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Abstract

All visual sensors, biological and artificial, are finite in resolution by necessity. This
causes the effective reflectance of surfaces in a scene to vary with magnification. A re-
flectance model for matte surfaces is described that captures the effect of macroscopic
surface undulations on image brightness. The model takes into account complex physical
phenomena such as masking, shadowing and interreflections between points on the surface,
and is shown to accurately predict the appearance of a wide range of natural surfaces. The
implications of these results for human vision, machine vision, and computer graphics are
demonstrated using both real and rendered images of three-dimensional objects. In partic-
ular, extreme surface roughness can cause objects to produce silhouette images devoid of

shading, precluding visual perception of object shape.



Painters and sculptors are known to exploit their instinct for the interaction between
light and materials[1, 2] to convey compelling shape cues to the observer [3]. Reflection of
light by materials may be viewed as the first fundamental process in visual perception by
human or machine. All reflectance mechanisms can be broadly classified into two categories:
surface and body. In surface reflection, light rays are reflected at the interface between the
surface medium and air. For very smooth surfaces, this results in specular or mirror-like
appearance, the viewed surface producing a clear virtual image of its surroundings that is
geometrically distorted when the surface is not planar [4]. As the surface gets rougher, the
virtual image begins to blur, altering surface appearance from shiny to glossy, and even

diffuse for high roughness values. Surface reflection is common, for instance, in metals.

In body reflection, incident light rays penetrate the surface and are scattered around
due to reflections and refractions caused by inhomogeneities within the surface medium.
Some of this light energy may be absorbed by the surface or transmitted through it. The
remaining finds its way back to the interface to re-emerge as body reflection. The random
nature of sub-surface scattering causes emerging light rays to be distributed in a wide range
of directions, giving the surface a matte appearance. Body reflection plays a dominant role
in materials like clay, plaster, concrete, and paper. In many natural materials however,
both surface and body mechanisms coexist and together determine final visual appearance.
Mathematical models for both reflection mechanisms, based on physical and geometrical

optics, have been studied extensively.

For body reflection, numerous models have been suggested for the scattering process
[5, 6, 7]. Among these, Lambert’s law [5], proposed in 1760, remains the most widely used
in visual psychophysics [8], computational vision [9], remote sensing [10], and computer
graphics [11]. It predicts that the brightness, or radiance, L,, of an ideal matte surface point
is £ cos §;, where p, the albedo or reflectivity, represents the fraction of the total incident
light reflected by the surface, and 6; is the incidence angle between the surface normal and
the illumination direction. The popularity of Lambert’s model can be attributed to its

ability to predict with a fair degree of accuracy the appearance of a large spectrum of real-

world materials. Another reason is undoubtedly its simple mathematical form, which lends



itself to numerous interesting appearance properties; for theoreticians and practitioners
alike, the use of Lambert’s law is a temptation difficult to resist. Both reasons have led
to its widespread use in understanding and emulating perception of important visual cues

such as shading.

The most appealing aspect of Lambert’s law is its prediction that the brightness of
a scene point is independent of the observer’s viewpoint. This in turn can be exploited to
establish that a scene point illuminated by several light sources can be viewed as illuminated
by a single source whose intensity and direction are given simply by the centroid of all the
sources. Furthermore, the surface normal and albedo of a scene point can be uniquely
determined from its brightness values measured using three known illuminants [12]. The
simplicity of Lambert’s law permits even the analysis of complex high-order phenomena
such as interreflections [13, 14], the bouncing of light rays between mutually visible points
on a concave surface. In the presence of interreflections, a surface continues to behave
exactly like a Lambertian one without interreflections but with a different set of normals

and albedo values [15].

Alas, our visual world limits the scope of Lambert’s model. While it does well in
describing sub-surface scattering in a large variety of materials, it fails to describe the
ubiquitous interplay between surface undulations and image resolution (Figure 1). Visual
processing by humans and machines must rely on finite-resolution sensors. Photoreceptors
of the retina and pixels in a video camera are both by necessity finite-area detectors;
light intensity can be recorded only by counting photons collected in buckets of measurable
size. This finite resolution, along with the optical point spread [16] inherent to any imaging
system, cause each receptor to receive light not from a single point but rather from a surface
area in the scene, this area increasing as the square of the distance of the surface from the eye
or the camera (Figure 1b). Often, substantial macroscopic (> wavelength of the incident
light) surface roughness is projected onto a single detector, which in turn produces an
aggregate brightness value. Whereas Lambert’s law may hold well when observing a single
planar facet (near sight), a collection of such facets with different orientations (far sight) is

guaranteed to violate Lambert’s law. The primary reason is the variation in foreshortened



facet areas under motion of the observer (Figure 2a). Analysis of this phenomenon has a
long history and can be traced back almost a century. Past work has resulted in empirical
models [17, 18] designed to fit experimental data as well as theoretical results derived
from first principles [19, 20, 21]. Much of this work was motivated by the non-Lambertian
reflectance of the moon [22, 23, 24]. Unfortunately, these models are severely limited
in scope either by the specific surface geometry assumed or by their inability to predict

brightness for the entire hemisphere of source and sensor directions.

A new reflectance model has been developed that describes the relation between
macroscopic surface roughness and sensor resolution. The surface patch imaged by each
sensor detector is modeled as a collection of numerous long symmetric V-shaped cavities
(Figure 2b); each cavity has two planar Lambertian facets with opposing normals, facet
normals are free to deviate from the mean surface normal, and all facets on the surface
have the same albedo p. It is assumed that the V-cavities are uniformly distributed in
orientation ¢, (azimuth angle) on the surface plane, whereas facet tilt 6, (polar angle)
is normally distributed with zero mean and standard deviation o, the latter serving as
a roughness parameter’. This isotropic surface model has been previously used to study
surface reflection from rough surfaces [25], and is invoked here to achieve mathematical
tractability?. When o = 0, all facet normals align with the mean surface normal, producing
a planar patch that obeys Lambert’s law. However, as ¢ increases, the V-cavities get deeper

on the average, and the deviation from Lambert’s model increases.

!Roughness, as defined here, is a purely macroscopic property. It is not indicative of the microscopic

structure of the surface with is assumed to cause the surface to be locally Lambertian.

?Natural surfaces clearly profess a wide spectrum of macroscopic surface geometries. For deriving
reflectance, a specific surface model must be assumed. In the past, several surface models [19, 20] have been
found to be difficult to manipulate during reflectance model derivation. In the context of body reflection,
radiance in the direction of the observer must be evaluated as an integral over all visible points on the
surface patch projecting onto a single sensor detector. Since integration has the effect of weighted averaging,
it turns out that several surface models are capable of capturing the primary reflectance characteristics of
the surface. The V-cavity model [21] was chosen as it facilitates the analysis of pertinent radiometric and
geometric phenomena and hence results in a reflectance model that performs fairly well for a large variety

of real surfaces.



The reflection model captures not only the foreshortening of individual facets (Figure
2a), but also masking, shadowing, and interreflections (up to two bounces) between adjacent
facets [26]. The brightness of a surface patch is expressed as the integral of facet brightness
over all facet normals. This integral is cumbersome to evaluate and must be broken into
components representing facets that are masked, shadowed, masked and shadowed, and
neither masked nor shadowed. The complexity of the integral is easily seen by imagining
the different masking and shadowing conditions that arise as a single V-cavity is rotated
in the surface plane. A solution to the integral was arrived at by first deriving a basis
function for each component of the integral, and then finding coefficients for the bases
through extensive numerical simulations [26]. The accuracy of the model was verified by
matching model predictions with reflectance measurements from natural surfaces, such as,
plaster, sand, and clay (Figure 3). In all cases, predicted and measured data were found to
be in strong agreement. A systematic increase in brightness is observed as the sensor moves
towards the illuminant; this backscattering is in contrast to Lambertian behavior where
brightness is constant and independent of sensor direction, and also in contrast to surface
reflection where a peak in brightness is expected in the vicinity of the specular direction
[25]. For applications where simplicity is desired over high precision, approximations were

made to arrive at this qualitative model:
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where FEj is the intensity of the source, (8,, ¢,) and (6;, ¢;) are the observer and illuminant
directions in a coordinate frame with its z-axis aligned with the surface normal, and a =
Mazx(0,,0;) and 3 = Min(0,,6;).

The developed model may be viewed as a generalization of Lambert’s law, which is
simply an extreme case with ¢ = 0. The model has direct implications for shape recovery in

machine vision [26] and for realistic rendering in computer graphics [28]. Further, it provides
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a firm basis for studying visual perception of three-dimensional objects. To illustrate this,
several objects were constructed from materials such as porcelain and stoneware, and their
digital images shown to closely match synthetic ones rendered using the model (Figure 4).
Both real and rendered shadings are seen to vary synchronously, and significantly, with

macroscopic roughness.

These experiments have led to a curious observation: The model predicts that for
very high macroscopic roughness, when the observer and the illuminant are close to one
another, all surface normals will generate approximately the same brightness. This implies
that, a three-dimensional object, irrespective of its shape, will produce nothing more than a
silhouette with constant intensity within. In the case of polyhedra, edges between adjacent
faces will no longer be discernible (Figure 4a), and smoothly curved objects will be devoid
of shading (Figure la). This visual ambiguity may be viewed as a perceptual singularity in
which interpretation of the three-dimensional shape of an object from its image is impossible
for both humans and machines. This phenomenon offers a plausible explanation for the

flat-disc appearance of the full moon (Figure 4e).
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Figure 1: (a) Digital images of two surface patches illuminated from the same direction. The strong
shading of the right patch leads the observer to perceive a cylindrical surface with a vertical axis. In
contrast, the left patch has fairly uniform brightness and the lack of shading seems to suggest a planar
surface. The actual shapes of the surfaces are identical. Both patches are clipped from images (512x480
pixels) of cylindrical vases. On the left is a real clay vase with very rough exterior that gives it a flat
appearance. The right vase has identical shape but is rendered using Lambert’s model [5] for body reflection.
Lambert’s law predicts strong shading and drives brightness at the occluding boundaries to zero. While it
predicts the reflectance of several natural surfaces with adequate accuracy, it fails to capture the interplay
between macroscopic surface roughness and sensor resolution. (b) Retina of the human eye [16] and solid-
state sensors in video cameras have finite-size receptors that aggregate brightness from areas rather than
points in the scene. The area projected onto a single receptor increases as square of surface distance from
the sensor. In a typical CCD camera used with a 25 mm lens, each pixel images a foreshortened area of
9 mm? at a distance of 5 m, or 144 mm? at 20 m. Clearly, large amounts of macroscopic undulations can

project onto a single pixel.
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Figure 2: (a) A single V-cavity used to illustrate why a collection of Lambertian facets with different
orientations does not obey Lambert’s law. When the cavity is illuminated from the right, the smaller
incidence angle for the left facet makes it brighter than the right one. For an observer on the left, the
foreshortening of the left facet is greater than of the right one and a larger fraction of the cavity is dark.
As the observer moves right, towards the illuminant, the fraction of the brighter area increases, causing
the aggregate brightness of the V-cavity to rise. (b) A reflectance function is derived by modeling a surface

patch as a collection of V-cavities (da < dA) with different facet normals (a).
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Figure 3: Measured reflectance (dots) is compared with reflectance predicted by the model (solid lines) for
plaster. Surface radiance L,, computed as an average over the entire surface patch, is plotted as a function
of sensor direction 8, for three angles of incidence 8;. Albedo p and roughness o were selected to achieve
the best fit. In these measurements, the source direction, sensor direction, and the mean surface normal are
coplanar (¢; = ¢, = 0). Surface brightness increases as the sensor approaches source direction, violating
Lambert’s law that predicts brightness to be independent of viewing direction. This brightness increase
is also in contrast to surface reflection mechanisms that produce peaks around the specular direction. In
these and other experiments [26], the proposed model is found to be in strong agreement with measured
data. The narrow peak observed in the source direction is attributed to the opposition effect [27]. This
phenomenon is of relatively less import to visual perception as it requires the observer and the source to
be within a few degrees from each other, a situation difficult to emulate in practice without either one
obstructing the other. The scope of the proposed model is broadened by combining it [26] with previously
suggested ones for surface reflection [25] that are based on similar roughness assumptions. Validity of such

a combined model was verified using samples such as sand, cloth, foam, sandpaper, and wood.
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Figure 4: (a) Video camera image of two cylinders made from exactly the same material (porcelain) and illuminated from

approximately 10° above the camera. The right vase is much rougher than the left one resulting in flatter appearance. (b)
Synthetic image of cylinders with similar dimensions, rendered using the theoretical model (left: o = 5°, right: o = 35°).
(c) Camera image of two cubes made from stoneware, illuminated from approximately 18° to the left of the camera. (d)
Synthetic image of cubes (left: ¢ = 7°, right: ¢ = 40°). In both real and synthetic images, low macroscopic roughness of
the left cube results in nearly Lambertian appearance, whereas very high roughness of the right cube causes all three faces to
produce almost the same brightness with clear edges no longer visible. The model and experiments suggest that for very high
macroscopic roughness, when source and sensor directions are close to one another, all surface normals generate the same
image brightness. Alternately, any object, irrespective of its three-dimensional shape, produces just a silhouette making it
impossible to perceive shape. (e) Spheres illuminated and viewed from the same direction. As roughness increases (left to
right: 0 = 0°; ¢ = 15° ¢ = 40°;) shading becomes flatter. For extreme roughness (right), the sphere appears like a flat disc,

as observed in the case of the full moon.
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