens

Consider an infinitesimal area δA in the imaging plane.
The angle subtended by this region about the entrance
pupil is ψ . Let this area image an infinitesimal solid
angle δω of the scene (see Fig. 8). The resolution of
the imaging system is then defined as δA

δω
. Thus, smaller

the solid angle visible at the infinitesimal region δA,
greater is the resolution of the imaging system.

The distance of the image point corresponding to
the elemental area δA from the entrance pupil is:
f/Cos(ψ). Then, the solid angle subtended by the fore-
shortened area δACos(ψ) at the entrance pupil of the
lens is:

δϑ = δACos3(ψ)

f 2
, (22)

where f is the focal length of the lens. The area pro-
jected onto the reflector by δA can then be derived
using the solid angle δϑ as:

δS = δACos(ψ)(d + z(t))2

( f 2Cos (φ))
, (23)

where, φ is the angle between the principal ray corre-
sponding to δA and the surface normal at δS. The fore-
shortened area visible to the viewpoint (of the principal

Figure 8. A pixel element of area δA in the image plane projects through the entry pupil of the lens onto the reflector as a region of area δS.
The pupil is located at (0, 0, d), with respect to the origin. The principal ray from δA reflects off the reflector at sR(x(t, θ ), y(t, θ ), z(t, θ )). The
corresponding viewpoint on the caustic surface as as shown above. The solid angle subtended at this viewpoint is then δω = δS/r2

c , where rc

is the distance of the viewpoint from the reflector (see Eq. (6)). Resolution is then defined as a ratio of δω to δA.
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ray) on the caustic surface is therefore:

δACos (ψ)(d + z(t))2

f 2
. (24)

The solid angle subtended at this caustic point is
then given by:

δω = δACos (ψ)(d + z(t))2

f 2 · rc(t)2 , (25)

where, rc(t) is the distance of the viewpoint from the
reflector surface (see Eq. (7)). The resolution for any ro-
tationally symmetric catadioptric camera is then given
by:

δA

δω
= f 2 · rc(t)2

Cos (ψ)(d + z(t))2
. (26)

Substituting Eq. (7) in Eq. (26) we obtain the expres-
sion for resolution of a rotationally symmetric conic
catadioptric system.

We now present the resolution characteristics for
some configurations of conic catadioptric cameras.
These consist of a conic reflector (whose profile is
a conic section) and a perspective lens system, whose
entrance pupil is located at a finite distance from the
reflector. The resolution results presented are only for
rotationally symmetric systems.

Figure 9 illustrates the resolution across a radial slice
of the imaging plane. The curves have been normal-
ized with respect to magnification such that the total

field of view in all three cases are the same. This fa-
cilitates a fair comparison of resolution between the
three catadioptric systems. As seen, resolution drops
drastically beyond some distance from the image cen-
ter. This characteristic gradually changes as entry pupil
approaches the focal point of the reflector (the system
becomes single viewpoint). For this configuration, the
resolution increases radially, consistent with Baker and
Nayar (1999).

We now give an intuitive explanation as to why res-
olution tends to drop towards the edge of the caustic.
Typically, the caustic approaches the reflector surface
radially outwards. Eventually the caustic touches the
reflector at the “tangent point”. Thus, rc → 0 and hence
the solid angle subtended increases (see Eq. (25)), re-
ducing resolution. In contrast with single viewpoint
systems, rc increases as we move radially outwards,
thus increasing resolution.

4.2. Single Reflector with Telecentric Lens

We now discuss a catadioptric imaging system con-
sisting of a telecentric lens and a single conic reflector.
From Fig. 10, projection of the area δA in the imaging
plane onto the reflector is δA/Cos(φ) . The foreshort-
ened patch which is visible from the viewpoint on the
caustic surface is δA. The solid angle subtended at this
viewpoint is given by:

δω∞ = δA

r∞
c

2 , (27)

Figure 9. Plots of resolution for catadioptric sensors having a perspective lens based camera and an elliptic, a parabolic and an hyperbolic
reflector. The plots illustrate the resolution across a radial slice of the image plane when the pupil is located at (a) the origin (d = 0) and (b) at
d = 6.
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Figure 10. A pixel element of area δA in the image plane projects
through the telecentric lens (orthographic projection) onto the re-
flector as a region of area δS. The principal ray from δA (cor-
responding to the center of the area δA) reflects off the mirror
at sR(x(t, θ ), y(t, θ ), z(t, θ )). The corresponding viewpoint on the
caustic surface is as shown above. The solid angle subtended at this
viewpoint is then δω = δS/r2

c , where rc is the distance of the view-
point from the reflector (see Eq. (6)). Resolution is then defined as a
ratio of δω to δA.

where, rc is the distance of the viewpoint from the point
of reflection on the reflector. If M is the magnification
factor (see Baker and Nayar, 1999), resolution of such

a sensor is given by:

δA

δω∞ = M · r∞
c

2
. (28)

For conic reflectors, the distance of the viewpoint
from the point of reflection is given by:

r∞
c = − (t(p + (e2 − 1)t)(2p + (e2 − 1)t))

(2p2)
. (29)

Then, resolution for a conic catadioptric imaging
system with a telecentric lens is:

δA

δω∞ = M · (t(p + (−1 + e2)t)(2p + (−1 + e2)t))2

4p4
.

(30)

We now apply results derived in Eq. (30) to
conic catadioptric cameras fitted with a telecentric
lens and study their resolution characteristics (see
Fig. 11).

For parabolic reflectors, the caustic reduces to a sin-
gle point (see Baker and Nayar, 1998, 1999). Thus, the
resolution increases radially as expected. The caustic
surface for an elliptical reflector with telecentric lens is
similar in form to that with a perspective lens. Hence,
the resolution characteristics are also similar, exhibit-
ing an initial rise and then a drop towards the periphery.
Finally, the hyperbolic reflector yields a caustic which
expands (see Fig. 5(i)) in a direction opposite to that of

Figure 11. (a) Resolution across a radial slice of the image plane by a catadioptric sensor consisting of a telecentric lens and a parabolic,
elliptic and hyperbolic reflector respectively. The resolution plots have been normalized to illustrate the manner in which resolution changes
across the image plane. (b) For an elliptic reflector based catadioptric cameras, the resolution always drops to zero at the periphery of the field
of view. This drop to zero corresponds to the point on the reflector at which the caustic surface touches it (see Eq. (21)). However, there is no
such all in resolution for the case with parabolic or hyperbolic reflectors.
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Figure 12. (a) Setup to synthesize images of a catadioptric camera viewing a cylinder that has a checkerboard pattern on its inside. A radial
section of the acquired image using a perspective lens and (b) an elliptic reflector and (c) a parabolic reflector. In both cases, the checkerboard
pattern initially increases in size then flattens to a curve at the periphery due to the drop in resolution. Note that the checkerboard pattern, at the
right edge of the image, is the actual cylinder seen past the reflector. (d) Radially increasing checkerboard pattern due to the single viewpoint
maintained by a parabolic reflector and telecentric lens-based imaging system.

the point of reflection. This results in radially increas-
ing resolution.

Figure 12(b)–(d) show the changing resolution by
imaging a checkerboard pattern across the field of
view. To avoid potential errors in calibration of such
non-single viewpoint catadioptric sensors, we used
a rendering system to synthesize images. As shown
in Fig. 12(a), the catadioptric sensor was placed at
the center of a narrow cylinder whose insides have a
checkerboard pattern. The small checkerboard pattern
is reflected by the mirror, into the lens based cam-
era. Sections of the rendered images are shown in
Fig. 12(b)–(d) and correspond to sensors utilizing an
elliptic reflector and perspective lens, a parabolic re-
flector and perspective lens, and a parabolic reflector
with telecentric lens, respectively.

As predicted, resolution for the elliptic reflector
based sensor (see Fig. 12(b)), rises and then drops at
the periphery. Similarly, in Fig. 12(c), the resolution
for the parabolic reflector with perspective lens drops
at the periphery (tangent point on reflector). This is
observed by the increase of the area of the rectangles
in the image, finally getting compressed to a thin strip

at the periphery. However, in Fig. 12(d), the parabolic
reflector with telecentric lens based sensor has an in-
creasing resolution similar to our prediction and that
by Baker and Nayar (1999).

4.3. Designing Resolution Specific Sensors

The analytic expressions for resolution of catadioptric
cameras are not restricted to conic reflectors alone. In
general, the same framework can be extended to any
mirror shape. Moreover, the formulae derived above
not only aids in analyzing the resolution of the sensor,
but can also be used to drive the system’s design (Hicks
and Perline, 2002; Gaspar et al., 2002; Gachter et al.,
2001).

Consider the class of conic catadioptric systems for
which resolution is parameterized by the geometry of
the reflector. Given an á priori resolution curve, we
can “fit” the right parameters in the model (e, p, d, f),
that most closely approximate the required curve. In
general setting, we could estimate any parametric re-
flector shape for a prescribed resolution characteristic.
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It should however be noted that by fixing the resolu-
tion, the imaging system need not maintain a single
viewpoint.

5. Self-Calibration of Non-Single
Viewpoint Cameras

So far we discussed the geometry and resolution char-
acteristics of conic catadioptric imaging systems. We
derived a parametric expression for their viewpoint loci
in terms of the geometry and location of the various
imaging components. If the exact geometry and config-
uration of the imaging components such as lenses and
mirrors is known, the caustic or viewpoint locus can
be derived analytically. However, when these parame-
ters are unknown, self-calibration is required. Although
every pixel has an unique viewpoint and viewing di-
rection, the caustic formulation reduces the complexity
of calibration to that of estimating only a handful of
parameters.

In the past, techniques for calibrating single view-
point catadioptric systems have been suggested using
a single image (Geyer and Daniilidis, 1999) or cam-

era motion (Kang, 2000). Recently, Grossberg and
Nayar (2001) suggest using caustics to represent
generic imaging systems, and also presented a cali-
bration technique which uses known motion as well as
known scene points using an active display of known
light patterns. In contrast, our technique calibrates non-
single viewpoint systems having a parametric form for
the caustic, using only known camera motion and point
correspondences between views of unknown scene
points by estimating the model parameters.

5.1. Objective Function Formulation

We pose the caustic estimation problem as one of er-
ror minimization. As shown in Fig. 13, let p1 and p2

be the images of a static scene point P, in the two
views. From the hypothesized parameter values (dur-
ing search), we map p1 and p2 to their corresponding
viewpoints (S1 and S2) as well as their viewing di-
rections (V1 and V2). Camera motion is not the only
factor that contributes to a new viewpoint. Since the
image is formed by reflection from a curved surface,
the second view is reflected from a different point on

Figure 13. The catadioptric imaging system is represented here by only its caustic surface (viewpoint locus). The two caustic surfaces denote
the same camera after being given a known translation T. An unknown scene point P visible from both views gets imaged at two point p1 and p2

respectively. From the caustic model and the hypothesized parameters during search, we map these image point to their respective viewpoint S1

and S2 and their viewing directions V1 and V2. When the right model parameters are estimated, the two position vectors (light rays at viewpoints)
must meet at the scene point.
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the reflector. This maps to a different position on the
caustic as illustrated in Fig. 13. Since the two light rays
come from the same scene point, they must intersect at
the scene point. This happens when the hypothesized
caustic parameters match that of the system.

In general, we can define the objective function as
the distance between these to rays. However, we found
it more stable to define the error function in the image
space. To do so, we first derive in closed form, a point
P̃ along V1 which is closest to ray V2 (this is the
best estimate of the scene point P). This hypothesized
scene point P̃ is then mapped onto the image plane
in the second view, using the caustic model. We then
define the error as the disparity between the image of
P̃ in the second view p̃2 and known image in the p2:

ε = ‖ p̃2 − p2‖2 (31)

The objective function is defined over all the pairs of
point correspondences between the two views. Thus,
if pj

i refers to the ith image point in view j, then the
objective function for N scene points is given by:

ξ =
∑

∀i∈N

∣∣ p̃2
i − pi

2
∣∣
2 (32)

5.2. Calibrating a Real Sensor

We now present calibration results on a real non-single
viewpoint catadioptric sensor. The sensor consists of

a perspective lens based high resolution digital cam-
era and a spherical reflector (ball bearing). The re-
flector was two inches in diameter and was placed
approximately 150 mm below the digital camera (see
Fig. 14(a)). The catadioptric camera was placed rigidly
on a translation stage to facilitate accurate camera mo-
tions. Between acquiring the two views, the sensor was
translated precisely by 20 mm sideways (along the Y
axis). Figure 14(b) shows a typical image acquired by
this catadioptric sensor.

Since the parameterization in Section 2 is singular
for a sphere, we parameterize used an implicit defini-
tion of the mirror profile as:

A · z2 + γ 2 + B · z = C. (33)

which includes the entire class of conic reflectors. As
before, the entrance pupil is at a distance d from the
origin along the Z axis. The caustic surface is then
described by a four-parameter (A, B, C, d) family of
curves (see Appendix A).

It should be noted that the robustness of the al-
gorithm depends on the number of free parameters
of the caustic model to be estimated. Furthermore, it
is imperative that the chosen point correspondences
come from scene points that are close to the imag-
ing system. Just like in stereo, parallax effects dimin-
ish with greater distance from the imaging system,
thereby minimizing image disparity produced by the
the viewpoint locus. In our experiment, we used 41

Figure 14. (a) A catadioptric camera consisting of a perspective lens based digital camera and a spherical reflector (ball-bearing). The
reflector’s radius is 25.4 mm, and lens’ entry pupil is approximately 150 mm above the center of the sphere. The catadioptric camera was
placed on a translation stage and translated by 20 mm along the Y axis. (b) Sample image acquired during the calibration process. Each image
is 2048×1536 in size. We used 41 feature points across a 180 degree field of view to calibrate the imaging system.
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Figure 15. Estimated and ground truth parameters for the cata-
dioptric camera shown in Fig. 14. The estimation was done using
constrained minimization routines in Matlab.

scene points (image correspondences) to guide the
non-linear search. Since we know the reflector to be
spherical we only need to estimate the focal length f
of the perspective lens, the distance d of the lens’s en-
trance pupil from the reflector, and the radius

√
C of the

reflector.
Figure 15 provides a comparison between the es-

timated model parameters and the ground truth. The
ground truth is based on careful manual measurement
of the required model parameters including the radius
of the sphere, its distance from the entrance pupil and
the focal length of the perspective cameras used in the
setup. These parameters determine the ground truth
caustic profile plotted in Fig. 16.

The radius of the reflector, estimated using our
two view based calibration method, is accurate to
within a few millimeters. The estimated focal length
is also close to the ground truth. However, the esti-
mate of d is less accurate. This is either due to in-
correct convergence of the non-linear search or due
to inaccuracy in the measurement of the ground truth.
Once the model parameters are estimated we can plot
the viewpoint locus for the estimated caustic profile
(dotted curve) against ground truth (solid curve) (see
Fig. 16).

Figure 16. Ground truth (solid curve) and estimated caustic (dotted
curve) for the imaging system shown in Fig. 14. As seen, the error in
the estimated viewpoint locus of the camera is marginal and follows
the ground truth caustic closely.

6. Summary

For a while it has been considered necessary for imag-
ing sensors to maintain a single viewpoint. In reality
this limits the flexibility one has in designing optical
systems. For instance, we know only conic reflectors
provide single viewpoint catadioptric systems. Thus,
one must use an elliptical, parabolic or hyperbolic re-
flector with specific lenses (perspective of telecentric).
Also, such imaging systems require precise alignment
of the various imaging components, without which the
system deviates strongly from a single viewpoint.

If we deviate from the single viewpoint constraint,
then we have much more flexibility in designing imag-
ing systems. For instance, we are no longer limited
to using only conic reflectors. More exotic reflectors
could be used to develop new sensors. This paper
presents a step towards understanding such non-single
viewpoint imaging systems. We focused on conic re-
flectors not only because most catadioptric systems
utilize such reflectors but also because locally any sur-
face can be approximated by quadrics.

We derived a concise analytic expression for the
loci of viewpoints (caustics) of catadioptric imaging
systems utilizing conic reflectors. In such imaging sys-
tems, every pixel has an unique viewpoint. Using the
framework of caustics, the viewpoint surface can be pa-
rameterized with a small number of parameters. These
parameters depend on the surface geometry of the re-
flector and the relative location of the entrance pupil
of the lens with respect to the reflector. Under this
general framework, the single-viewpoint catadioptric
camera was also shown to be a special case of the
general solution. Any imaging system, whose compo-
nents (lenses and reflectors) are completely known, can
be replaced by the caustic surface for the purposes of
analysis.

Apart from deriving an analytic expression for the
caustic surface, we also studied other geometric prop-
erties of the sensor. For instance, it was shown that
the cusp formed along the optical axis for rotationally
symmetric systems was closely related to approximat-
ing the entire caustic surface by a single point. We also
proved that the caustic associated with the tangential
light ray to the reflector lies at the point of tangency.
This “tangent point” was solved for in closed form
giving a good bound on the size of the caustic.

An important reason to relax the single viewpoint
is to design imaging systems with specific resolution
characteristics. We provide a simple analytic study of
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resolution for the class of conic catadioptric imaging
systems. We showed how resolution degrades radially
beyond some distance from the image center, if the ef-
fective viewpoint locus is not a single point. However,
careful design of the imaging system in terms of lens
and reflector choice and their relative positioning, can
be used to exploit the initial rise or plateau effect on
resolution. Further the analytic form for resolution can
used to optimize the design parameters of the imaging
system for à priori resolution requirements.

Finally, we presented a simple calibration technique
to estimate the viewpoint surface and camera parame-
ters for a conic catadioptric system using known cam-
era motion. In general, the problem of calibrating non-
single viewpoint cameras is that of estimating a map
between each pixel in the image and its unique view-
point and viewing direction. Using the framework of
caustics this potentially hard problem was reduced to
that of estimating a small number of model parame-
ters. Although we assumed knowledge of the reflector
shape (conic cross-section), the precise geometry of
the reflector and camera as a whole was unknown and
was estimated from two images of an arbitrary scene.

Appendix A

We now derive the caustic surface for a parameterized
conic reflector given by:

Az2 + γ 2 + Bz = C. (34)

This parameterization not only includes parabolic (c =
0, A = 0), elliptic (B = 0) and hyperbolic (A <0, C
<0) reflectors, but also spherical (A = 1, C + B2

4 > 0).
As opposed to Eq. (2) which did not model spherical
reflectors, Eq. (34)includes the sphere as well.

In parametric form, Eq. (34) can be rewritten as:

z(t) = t

γ (t) =
√

C − Bt − At2 (35)

Using the Jacobian method (Burkhard and Shealy,
1973) we derive the caustic profile as a parametric
curve:

Nz(t) = B3C2 + 6B2Cd − 4BC2d + 8Bd2 − 8Cd2

−3(B − 2A2C)(B2C + 4Bd − 4Cd)t

+6(B3 − 2(1 + A2)B2C + 2A2(1 + A2)BC2

+4A2(A2 − 1)Cd)t2 + 4((2A2 − 1)B2,

−A2(1 + 3A2)BC + 2A4(1 + A2)C2

+4A2(A2 − 1)d)t3,

Nγ (t) = 4(B2 − 4BC − 4d + 4A2(C2 + d))

(d − t(B + A2t))(3/2)

D(t) = −B3C + 4B2C2 + 2B2d − 4BCd

+16A2C2d − 8d2 + 16A2d2

−3(B3 + 2(A2 − 2)B2C + 4(2A2 − 1)Bd

−8A2Cd)t − 12A2(A2 − 1)(BC + 2d)t2

+4A2(A2 − 1)(B − 2A2C)t3,

Sc′(t) =
{

Nz(t)

D(t)
,

Nγ (t)

D(t)

}
. (36)

Equation (36) describes the caustic profile for the
complete class of conic (including spherical) cata-
dioptric cameras. In calibrating such non-single view-
point imaging systems, when the reflector shape is not
known, we should use the above derived model.
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Notes

1. A telecentric lens yields an orthographic projection of the scene
onto the image detector.

2. Depending on the local curvature of the reflector surface, bun-
dles of rays diverge to different degrees causing blurring in the
image.
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