
Software Library for Appearance Matching (SLAM) *

Sameer A. Nene, Shree K. Nayar and Hiroshi Murase
Center for Research in Intelligent Systems, Department of Computer Science,

Columbia University, New York, N.Y. 10027, U.S.A.

Proceedings of ARPA Image Understanding Workshop Monterey, November 1994

ABSTRACT
The SLAM software package has been developed for
appearance learning and matching problems in compu-
tational vision. Appearance learning involves use of
principal component analysis for compression of a large
input image set to a compact low-dimensional subspace,
called the eigenspace, in which the images reside as
parameterized manifolds. SLAM enables the user to
obtain this parametric representation by providing mod-
ules for eigenspace computation, projection of images to
eigenspace, and interpolation of multivariate manifolds
through the projections. Appearance matching is done by
searching for a projection in eigenspace closest to a
novel input projection. Algorithms have been provided
for performing this search in real-time, even with huge
datasets. Benchmarks demonstrate the suitability of
SLAM for application to real-world problems. The func-
tionality has been made available to the user through an
X/Motif Graphical User Interface along with command-
line programs and a C++ class library. Use of object
oriented techniques provides an easy to use and extensi-
ble Application Programming Interface.

1 INTRODUCTION

Computer vision algorithms often use simple template
matching techniques for object recognition or feature
detection. While this works well in cases where matching
is performed on a small number of templates, it can cause
severe computational and memory problems when it is
desired to recognize or match a large number of images.
Image compression techniques, likeprincipal component
analysis [Oja 1983], partly alleviate the problem. This
method computes eigenvectors of an image set, which
form an orthogonal basis for representing individual
images in the set. Though a large number of eigenvectors
may be required for accurate reconstruction of an image,
only a few eigenvectors with the highest eigenvalues are
generally sufficient to capture the significant appearance

characteristics. This method has been previously applied
to edge detection [Hummel 1979] and human face recog-
nition [Turk and Pentland 1991]. Although principal
component analysis improves on the computational
requirements, it is not as successful in cases where accu-
rate matching is required for incremental changes in
appearance. This is the case when, for example, an object
has to be recognized in all orientations (poses). In order
to achieve reasonable pose estimation accuracy, one
would need to have an impracticably large input image
set.

Murase and Nayar propose a novel parametric represen-
tation that captures appearance of complex 3D objects in
various poses and illumination conditions [Murase and
Nayar 1993]. The representation is succinct and its com-
putation does not require a large number of input images.
We will briefly describe their approach. The first step,
visual learning, is to compute eigenvectors of the input
image set. As mentioned earlier, the eigenvectors form
an orthogonal basis for representation of the images.
Since only a small number of eigenvectors contribute to
the appearance, the basis can be truncated to obtain a
smaller subspace, calledthe eigenspace. The images are
then projected to eigenspace to obtain a set of discrete
points. Interpolation between these points obtains a man-
ifold, which is a parametric representation of the input
image set.

This parametric representation can be used for efficient
appearance matching. The basic methodology used for
matching is as follows. An input image is projected to
eigenspace to obtain a single point. A search is then car-
ried out to find a point on the manifold closest to the pro-
jected point. This manifold point represents the best
match.

The above processes of learning and matching have been
effectively used by Murase and Nayar to implement an
object recognition and pose estimation system which rec-
ognizes 20 complex 3D objects in real-time [Murase and
Nayar 1994b]. In a related paper, the parametric eigens-
pace representation is used in planning illumination for
object recognition [Murase and Nayar 1994a]. Nayaret
al. use appearance learning and matching to position a

* This work was supported by an NSF National Young
Investigator Award, a David and Lucile Packard Fellow-
ship, and ARPA contract DACA-76-92-C-007.



robotic manipulator based on raw brightness images
from an uncalibrated camera [Nayaret al. 1994a, 1994b].
In the same work, they also demonstrate visual tracking
of moving objects and defect inspection of manufactured
products.

SLAM closely follows the approach described in all the
above work while attempting to maximize scope and
generality. We were motivated to develop SLAM
because we view the parametric eigenspace technique as
a generic tool for appearance learning and matching
problems in computer vision.

2 LEARNING APPEARANCE

This section describes the tools available in SLAM for
learning appearance. Learning involves preparation of
vector sets, computation of eigenvectors (eigenspace),
projection of images to eigenspace, and interpolation of a
manifold through the projected points. All the above
operations can be done with the help of a X/Motif graph-
ical user interface or command-line programs.

2.1 Preparation of Feature Sets

The first step is to prepare a set of vectors that can be
used for computing eigenvectors. Unprocessed bright-
ness images, or processed images such as smoothed
images, first derivatives, Laplacian, power spectrum of
the brightness images, or any combination of such
images, can be used as vectors [Murase and Nayar 94b].
A collection of such vectors, possibly related by some
common appearance characteristic, is called avector set.
Since vector sets are not necessarily “image” sets, they
are also calledfeature sets.

SLAM provides an image manipulation module that can
be used for conversion of image sets to vector sets. A
processing step, such as brightness normalization, seg-
mentation, size normalization or any of their combina-
tions may be involved during conversion to vectors
[Murase and Nayar 1993]. Furthermore, this process
would typically involve conversion and processing of
hundreds of images. The image manipulation module has
facilities to perform all the above and in addition, pro-
vide visualization capability (see Fig. 1). This is espe-
cially useful as it lets the user view images, vectors,
eigenvectors and has a simple VCR like interface to ani-
mate image sequences. It also gives immediate visual
feedback to the user on how various processing options
would affect the data sets.

A typical session with the image manipulation module
might be as follows: The user selects the Open option
from the File menu to pop up a dialog box. This dialog
box will allow the user to load images, vectors, image
sets, vector sets or eigenvectors. After the user loads the

desired entity, say an image set, he/she might use the
VCR interface to inspect the image set. Then, he/she
could select one or more processing options from the
options menu and get immediate feedback on how they
would affect the entire image set. If he/she is not satis-
fied, he/she could, for example, fine tune the segmenta-
tion threshold or the normalization size using the
Preferences dialog. Finally, he/she would want to convert
the entire image set to a vector set by going to the Save
As dialog in the File menu and selecting the option Vec-
tor Set.

2.2 Subspace Computation

Once a feature set has been prepared, the stage has been
set for computing an optimal subspace (or eigenspace)
for that set. SLAM provides two programs for this pur-
pose, an X/Motif user interface (see Fig. 2), and a com-
mand-line program for the experienced user. We
mentioned earlier that the eigenspace is usually trun-

Fig 1: Screen shot of Image Manipulation Module

Fig 2: User Interface to compute Eigenspace



Schmidt orthogonalization [Householder 1964], which
computes a space orthogonal to two or more (input)
eigenspaces. All the operations we described above (pro-
jection, interpolation, resampling and orthogonalization)
can be carried out with the help of SLAM modules. An
X/Motif graphical interface (see Fig. 3) allows the user to
visualize the projections and manifolds.

We now describe a typical interactive session with the
Motif based module. We assume that a user needs to con-
struct a parametric representation for a vector set whose
eigenvectors have been already computed. The user first
needs to project the input vectors to eigenspace. This can
be done by the Project option in the Options menu. This
dialog box lets the user specify the vector set to be pro-
jected, the eigenspace to use for projection, (optionally)
the average vector, and the name of the output projection.
Once the user fills in the required information, the vector
set is projected to eigenspace. The projections are imme-
diately visible on the screen as points inside a cube repre-
senting the eigenspace axes. The eigenspace has
typically more than three dimensions. The program lets
the user select which of the three dimensions should be
visible with the help of the Preferences dialog. The user
can interactively pan around, zoom or pan over the cube
with the help of the mouse to select an appropriate view.
The axes are labeled to denote which three dimensions
are visible. At this point the user might want to save the
projections to disk and/or obtain a hard (PostScript) copy
of the current view.

The discrete points obtained above can be interpolated to
obtain a BSpline with the help of the Interpolate option
from the Option menu. Interpolation is carried out after
selecting the projection to be interpolated and naming the
output BSpline. The BSpline can be a curve, a surface or
a volume. Let us assume in this case that the user interpo-
lates a BSpline surface. The surface will then be immedi-
ately seen on the screen along with the previous
projections. As earlier, it is possible to select an appropri-
ate view or select which three eigenspace dimensions are
visible. BSplines are displayed as series of short line seg-
ments by sampling them at a user-configurable fre-
quency. The frequency determines how “smooth” the
BSplines will look. If a BSpline were a volume, it would
be still visible as a surface. In this case, the user would be
able to select which two parameters are to be used to
obtain the viewable surface and the fixed value of the
third parameter. After the user is satisfied with the view,
he/she may choose to save the manifold to disk and/or to
obtain a PostScript copy.

3 APPEARANCE MATCHING

The final step is to use the parametric eigenspace repre-
sentation obtained above for appearance matching. This

cated,i.e. it only contains eigenvectors with the highest
eigenvalues [Oja 1983]. It is very difficult to predeter-
mine how many eigenvectors contribute significantly to
the appearance. For this reason, SLAM also computes
eigenvalues, which are often used as a guideline to help
decide the truncation point. A universal eigenspace
[Murase and Nayar 1993] can be computed by simply
specifying multiple vector sets.

A typical session with the X/Motif interface might
involve specifying the vector sets through a dialog, set-
ting the number of eigenvectors to compute, supplying
the filenames for the average vector, eigenvalues, and
eigenvectors, setting the amount of memory to be used,
and finally starting the actual computation. For the
advanced user, the same functionality is available via the
command-line.

We use a time efficient implementation (see Table 1) of
an algorithm based on singular value decomposition
[Murakami and Kumar 1982] along with a conjugate gra-
dient algorithm [Yang et al. 1989] for computation of
eigenvectors. The reader will appreciate that the perfor-
mance is very good inspite of the large sizes of the input
vector sets.

2.3 Parametric Eigenspace Representation

Once an eigenspace has been computed, the input vector
set has to be projected to this space to obtain discrete
high-dimensional points. By interpolating between these
points, one can obtain a manifold that forms a parametric
representation of the input vector set. We use a quadratic
BSpline for the interpolation [Rogers 1990]. This
BSpline (manifold) can be (re)sampled at a higher fre-
quency to obtain a dense set of discrete points. As we
shall see in the next section, these points can be used for
appearance matching. It is possible that a user has com-
puted manifolds for a number of vector sets, allin sepa-
rate eigenspaces. If it is desired to contain all these
manifolds in the same space, one need not always recom-
pute a new eigenspace. This is possible by use of Gram-

a. With disk striping.

Architecture
Time

81 images 1440 images

Sun Sparc IPX 132 sec. 442 min.

DEC Alpha 3600 26 sec. 78 min.

HP PA 9000/735 68 sec. 118 min.

SGI Onyxa 36 sec. 91 min.

Table 1: Time taken to compute 20 eigenvectors from
images of size 128 x 128.



is done by projecting a novel image to eigenspace and
finding a point on the manifold closest to that projection
[Murase and Nayar 1994b]. In general, analytically find-
ing the closest point on a high-dimensional manifold is a
nontrivial problem. It is somewhat simplified if we re-
discretize the manifold to obtain a dense set of points and
search for the closest point within this set.

As described in the previous section, SLAM lets the user
resample the manifold at any desired frequency to obtain
a discrete point set. The user may choose to implement
his own search or use a set of search algorithms offered
by SLAM. Before we describe these algorithms, we must
mention that they are available through a C++ Applica-
tion Programming Interface (API) asmethods. We chose
not to develop a Motif interface for searching because of
the considerable difficulties involved in programming
and using low-level software (device drivers) and hard-
ware (digitizers) consistently across diverse user envi-
ronments.

3.1 Exhaustive Search

SLAM implements a brute-force search algorithm which
goes through all the points in the resampled point set,
computes the Euclidean distance between each of these
points and the input projected point, and concludes the
point with the smallest distance value to be the closest

Fig 3: Manifold Manipulation Module

(best match). Although this method is simple and guaran-
teed to work, it is often impractical from a computational
viewpoint because it involves calculating the Euclidean
distance from possibly hundreds of thousands of high-
dimensional points.

An alternative search algorithm implemented in SLAM
uses a simple heuristic to reduce the number of points
searched. This is done by considering only points that are
sufficiently close to the input point in the first dimension.
Since the points have maximum spread in the first dimen-
sion, a large number of points will be struck off the list of
points to which the Euclidean distance has to be com-
puted. This method unfortunately requires a threshold to
determine how close is “close”. If it is possible to have a
rough idea about the threshold in advance, then this
method offers better performance.

3.2 Binary Search

Both the schemes described above are not very useful
when it is desired to search through a large number of
points in real-time. Nene and Nayar propose a high-
dimensional binary search algorithm to significantly
improve performance fromO(kn) to O(log2(kn)) wherek
is the number of dimensions andn the number of points
[Nene and Nayar 1994]. The algorithm partitions the
space into its constituent dimensions and carries out a



binary search separately in each dimension. The closest
point is obtained by looking at the overlap in all dimen-
sions. SLAM includes an efficient implementation of this
algorithm. We will not describe the algorithm in more
detail here, but only mention that it also requires the use
of an appropriately chosen threshold. See Table 2 for a
benchmark of the three search algorithms we have
described.

4 OBJECT ORIENTED DESIGN

We chose to develop SLAM in C++ to give the user the
ease and versatility of object oriented design (OOD).
Consequently the SLAM Application Programming
Interface (API) is also C++ based and is essentially a
library of classes/methods. Although the user does not
usually need to concern himself/herself with the API, it
might be sometimes necessary to do so, for example, in
case the user wishes to utilize the search algorithms.

SLAM uses advanced OOD concepts [Booch 1994] to a
great extent in implementation of all the algorithms and
procedures described above. Protocol (virtual) classes
are used consistently to attain a consistent look and feel
across the wide variety of classes and entities the user has
to handle. For instance, disk based I/O is done with the
help of a Persistent protocol class, which makes it possi-
ble to issue simple one line commands to load/store any
of the complex entities (Vectors, Manifolds, Projections,
Search databases, etc.). Similarly, it is possible to deal
with any manifold (BSpline curves, surfaces, volumes,
etc.) in a consistent fashion with the help of the Interpo-
lation protocol. For searching, the SearchScheme proto-
col makes it possible to write algorithm independent
application code that does not have to worry about the
underlying search algorithms. The protocol classes not
only help in writing “clean” code, but also support easy
addition of user-defined functionality. For instance, if the
user wishes to perform interpolation using wavelets, he/
she simply has to write code which conforms to the Inter-
polation protocol and link the object(.o) file to the mani-
fold manipulation module to get the full functionality of
the graphical interface.

Search
Algorithm

Time (ms.)

DEC Alpha 3600 Sun SPARC IPX

Exhaustive 26 (79) 121 (480)

Heuristic 15 (68) 32 (389)

Binary 6 (54) 8 (370)

Table 2: Time taken to search for the closest point from
7220 data points in 15-D eigenspace. The figures in
parentheses indicate the time for projectionand search.

5 SLAM DISTRIBUTION

Columbia University is currently in the process of licens-
ing SLAM to a number of educational institutions and
industrial organizations. For information on obtaining
SLAM, the reader is advised to contact Shree K. Nayar,
Computer Science Dept., Columbia University, New
York, NY 10027 or send email toslam@cs.colum-
bia.edu.

SLAM works with most major workstation architectures
(SunOS, Solaris, OSF/1, HPUX, Irix) and is available as
executable binaries and/or source code. For information
on availability for other (currently unsupported) architec-
tures such as Ultrix, AIX, MS-DOS, etc., the reader is
again advised to send mail toslam@cs.columbia.edu.

6 REFERENCES
[Booch, 1994] G. Booch, Object oriented analysis and design,

2nd ed., Benjamin/Cummings, CA, 1994.
[Householder, 1964] A. S. Householder, The theory of matrices

in numerical analysis, Dover Publ., New York, 1964.
[Hummel, 1979] R. A. Hummel, Feature detection using basis

functions,Computer Graphics and Image Processing, Vol.
9, pp. 40-55, 1979.

[Murakami and Kumar, 1982] H. Murakami and V. Kumar.
Efficient calculation of primary images from a set of
images,IEEE Transactions on Pattern Analysis and
Machine Intelligence, 4(5):511-515, September 1982.

[Murase and Nayar, 1993] H. Murase and S. K. Nayar. Learn-
ing and recognition of 3d objects from appearance,IEEE
Qualitative Vision Workshop, CVPR, New York, June 93.

[Murase and Nayar, 1994a] H. Murase and S. K. Nayar. Illumi-
nation Planning for object recognition in structured envi-
ronments.IEEE Conference on Computer Vision and
Pattern Recognition, June 1994.

[Murase and Nayar, 1994b] H. Murase and S. K. Nayar. Visual
learning and recognition of 3d objects from appearance.
Intl. Journal of Computer Vision, 1994. Accepted.

[Nayaret al., 1994a] S. K. Nayar, H. Murase and S. A. Nene.
Learning, positioning, and tracking visual appearance.
IEEE Intl. Conf. on Robotics and Automation, May 1994.

[Nayaret al., 1994b] S. K. Nayar, H. Murase and S. A. Nene.
General learning algorithm for robot vision.Proc. of ARPA
Image Understanding Workshop, Monterey, Nov. 94.

[Nene and Nayar, 1994] S. A. Nene and S. K. Nayar. Binary
search through multiple dimensions. Technical Report
CUCS-018-94, Department of Computer Science, Colum-
bia University, New York, NY, USA, January, 1994.

[Oja, 1983] E. Oja,Subspace methods of pattern recognition,
Research Studies Press, Hertfordshire, 1983.

[Rogers, 1990] D. F. Rogers,Mathematical elements for com-
puter graphics, 2nd ed., McGraw-Hill, New York, 1990.

[Turk and Pentland, 1991] M. A. Turk and A. P. Pentland, Face
recognition using eigenfaces.Proc. of IEEE Conf. on
Comp. Vision and Pattern Recog., pp. 586-591, June 1991.

[Yanget al., 1989] X. Yang, T. K. Sarkar, and E. Arvas, A sur-
vey of conjugate gradient algorithms for solution of
extreme eigen-problems of a symmetric matrix.IEEE
Transactions on Acoustics, Speech, and Signal Processing,
Vol. 37, No. 10, pp. 1550-1555, October 1989.




