Proceedings of ARPA Image Understanding Workshop Monterey, November 1994

Software Library for Appearance Matching (SLAM) *

Sameer A. Nene, Shree K. Nayar and Hiroshi Murase
Center for Research in Intelligent Systems, Department of Computer Science,
Columbia University, New York, N.Y. 10027, U.S.A.

ABSTRACT

The SLAM software package has been developed for
appearance learning and matching problems in compu-
tational vision. Appearance learning involves use of
principal component analysis for compression of a large
input image set to a compact low-dimensional subspace,
called the eigenspace, in which the images reside as
parameterized manifolds. SLAM enables the user to
obtain this parametric representation by providing mod-
ules for eigenspace computation, projection of images to
eigenspace, and interpolation of multivariate manifolds
through the projections. Appearance matching is done by
searching for a projection in eigenspace closest to a
novel input projection. Algorithms have been provided
for performing this search in real-time, even with huge
datasets. Benchmarks demonstrate the suitability of
S_AM for application to real-world problems. The func-
tionality has been made available to the user through an
X/Motif Graphical User Interface along with command-
line programs and a C++ class library. Use of object
oriented techniques provides an easy to use and extensi-
ble Application Programming Interface.

1INTRODUCTION

characteristics. This method has been previously applied
to edge detection [Hummel 1979] and human face recog-
nition [Turk and Pentland 1991]. Although principal
component analysis improves on the computational
requirements, it is not as successful in cases where accu-
rate matching is required for incremental changes in
appearance. This is the case when, for example, an object
has to be recognized in all orientations (poses). In order
to achieve reasonable pose estimation accurang
would need to have an impracticablygarinput image

set.

Murase and Nayar propose a novel parametric represen-
tation that captures appearance of complex 3D objects in
various poses and illumination conditions [Murase and
Nayar 1993]. The representation is succinct and its com-
putation does not require ada@number of input images.
We will briefly describe their approach. The first step,
visual learning, is to compute eigenvectors of the input
image set. As mentioned earji¢he eigenvectors form

an orthogonal basis for representation of the images.
Since only a small number of eigenvectors contribute to
the appearance, the basis can be truncated to obtain a
smaller subspace, callélae eigenspace. The images are
then projected to eigenspace to obtain a set of discrete
points. Interpolation between these points obtains a man-

Computer vision algorithms often use simple templatefold, which is a parametric representation of the input
matching techniques for object recognition or featurdmage set.

detection. While this works well in cases where matchingl_
is performed on a small number of templates, it can cause : .

. ...appearance matching. The basic methodology used for
severe computational and memory problems when it is

desired to recognize or match agemumber of images.

Image compression techniques, lgténcipal component

analysis [Oja 1983], partly alleviate the problem. This
method computes eigenvectors of an image set, whi

his parametric representation can be used fioriesft

matching is as follows. An input image is projected to
eigenspace to obtain a single point. A search is then car-
ried out to find a point on the manifold closest to the pro-

ciﬁcted point. This manifold point represents the best

match.

form an orthogonal basis for representing individual

images in the set. Though agarumber of eigenvectors The above processes of learning and matching have been
may be required for accurate reconstruction of an imageffectively used by Murase and Nayar to implement an
only a few eigenvectors with the highest eigenvalues arebject recognition and pose estimation system which rec-
generally sufcient to capture the significant appearanceognizes 20 complex 3D objects in real-time [Murase and
Nayar 1994b]. In a related papéne parametric eigens-
pace representation is used in planning illumination for
object recognition [Murase and Nayar 1994a)]. Nagtar

al. use appearance learning and matching to position a

* This work was supported by an NSF Nationalulg
Investigator Avard, a David and Lucile Packard Fellow-
ship, and ARR contract DACA-76-92-C-007.

robotic manipulator based on raw brightness image
from an uncalibrated camera [Nawhal. 1994a, 1994b].

In the same work, they also demonstrate visual trackin
of moving objects and defect inspection of manufacturet

File Wiew Options Help

obj2__2.pam | obj2 128 x 128

=| Select_popup

prOdUCtS. Select:

SLAM closely follows the approach described in all the S i
above work while attempting to maximize scope anc Cbi2_2.pan J
generality We were motivated to develop SLAM S

because we view the parametric eigenspace technique abj2__5.pgn

a generic tool for appearance learning and matchin Egjgggg:

problems in computer vision. obj2__8.pan .
2 LEARNING APPEARANCE o | [epoty | concel|
This section describes the tools available in SLAM for b e B o s 2

learning appearance. Learning involves preparation ¢
vector sets, computation of eigenvectors (eigenspacey,
projection of images to eigenspace, and interpolation of a Fig 1: Screen shot of Image Manipulation Modul
manifold through the projected points. All the above

operations can be done with the help of a X/Motif graph= xaigen el

SLAM - Sameer A, Mene, Shree k., Nayar, Hiroshi Hurase

ical user interface or command-line programs. " S i (e Vs

. Filename, .,
2.1 Preparation of Feature Sets

Eigen Yectors

The first step is to prepare a set of vectors that can t A _ Filewen, |
used for computing eigenvectors. Unprocessed brighi i Conpute Eigen Yalues
ness images, or processed images such as smoott —
images, first derivatives, Laplacian, power spectrum o Lelete _
the brightness images, or any combination of suct nber o ot [10— 4 7]
images, can be used as vectors [Murase and Nayar 94l Henory to use b3z [15 4| 7]
A collection of such vectors, possibly related by some
common appearance characteristic, is calleector set. Canpute | it About...

Since vector sets are not necessarily “image” sets, the
SLAM - Sameer A, Mene, Shree K, MNayar, Hiroshi Murase |
are also callefeature sets.

. . . . Fig 2: User Interface to compute Eigenspace
SLAM provides an image manipulation module that can g P gensp

be used for conversion of image sets to vector sets.d&sired entitysay an image set, he/she might use the
processing step, such as brightness normalization, s8=R interface to inspect the image set. Then, he/she
mentation, size normalization or any of their combinacould select one or more processing options from the
tions may be involved during conversion to vectoroptions menu and get immediate feedback on how they
[Murase and Nayar 1993]. Furthermore, this procegwould afect the entire image set. If he/she is not satis-
would typically involve conversion and processing ofied, he/she could, for example, fine tune the segmenta-
hundreds of images. The image manipulation module htign threshold or the normalization size using the
facilities to perform all the above and in addition, proPreferences dialog. Finallge/she would want to convert
vide visualization capability (see Fig. 1). This is espethe entire image set to a vector set by going to the Save
cially useful as it lets the user view images, vectorés dialog in the File menu and selecting the optieg-V
eigenvectors and has a simple VCR like interface to aripr Set.

mate image sequences. It also gives immediate visual

feedback to the user on how various processing optiogs2 Subspace Computation

would afect the data sets.
Once a feature set has been prepared, the stage has been

A typical session with the image manipulation modulget for computing an optimal subspace (or eigenspace)
might be as follows: The user selects the Open optidor that set. SLAM provides two programs for this pur-
from the File menu to pop up a dialog box. This dialogose, an X/Motif user interface (see Fig. 2), and a com-
box will allow the user to load images, vectors, imageand-line program for the experienced us&ve
sets, vector sets or eigenvectors. After the user loads thentioned earlier that the eigenspace is usually trun-

cated,i.e. it only contains eigenvectors with the highestSchmidt orthogonalization [Householder 1964], which
eigenvalues [Oja 1983]. It is very fidult to predeter- computes a space orthogonal to two or more (input)
mine how many eigenvectors contribute significantly toeigenspaces. All the operations we described above (pro-
the appearance. For this reason, SLAM also computgection, interpolation, resampling and orthogonalization)
eigenvalues, which are often used as a guideline to helfan be carried out with the help of SLAM modules. An
decide the truncation point. A universal eigenspaceX/Motif graphical interface (see Fig. 3) allows the user to
[Murase and Nayar 1993] can be computed by simplyisualize the projections and manifolds.

specifying muiltiple vector sets. We now describe a typical interactive session with the

A typical session with the X/Motif interface might Motif based module. Wassume that a user needs to con-
involve specifying the vector sets through a dialog, setstruct a parametric representation for a vector set whose
ting the number of eigenvectors to compute, supplyingigenvectors have been already computed. The user first
the filenames for the average vegteigenvalues, and needs to project the input vectors to eigenspace. This can
eigenvectors, setting the amount of memory to be usethe done by the Project option in the Options menu. This
and finally starting the actual computation. For thedialog box lets the user specify the vector set to be pro-
advanced usgethe same functionality is available via the jected, the eigenspace to use for projection, (optionally)
command-line. the average vectoand the name of the output projection.
We use a time &€ient implementation (seeable 1) of Onge the.user fills N the required mformatpn, the ".ec“’r
i i ... _set is projected to eigenspace. The projections are imme-
an algorithm based on singular value decomposition,. o R
. . . diately visible on the screen as points inside a cube repre-
[Murakami and Kumar 1982] along with a conjugate gra-_ . .

. X X senting the eigenspace axes. The eigenspace has
dient algorithm [¥ng et al. 1989] for computation of ; . .

. . . typically more than three dimensions. The program lets
eigenvectors. The reader will appreciate that the perfor-h I hich of the th ; . hould b
mance is very good inspite of thedarsizes of the input t_e_ user se ect which of the three dlmen§|ons should be

visible with the help of the Preferences dialog. The user
vector sets. : .
can interactively pan around, zoom or pan over the cube
with the help of the mouse to select an appropriate.view
Time The axes are labeled to denote which three dimensions
Architecture are visible. At this point the user might want to save the
81 images | 1440 images projections to disk and/or obtain a hard (PostScript) copy

of the current view

Sun Sparc IPX 132 sec. 442 min.

The discrete points obtained above can be interpolated to
DEC Alpha 3600 26 sec. 78 min. obtain a BSpline with the help of the Interpolate option

X from the Option menu. Interpolation is carried out after
HP FA 9000/735 68 sec. 118 min. selecting the projection to be interpolated and naming the
SGI Ony# 36 sec. 91 min. output BSpline. The BSpI[ne can be a curve, a surface or

a volume. Let us assume in this case that the user interpo-

Table 1: Tme taken to compute 20 eigenvectors from lates a BSpline surface. The surface will then be immedi-
images of size 128 x 128. ately seen on the screen along with the previous
projections. As earlieit is possible to select an appropri-
ate view or select which three eigenspace dimensions are
A . visible. BSplines are displayed as series of short line seg-
2.3 Parametric Eigenspace Representation ments by sampling them at a usenfigurable fre-
Once an eigenspace has been computed, the input vecfiency The frequency determines how “smooth” the
set has to be projected to this space to obtain discreSplines will look. If a BSpline were a volume, it would
high-dimensional points. By interpolating between thesde still visible as a surface. In this case, the user would be
points, one can obtain a manifold that forms a parametrigble to select which two parameters are to be used to
representation of the input vector see Wse a quadratic obtain the viewable surface and the fixed value of the
BSpline for the interpolation [Rogers 1990]. This third parameterAfter the user is satisfied with the view
BSpline (manifold) can be (re)sampled at a higher frehe/she may choose to save the manifold to disk and/or to
quency to obtain a dense set of discrete points. As webtain a PostScript copy

shall see in the next section, these points can be used for
appearance matching. It is possible that a user has co®-APPEARANCE MATCHING

puted manifolds for a number of vector setsjraliepa- The final step is to use the parametric eigenspace repre-

rate.elgen'spaces. If it is desired to contain all thesgentation obtained above for appearance matching. This
manifolds in the same space, one need not always recom-

pute a new eigenspace. This is possible by use of Gram-

a. With disk striping.

= xmanifold IE iJ

e Ve Opliang Hals

= Project...

Vector Set: I ohj Choose... |
Average Vecto I emie__av Choose... |
Eigen Vectors: I eigen.evc Choose... |

Humber of Eigen Vectors: I’ll] A j

7 Use Average Vector

Projections in Memory

Selection

F
3

SLAM - Sameer A. Hene, Shree K. Nayar, Hiroshi Murase

Fig 3: Manifold Manipulation Module

is done by projecting a novel image to eigenspace aflgest match). Although this method is simple and guaran-
finding a point on the manifold closest to that projectioteed to work, it is often impractical from a computational

[Murase and Nayar 1994b]. In general, analytically findviewpoint because it involves calculating the Euclidean
ing the closest point on a high-dimensional manifold is distance from possibly hundreds of thousands of high-
nontrivial problem. It is somewhat simplified if we re-dimensional points.

discretize the manifold to. obte.un.a dgnse set of points aﬁorln alternative search algorithm implemented in SLAM
search for the closest point within this set.

uses a simple heuristic to reduce the number of points
As described in the previous section, SLAM lets the useearched. This is done by considering only points that are
resample the manifold at any desired frequency to obtasnfficiently close to the input point in the first dimension.
a discrete point set. The user may choose to implemesince the points have maximum spread in the first dimen-
his own search or use a set of search algorithfieseaf sion, a lage number of points will be struckfdhe list of

by SLAM. Before we describe these algorithms, we mugtoints to which the Euclidean distance has to be com-
mention that they are available through a C++ Applicgauted. This method unfortunately requires a threshold to
tion Programming Interface (API) a¥thods. We chose determine how close is “close”. If it is possible to have a
not to develop a Motif interface for searching because odugh idea about the threshold in advance, then this
the considerable di€ulties involved in programming method ofers better performance.

and using low-level software (device drivers) and hard-

ware (digitizers) consistently across diverse user em3.2 Binary Search

ronments. .
Both the schemes described above are not very useful

3.1 Exhaustive Search when it is desired to search through aéanumber of
points in real-time. Nene and Nayar propose a high-
SLAM implements a brute-force search algorithm whiclldimensional binary search algorithm to significantly
goes through all the points in the resampled point sétprove performance fro®(kn) to O(log2(kn)) wherek
computes the Euclidean distance between each of thés¢he number of dimensions andhe number of points
points and the input projected point, and concludes tlidene and Nayar 1994]. The algorithm partitions the
point with the smallest distance value to be the closesgpace into its constituent dimensions and carries out a

binary search separately in each dimension. The closé&8] AM DISTRIBUTION
point is obtained by looking at the overlap in all dimen-)) o))
sions. SLAM includes an fiient implementation of this _Columbla University is currently in the process of licens-

algorithm. & will not describe the algorithm in more "9 SLAM to a number of educational institutions and

detail here, but only mention that it also requires the udadustrial oganizations. For information on obtaining
of an appropriately chosen threshold. Sabld 2 for a SLAM, the reader is advised to contact Shree K. Nayar

benchmark of the three search algorithms we hafePmputer Science Dept,, Columbia Universityew
described. York, NY 10027 or send email telam@cs.colum-

bia.edu.

SLAM works with most major workstation architectures
Search (SunOS, Solaris, OSF/1, HPUX, Irix) and is available as
Algorithm executable binaries and/or source code. For information
DEC Alpha 3600| Sun SRRC IPX on availability for other (currently unsupported) architec-
tures such as Ultrix, AIX, MS-DOS, etc., the reader is

Time (ms.)

Exhaustive 26 (79 121 (480 ; . i .

xhausiv (79) (480) again advised to send maild@am@cs.columbia.edu.
Heuristic 15 (68) 32 (389) 6 REFERENCES
Binary 6 (54) 8 (370) [Booch, 1994] G. Booch, Object oriented analysis and design,

] - 2nd ed., Benjamin/Cummings, CA, 1994.
Table 2: Tme taken to search for the closest point from [Householder1964] A. S. HouseholdgFhe theory of matrices

7220 data points in 15-D eigenspace. The figures in in numerical analysis, Dover Publ., New ¥rk, 1964.

parentheses indicate the time for projecaod search. [Hummel, 1979] R. A. Hummel, Feature detection using basis
functions,Computer Graphics and Image Processing, Vol.

4 OBJECT ORIENTED DESIGN 9, pp. 40-55, 1979.

) . [Murakami and Kumar1982] H. Murakami and \Kumar
We chose to develop SLAM in C++ to give the user the Efficient calculation of primary images from a set of

ease and versatility of object oriented design (OOD). images)EEE Transactions on Pattern Analysis and
Consequently the SLAM Application Programming Machine Intelligence, 4(5):511-515, September 1982.
Interface (API) is also C++ based and is essentially [urase and Nayad993] H. Murase and S. K. Nayaearn-
library of classes/methods. Although the user does not ing and recognition of 3d objects from appearategt
usually need to concern himself/herself with the API, jt ~ Qualitative Vision Workshop, CVPR, New York, June 93
might be sometimes necessary to do so, for example,[)jurase and Nayai994a] H. Murase and S. K. Nayiumi-

. . . nation Planning for object recognition in structured envi-
case the user wishes to utilize the search algorithms. :
ronments]| EEE Conference on Computer Vision and

SLAM uses advanced OOD concepts [Booch 1994] to a Pattern Recognition, June 1994.

great extent in implementation of all the algorithms anfMurase and Nayad994b] H. Murase and S. K. Nay&fsual
procedures described above. Protocol (virtual) classes 'Ii‘?l”j]'gl?r s;l‘dofr‘zc;g”l:tt':r”\ﬂc’;g’: ‘iglgzt; fcr‘C’;“ tz%pearance-
are used cor.15|sten'.tly to attain a con3|ste.n.t look and fiﬁ!"‘ aret al., 19942 S. E NayaH. Murase and % A Nene.
across the wide variety of classes and entities the user 4 . o Co

to handle. For instance, disk based 1/O is done with the Learning, positioning, and tracking visual appearance.

. !) X ~ |EEE Intl. Conf. on Robotics and Automation, May 1994.
help of a Persistent protocol class, which makes it pOSfijayaret al., 1994b] S. K. NayaH. Murase and S. A. Nene.
ble to issue simple one line commands to load/store any - General learning algorithm for robot visidroc. of ARPA
of the complex entities @ctors, Manifolds, Projections, Image Under standing Workshop, Monterey Nov. 94.
Search databases, etc.). Similaityis possible to deal [Nene and Nayar994] S. A. Nene and S. K. Nay8inary
with any manifold (BSpline curves, surfaces, volumes, search through multiple dimensiongchnical Report
etc.) in a consistent fashion with the help of the Interpo- CUCS-018-94, Department of Computer Science, Colum-
lation protocol. For searching, the SearchScheme proto- bia University New York, NY, USA, Januaryl994.
col makes it possible to write algorithm independerffia. 1983] E. Ojalubspace methods of pattern recognition,
application code that does not have to worry about tl% Research Studies Press, Hertfordshire, 1983.

. . ogers, 1990] D. FRogersMathematical elements for com-
underlying search algorithms. The protocol classes n puter graphics, 2nd ed., McGraw-Hill, New ark, 1990.

only help in writing “clean” code, but also SUPPOIt €asyr . ang pentiand, 1991] M. Ak and A. PPentland, Face
addition of usexefined functionalityFor instance, if the recognition using eigenfaceRcoc. of IEEE Conf. on

user wishes to perform interpolation using wavelets, he/ comp. Vision and Pattern Recog., pp. 586-591, June 1991.

she simply has to write code which conforms to the Intefyanget al., 1989] X. Yang, T K. Sarkarand E. Arvas, A sur-

polation protocol and link the object(.0) file to the mani- vey of conjugate gradient algorithms for solution of

fold manipulation module to get the full functionality of extreme eigen-problems of a symmetric matiEE

the graphical interface. Transactions on Acoustics, Speech, and Signal Processing,
Vol. 37, No. 10, pp. 1550-1555, October 1989.

