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Surface Reflection: Physical and Geometrical
Perspectives
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Abstract—Machine vision can greatly benefit from the develop-
ment of accurate reflectance models. There are two approaches
to the study of reflection: physical and geometrical optics. While
geometrical models may be construed as mere approximations to
physical models, they possess simpler mathematical forms that
often render them more usable than physical models. However,
in general, geometrical models are applicable only when the
wavelength of incident light is small compared to the dimensions
of the surface imperfections. Therefore, it is incorrect to use these
models to interpret or predict reflections from smooth surfaces;
only physical models are capable of describing the underlying
reflection mechanism.

In this paper, reflectance models based on physical optics
and geometrical optics are studied in detail. More specifically,
we consider the Beckmann—Spizzichino (physical optics) model
and the Torrance—Sparrow (geometrical optics) model. We have
chosen these two particular models as they have been reported
to fit experimental data well. Each model is described in detail,
and the conditions that determine the validity of the model are
clearly stated. By studying reflectance curves predicted by the two
models, we propose a reflectance framework comprising three
components: the diffuse lobe, the specular lobe, and the specular
spike. The effects of surface roughness on the three primary
components are analyzed in detail.

Index Terms— Beckmann—Spizzichino model, electromagnetic
waves, geometrical optics, machine vision, physical optics, pri-
mary reflection components, radiometry, surface reflection, sur-
face roughness, Torrance-Sparrow model, unified reflectance
framework.

I. INTRODUCTION

OINTS in a scene, when illuminated, reflect incident

light in various directions. Light rays that are reflected
in the direction of the sensor cause an image of the scene
to be formed. Most machine vision problems involve the
analysis of images formed in this manner. The intensity at any
given point in the image is closely related to the reflectance
properties of the corresponding point in the scene. Therefore,
the prediction or the interpretation of image intensities requires
a sound understanding of the various mechanisms involved
in the reflection process. While algorithms for recovering
information from images are being developed and refined,
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it is also essential to research and utilize more sophisticated
reflectance models.

A. Reflectance Models in Vision

Various reflectance models have been used in the area
of machine vision. Broadly speaking, these models can be
classified into two categories: diffuse reflectance models and
specular reflectance models. Horn [11] used the Lambertian
model [19] for diffuse reflectance to develop shape-from-
shading algorithms. He has also provided an excellent review
of some of the early models used for hill shading in com-
puter graphics [13]. The Lambertian model was also used
by Woodham [40] to determine object shape by means of
photometric stereo. This idea was extended by Coleman and
Jain [6] who proposed the four-source photometric stereo.
They discard specular reflections and use diffuse reflections
and the Lambertian model to determine shape information.
Phong [25] proposed a parametrized continuous function to
represent specular reflectance and used it to render images
of objects. Ikeuchi [17] used the double-delta specular model
to determine the shape of specular surfaces by photometric
stereo. The same model was later used by Sanderson et al. [29]
to determine the shape of specular surfaces by means of the
structured highlight technique. More recently, Nayar et al. [21]
developed the photometric sampling method that uses a hybrid
reflectance model, comprised of both Lambertian and specular
models, to extract the shape and reflectance of surfaces.

The above applications have proven that the Lambertian
model does reasonably well in describing diffuse reflection.
Moreover, its simple functional form has made it a popular
reflectance model in the vision research community. On the
other hand, the specular models used in the past provide rea-
sonable approximations only when the object surface is very
smooth (mirror-like), in which case most of the reflected light
is concentrated in the specular direction. Specular reflection
from rough surfaces, however, requires careful examination.
Its dependence on the imaging and illumination geometry can
only be determined by a formal treatment of optics. There
are two different approaches to optics, and thus two different
approaches to the study of reflection. The physical optics
approach uses electromagnetic wave theory to analyze the
reflection of incident light. The geometrical optics approach,
on the other hand, uses the short wavelength of light to sim-
plify the analysis of the reflection problem. Hence, reflectance
models derived using geometrical optics are approximations
to those derived using physical optics.
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The Beckmann—Spizzichino physical optics model and the
Torrance—Sparrow geometrical optics model have recently
attracted considerable attention. Both models have been de-
veloped to describe specular reflection mechanisms, and both
have been found to fit experimental data well [16], [38]. Ow-
ing to its simpler mathematical form, the Torrance—Sparrow
model is more popular than the Beckmann—Spizzichino model
and has been used in the areas of vision and graphics. Healey
and Binford [10] used the Torrance—Sparrow model to deter-
mine local shape from specular reflections. The model was
also used by Wolff [39] to develop spectral and polarization
stereo methods. Cook and Torrance [7] modified the model and
used it to render images of objects. Tagare and deFigueiredo
[35] have discussed both the Beckmann—Spizzichino and the
Torrance—Sparrow models in their survey of various reflection
mechanisms. They have also used the Torrance—Sparrow
model to recover the shape and reflectance of surfaces [36].

B. Motivation

Geometrical reflectance models are more widely used
in machine vision than physical reflectance models.! This
is because geometrical models have simpler mathematical
forms and hence are easier to use. This simplicity results
from the basic assumption underlying geometrical optics; the
wavelength of incident light is assumed to be much smaller
than the dimensions of the reflecting surface’s irregularities.
In the case of smooth surfaces, however, irregularities are
often comparable to the wavelength of incident light. In
such cases, geometrical reflectance models are generally
not valid, and only reflectance models based on physical
optics are capable of describing the underlying reflection
mechanisms.

The physical optics approach uses electromagnetic wave
theory to describe the reflection process. This formulation of
the reflection problem is very precise. However, it is often dif-
ficult to obtain a closed-form solution to the problem. Hence,
like geometrical reflectance models, physical reflectance mod-
els are also derived by making certain assumptions. These
assumptions are generally related to the electrical properties
of the surface. It is important to note that the assumptions
made by the two approaches are different. Physical reflectance
models are applicable to surfaces that vary from perfectly
smooth to very rough. In that respect, physical models are
more general, and the assumptions used by them are not as
restrictive as those used by geometrical models.

The purpose of this paper is twofold. First, we compare
reflectance models based on both geometrical optics and phys-
ical optics. We feel that a detailed understanding of the two
different approaches would be valuable to machine vision re-
searchers. In particular, we study the Beckmann—Spizzichino
physical optics model and the Torrance-Sparrow geometrical
optics model. These two models were chosen as they have
been found to fit experimental data well [16], [38]. The main
steps in the derivations of the two models are described and

IWe refer to reflectance models derived using geometrical optics and
physical optics as geometrical reflectance models and physical reflectance
models, respectively. Both geometrical and physical reflectance models are,
however, based on the laws of physics.

the assumptions made during the derivations are clearly stated.
This part of the paper may be viewed as a tutorial.

Next, both models are used to predict the refiectance of
surfaces with different roughness values. Reflectance plots
produced by the two models are carefully studied to identify
the main reflection mechanisms. We then propose a reflectance
framework that is comprised of three primary components; the
diffuse lobe, the specular lobe, and the specular spike. This
framework describes the reflection of monochromatic light
from surfaces that vary from smooth to rough.

Reflection is closely related to the microscopic shape of the
surface. In the following section, we describe two methods
of modeling surface shapes. In Section III, we highlight
the main steps that are involved in the derivations of the
Beckmann—Spizzichino and Torrance—Sparrow models. After
each model is derived, the assumptions used by the model
are listed and discussed. In Section IV, we compare the two
models on the basis of reflectance plots produce by them and
we identify the primary components of reflection. Finally, we
present the unified reflectance framework and describe how
reflectance models used by existing photometric methods fall
within this framework.

II. MODELING SURFACES

The manner in which light is reflected by a surface is
dependent on, among other factors, the microscopic shape
characteristics of the surface. A smooth surface, for instance,
may reflect incident light in a single direction, while a rough
surface tends to scatter light in various directions, maybe more
in some directions than others. To analyze the reflection of
incident light, we must know the microscopic shape of the
reflecting surface, i.e., we need a mathematical model of the
surface. All possible surface models may be divided into two
broad categories: surfaces with exactly known profiles and
surfaces with random irregularities. An exact profile may be
determined by measuring the height at each point on the
surface by means of a sensor such as the stylus profilometer [2].
This method, however, is cumbersome and also inapplicable
in many practical situations. Hence, it is often convenient to
model a surface as a random process. The surface is described
by a statistical distribution of either its height with respect
to a certain mean level or its slope with respect to its mean
(macroscopic) slope. In this section, we describe the height
distribution model and the slope distribution model.

A. Height Distribution Model

The height coordinate & of the surface may be expressed
as a random function of the coordinates x and y, as shown
in Fig. 1. The shape of the surface is then determined by the
probability distribution of 4. For instance, let A be normally
distributed, with mean value <h> = 0, and standard deviation
o Then, the distribution of # is given by:

1
pr(h) = W 2on?, ¢y

The standard deviation o, is also the root-mean-square of h
and represents the roughness of the surface. The surface is not
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Fig. 1. Surface height as a random function of the spatial coordinates.

Fig. 2. Random surfaces with (a) small and (b) large correlation distances.

completely defined by the statistical distribution of &, however,
as it does not tell us anything about the distances between the
hills and valleys of the surface. In Fig. 2, both surfaces (a) and
(b) have the same height distribution function, i.e., the same
mean value and standard deviation. In appearance, however,
the two surfaces do not strongly resemble each other. In order
to strengthen the surface model, we use an autocorrelation
coefficient C(7) that represents the correlation (or lack of
independence) between the random values assumed by the
height # at two points (z1,y1) and (z2,y2), separated by a
distance 7. The autocorrelation coefficient may be represented,
for instance, by the function:
2
Clr)y=e77 )
where T is the correlation distance, for which C(7) drops
to the value e~ !. The surfaces (a) and (b) shown in Fig. 2
have small and large correlation distances, respectively. By
varying the parameters o and T of the surface model, the
appearance of the surface can be altered. Moreover, if we
are dissatisfied with the performance of the model, some other
height distribution function and/or autocorrelation function can
be used instead of the ones given above.

B. Slope Distribution Model

It is sometimes convenient to think of a surface as a
collection of planar micro-facets, as illustrated in Fig. 3. A
large set of micro-facets constitutes an infinitesimal surface
patch. The patch has a mean normal vector n, whereas each
micro-facet in the patch has its own normal vector that may
deviate from the mean normal by an angle . We refer to « as
the slope of the micro-facet. The profile of the surface patch
may be modeled by assuming « to be a random variable.
If the surface is isotropic, the probability distribution of
is rotationally symmetric with respect to the mean surface
normal n. Then the distribution of o can be expressed as a
one-dimensional function. For instance, o may have a normal
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Fig. 3. Surface modeled as a collection of planar micro-facets.

distribution with mean value <a>= 0 and standard deviation
Oat

Tl 3)

1
pale) = o=t

The surface model in this case is determined by a single
parameter, namely, o4, unlike the height distribution model
which requires two parameters. Larger values of o, are used
to model rougher surfaces. The advantages of using a single
parameter come with the cost of a weaker model when
compared to the height model. Given a probability distribution
function for o, it is difficult to visualize the shape of the
surface and to estimate the root-mean-square height of the
surface. However, the slope distribution model is popular in
the analysis of surface reflection, as the scattering of light rays
is found to be dependent on the local slope of the surface and
not the local height of the surface. Hence, the slope model,
though relatively ambiguous, is more directly applicable to the
problem of surface reflection. In the following section, both
the height and slope models described in this section are used
to develop surface reflection models.

III. SURFACE REFLECTION

When light is incident on a boundary interface between two
different media, it is reflected according to well-known laws.
The reflection of light by a surface can be studied using optics.
There are two approaches to optics, and thus two approaches
to the study of reflection. Physical or wave optics is based
directly on electromagnetic wave theory. It uses Maxwell’s
equations to study the propagation of light. Geometrical or
ray optics, on the other hand, explains the gross behavior of
light when its wavelength is small compared to the pertinent
physical dimensions of the system (in our case, the surface
irregularities).

In this section, we study surface reflection from the perspec-
tives of physical and geometrical optics. More specifically,
we discuss a physical optics reflectance model, namely, the
Beckmann—Spizzichino model, and a geometrical optics re-
flectance model, namely, the Torrance—Sparrow model. We
highlight the main steps that are involved in the derivations
of both models and clearly state the assumptions made in the
process of their development. The derivations will draw on the
surface modeling methods discussed in the previous section.
In the next section, the two models are compared by plotting
the predicted reflectance as functions of viewer and source
directions.
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A. Physical Optics Model

Light is an electromagnetic phenomenon. In physical optics,
problems related to the propagation of light are analyzed
using electromagnetic wave theory. In the case of reflection,
the interaction between incident light waves and the surface
material is described using Maxwell’s equations. A reflectance
model is then derived by solving Maxwell’s equations using
the boundary conditions imposed by the reflecting surface.

In this section, we describe the development of the
Beckmann—Spizzichino physical optics reflectance model. The
model is derived using basic concepts of electromagnetic wave
theory. A brief tutorial on electromagnetic waves is given in
Appendix A. A reader unfamiliar with this area is encouraged
to read Appendix A before proceeding further.

1) Beckmann—Spizzichino Model: The Beckmann—Spizzichi-
no model describes the reflection of plane electiomagnetic
waves from smooth and rough surfaces. A detailed derivation
of this model can be found in [1]. Our intention is to highlight
the key steps involved in the derivation of the model and to
clearly state the assumptions made during its development.

Consider a plane wave incident on a surface, as shown in
Fig. 4. All vectors and surface points are defined using the
Cartesian coordinates z,y, z with origin O and unit vectors
z,y, and z. The height of the surface is determined by the
function h = h(z,y), and the mean level of the surface is the
plane z = 0. The location of a surface point Q is given by
its displacement vector r:

r=zx+yy + h(z,y)z. 4)

All quantities associated with the incident field will be
denoted by the subscript 1 and all those associated with
the scattered field by the subscript 2. The plane wave is
represented by its electric field intensity. Note that its magnetic
field intensity can be determined from the electric field. The
incident field at the surface point Q may be written as:

E = Eolele—ikl-'l'eiwt (5)

where E,; represents the electric field amplitude, e; is the
direction of the electric field, k; is the wave propagation
vector, and w is the radian frequency of field oscillation.

We are interested in the instantaneous scattering of the
incident plane wave by the surface. Hence, the second ex-
ponential term in the above equation can be dropped as it
represents the temporal variation of the incident field. The
incident propagation vector k; will be assumed to always
lie in the x — z plane of the coordinate frame. The angle
of incidence §; of the plane wave is the angle between the
propagation vector k1 and the z axis of our coordinate frame.
If we are interested in the field scattered by the surface in
the direction ks, the corresponding scattering angle 6,. is the
angle between k3 and the z axis. For scattering directions that
lic outside the plane of incidence (k,z), an additional angle
¢, must be introduced (Fig. 4). The propagation constant &
corresponding to the propagation vectors k; and ko is related
to the wavelength A of the incident wave (Appendix A).
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Fig. 4. Plane wave incident on a rough surface.

The polarization of the incident wave is determined by the
direction of the vector e;. For parallel polarization, e; lies in
the plane of incidence; for perpendicular polarization, e; is
normal to the plane of incidence. For an unpolarized incident
wave, the direction of e; can vary with time. Here, we assume
the polarization of the incident wave to be either parallel or
perpendicular. The incident field is denoted by the scalar E;,
where

E, =e;- E;. (6)

What happens when the incident plane wave strikes the
surface? A simplistic description of this physical situation is as
follows. Consider the electrons in the surface that are loosely
bound to their atoms. When these electrons are subjected to
the electromagnetic field carried by the incident wave, they
experience forces. These forces results in movement of the
electrons, often referred to as surface currents. The surface
currents give rise to new electromagnetic fields that interact
with the incident field to determine the resultant field at the
surface. Mathematically, the resultant field (£)4 at a surface
point O must satisfy the wave equation®:

Az(E)s + kz(E)s =0 @

where k is once again the propagation constant. Therefore,
the field (F)g at the surface may be determined by solv-
ing the wave equation for the boundary conditions imposed
by the surface shape.

The field scattered by the surface in any direction can be
determined from the field at the surface. Let P be the point
of observation, and let the variable R’ denote the distance
between P and points on the surface S, as shown in Fig. 4.
We are interested in the scattered field E5 at the point P.
To this end, consider a volume V that is bounded almost
everywhere by the surface S but is extended such that the
point P lies just outside V. Then, it is reasonable to assume
that the field Es is continuous, and the above wave equation

2]t can be shown [4] that, for a source-free region of space, Maxwell’s
equations reduce to the wave equation.



NAYAR ez al.: SURFACE REFLECTION

must therefore be satisfied everywhere inside V. Furthermore,
the point inside V that is nearest to P will experience almost
the same field as P. Using these assumptions and Green’s first
and second theorems, the scattered field E, at the point P can
be determined [1] from (7) as:

) =4 [ ((E)sg—f - (%f—)s)ds ®

where
ek’

b= ®
This is called the Helmholtz integral. 1t gives the solution of
the wave equation at any point inside (P is almost inside) a
region in terms of the values of the function (surface field
(E)g) and its normal derivative on the boundary (the surface
S) of the region. A detailed derivation of the Helmholtz integral
is provided in [1].

In order to evaluate the above integral, we must find (E)g
and (O0E/On)g, ie., the field and its normal derivative on
the surface S. In general, these two quantities are unknown.
Kirchoff’s assumption may be used to approximate the values
of the field and its normal derivative at each point on the
surface. The approximation is obtained by assuming that the
surface does not have any sharp (compared to the wavelength
of incident light) edges, and thus the field at a point on the
surface is equal to the field that would be present on a tangent
plane at that point. Under this assumption, the field on § may
be determined as:

(E)g =+ F)E;. (10)
In addition, by differentiating this equation, the normal deriva-
tive of the field is determined as:

(%ﬁ*)s = (1 —F)E1k1 ~n' (11)
where n’ is the normal to the surface at the point under
consideration and F is the Fresnel reflection coefficient.

The Fresnel coefficient determines the fraction of incident
field that is reflected by a smooth surface. Though the surface
we have considered may be rough, Kirchoff’s approximation
implies that the surface is locally smooth. Therefore, the
Fresnel coefficient is applicable. We now take a closer look at
how the Fresnel coefficient is related to the electrical properties
of the reflecting surface. Consider a plane wave incident
on a perfectly smooth surface. A fraction of the incident
energy is reflected by the surface and the remaining energy
transmitted by the surface. As described above, the intensity
of the reflected wave is determined by the surface field (E)g,
which in turn is dependent on the surface currents. The
surface currents induced by the incident wave are determined
by the angle of incidence, the polarization of the incident
wave, and the electrical properties (permittivity, permeability,
and conductivity). The Fresnel reflection coefficient F is the
fraction of incident field that is reflected. It is often written
as F(0.,n'), where 0. represents the angle of incidence,
and 7/ is the complex index of refraction whose value is
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Fig. 5. The local scattering geometry. The local angle of incident 8 and the
Jocal surface orientation 72’ may differ from the global angle of incidence 8;
and the mean surface orientation 72.

determined by the electrical properties of the surface medium.
In deriving their reflectance model, Beckmann and Spizzichino
have assumed that the incident wave is of either perpendicular
or parallel polarization. The Fresnel coefficients for parallel
and perpendicular polarization are, respectively {1]:

Y2cosf) — y/ (Y2 - sin6))
Fpara = (12)
YZ2cost, + 1/ (Y2 - sin’6;)
cosf: — 4/ (Y2 - sin®6})
Fperp = . (13)
cos +y/ (Y2 - sin’0})

It is important to note the difference between ‘the angle of
incidence §; shown in Fig. 4 and the angle of incidence 6, in
the above equations. As shown in Fig. 5, the angle 8} is the
“local” angle of incidence, i.c., the angle between the incident
wave propagation vector k; and the normal vector n' at a
particular point on the surface. Therefore, ] can vary over
the surface, while 6; is constant for a given incident wave.
The term Y in the above equations is called the normalized
admittance of the surface medium and is a function of the
complex index of refraction 7. Hence, Y is also a function
of the electrical properties of the medium. For a conductor,
Y approaches infinity, while for a dielectric (nonconductor), Y
is almost zero. '

Let us now return to the problem of finding the scattered
field E5 by evaluating the Helmholtz integral given by (8).
Assume that the surface under consideration is a rectangular
patch of area A and dimensions 2X and 2Y in the z and y
directions, respectively, i.e., A = 4XY. Further, assume that
the observation point P is at a great distance from the surface
compared to the physical dimensions of the surface patch and,
as a result, the vector ko is constant over the entire surface
area. Then, the distance R’ in Fig. 4 can be expressed as:

kR = kR, — ks - . (14)
By substituting (10), (11), and (14) in (8), the scattered field
E, is found to be:
Eolikeich X Y v
E, = -W%—o_/_x/_y (akl, + ch!, — b) ™™ da dy
(15)
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where
v = (Vg, Uy, V) = k(sin6; — sin 8, cos ¢, )z
+ k(sinf, sin ¢, )y — k (cos f; + cos Or)z
a=(1-F)sinb; + (1 + F)sinf, cos ¢,
b= (14 F)cosb, — (1 — F)cos¥;

¢=—(1+ F)sinf, sin ¢,. (16)

The terms h;, and b, denote the derivatives of the surface
height A{z,y) in the = and y directions, respectively. If the
admittance of the surface is finite, the Fresnel coefficient F is a
function of the local angle of incidence 8. [see (12) and (13)].
For a rough surface, 8. varies over the surface. As a result, the
factors a, b, and ¢ in (15) also vary over the surface. Therefore,
for finite admittance, the integral becomes very cumbersome
to evaluate and no solution to the scattering problem is known
that is general and exact at the same time. This leads us to
our next assumption: The surface medium is considered to be
a perfect conductor, i.e., ¥ — oco. Then, from (12) and (13)
we see that:

Foara =1 and  Fpep = —1 a7

and the terms a, b, and ¢ in (15) are independent of x and y.
Further, the incident wave is assumed to be of perpendicular
polarization. Then F' = Fp,, = —1.

In order to evaluate the integral in (15), the height function
h(z,y) must be defined. The exact profile of the surface is
of course not known to us. Even if the profile is determined
by some method and used in (15), the result would only be
valid for that particular profile. Our purpose is to develop a
model that is applicable to a wide range of surface profiles. To
this end, a parametrized stochastic model is used to represent
the surface. Beckmann and Spizzichino have used the normal
height distribution model described in Section II. The surface
height is assumed to have a normal distribution function with
mean value <h>= 0, standard deviation oy, and correlation
distance 7. The normal distribution pj(h) is given by (1)
and the autocorrelation function C(7) by (2). Since k& and
the scattered field E; are related by (15), the statistics of Es
can be determined from the statistics of 4. Beckmann and
Spizzichino have presented detailed derivation for the mean
field and mean power scattered by the surface in an arbitrary
direction for any given angle of incidence. It turns out that
the mean field <E5> is non-zero in the specular direction
(8- = 6;) but tends rapidly toward zero as ¢, deviates from
the specular direction. Since <F5> is a complex quantity, its
dependence on 6; and 6, is difficult to interpret. For instance,
it does not follow from <E3> = 0 that <|FE3|> = 0. Therefore,
Beckmann and Spizzichino have only used <FE>> as a stepping
stone to derive thie mean scattered power <EyE3> = <|Es|?>.
For a given incidence angle 8;, the mean power scattered
in the direction (6,,¢,) by a rough surface whose height &
is normally distributed with mean value <h> = 0, standard
deviation o}, and correlation distance 7, is:

2 A2 cos2f.
E%, A% cos®d; s (/}3

<E2E;> = /\2R(2)
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2 m=o00
" 7T?2D? g™ e—szTz/‘im)
Im

A — m!
(18)
where
- 2
g= (QWTh(cos 6; + cos 9,)) 19)
po = sinc(vy X ) sinc(v,Y) (20)
1+ cos b, cos b, — sinb; sin b, cos ¢,

D= 21

( cos 8;(cos 8; + cos ;) ) 1)

Voy = JVE + V2. (22)

The factor g in (18) is proportional to the square of the ratio®
on/A. Therefore, g represents the roughness of the surface
and the three cases g < 1, g &~ 1, and g > 1 correspond to
smooth surfaces,* moderately rough surfaces, and very rough
surfaces, respectively.

It may be pointed out that the model under consideration
only describes the reflection mechanism that is referred to
by the vision research community as “specular reflection.”
Specular reflection models used for vision have always had a
single component [12], [25], [38]. Equation (18) indicates that
the scattered energy is the sum of two terms. We refer to the
first term, e~9pZ, as the specular spike component. Equation
(20) indicates that p, is a very sharp function of §; and 4,.,
and is nearly zero for all scattering directions except a very
narrow range around the specular direction. We refer to the
second term in (18) as the specular lobe,” i.e., the diffuse
scattering of incident energy that results from the roughness
of the surface. As we will see shortly, the specular lobe
component is distributed around the specular direction. For a
perfectly smooth surface, g = 0 and the specular lobe vanishes,
while the specular spike is strong. As the roughness measure
g increases, the spike component shrinks rapidly, and the lobe
component increases in magnitude.

The exponential series given by the summation in the lobe
component can be approximated for smooth (¢ < 1) and very
rough (g >> 1) surfaces. The approximations result in simpler
expressions for the scattered power for these two extreme
surface conditions:

E? A% cos?0;
A2R2

ce9 (nZ + _ﬂTznge*”ini/‘l)

<E2E; > smooth =

(g<1) (23)

3In physical optics the ratio o, /A is referred to as the optical roughness
of the surface.

*We define a smooth surface as one that is either perfectly smooth or
“slightly” rough.

3Beckmann and Spizzichino have referred to this component as the diffuse
component. The term “diffuse” has historically been used by the vision
community to describe the reflection component that results from other
mechanisms such as internal scattering. To avoid confusion we will refer
to the diffuse component of specular reflection as the specular lobe.
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E2, Acos?0,7T?D?

<E2E2> rough = A2R2V20';2l
oYz

) *uzyT2
oxp 4v203

(9>1).24

The above equations for scattered power represent the
Beckmann—Spizzichino reflectance model. It is important to
understand the conditions that determine the validity of the
model. We therefore summarize the assumptions made dur-
ing the derivation of the model and discuss the restrictions
imposed by these assumptions.

2) Assumptions and Related Comments:

* The surface height is assumed to be normally distributed.
However, Beckmann and Spizzichino have derived re-
flectance models for surfaces with other height distribu-
tions, including surfaces with periodic profiles.

» The radius of curvature of surface irregularities is large
compared to the wavelength of incident light (Kirchoft’s
assumption). This assumption is necessary to approximate
the electromagnetic field at the surface and its normal
derivative. The approximation breaks down when the
surface irregularities include sharp edges or sharp points.

* The surface is assumed to be a perfect conductor. This
assumption forces the quantities a, b, and ¢ in (15) to
be constants, thus making it possible to evaluate the
Helmbholtz integral. It is possible to approximate the scat-
tered field and power for surfaces of finite conductivity by
averaging the Fresnel coefficient F over the entire surface
area and using the resultant value <F> as a constant
in the Helmholtz integral. This way the mean field and
mean power scattered by surfaces of finite conductivity
are determined [1] as:

<Ey>j =<F><E> »
<EyE3>§ =<FF*><Eq B3> o

(25)
(26)

where the indices f and oo denote finite and infinite
conductivity, respectively.

* The masking and shadowing of surface points by adjacent
surface points is ignored. Adjacent points may obstruct
either the wave incident at a given point or the waves
scattered from it. Clearly, these effects are related to
the angles of incidence and reflection. It is possible to
compensate for the shadowing and masking effects by
replacing the height function h(z,y) by S(z,y)h(z,y).
S(z,y) is a shadowing function [32] that tends toward
unity for surface points that are illuminated and zero for
those that are not.

« It is assumed that the incident wave is reflected only
once and does not bounce between surface points before
it is scattered in the direction of the observation point
P. Without this assumption it would be very difficult to
compute the scattered field; no closed-form solution that
takes multiple scatterings into account is known at the
present time.

« The incident wave is assumed to be perpendicularly polar-
ized. The mean field and power can also be determined
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for parallel polarization. Beckmann and Spizzichino have
also discussed possible approaches for solving the scat-
tering problem when the polarization vector e; of the
incident wave is neither parallel nor perpendicular to the
plane of incidence.

» The incident wave is assumed to be a plane wave.
This assumption is reasonable when the source is at a
great distance from the surface relative to the physical
dimensions of the surface. If the source is close to the
surface, the incident waves must be considered to be
spherical.

3) Surface Radiance from Scattered Power: The Beckmann—
Spizzichino reflectance model predicts the mean field and’
mean power scattered by a surface. In machine vision, radio-
metric terms are generally used to describe the brightness and
reflectance of a surface. Some of these terms are defined in
Appendix B. The amount of light falling on a surface is called
the irradiance. It is the power per unit area (watts per square
meter) incident on the surface. The amount of light radiated
from the surface is called the radiance. It is the power per
unit area per unit solid angle (watts per square meter per
steradian) emitted from the surface. Horn has shown that image
irradiance is proportional to scene radiance [14]. Therefore, it
is convenient to express the brightness of a surface in terms of
its radiance. In Appendix C, we have derived surface radiance
from the scattered power given by (18). The final result is:

L = W E2, cos?0; ool (2 2dA;., cos'yp2
"TVe 2x f cos?6, '°
xT2D? "= g™ e~u1y2T2/4m),
'm

cos 6, = om

27

The radiance expressions for the special cases of smooth
and rough surfaces are also derived from (23) and (24),
respectively:

Eo12cos%8; _
Lrsmooth = g ! 2)\2 ¥
({2 dAimcosy 2+ D%
f cos20, '°  cosf,
(9<1) (28
L _ e E,1 2 cos?0;x T2 D? exp —ngTz
rrough e 2X\2cosbyv20} 4o},
(g>1). (29

We conclude this section with the following observations:

 The Beckmann—Spizzichino model has two components:
the specular spike and lobe components.

« The model can describe reflection from smooth and rough
surfaces.

« The ‘general expression for surface radiance is a fairly
complicated function of the angles of incidence and
reflection, and the surface roughness parameters.
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In the following section, we describe a reflectance model
based on geometrical optics. Subsequently, we compare the
two models, highlighting the main differences and similarities.

B. Geometrical Optics Model

Geometrical optics is applicable in situations where the
clectromagnetic character of light can be ignored. In the
context of reflection, this is possible when the wavelength
of incident light is much smaller than the dimensions of the
surface irregularities. The incident light may be thought of
as a collection of rays where each ray travels in a straight
line in a homogeneous medium. Further, each ray may be
assumed to be specularly reflected by the surface, i.e., the
angle of reflection equals the angle of incidence. Under these
assumptions, a reflectance model may be derived using purely
geometrical analysis. It is important to note that geometrical
optics is a limiting case of physical optics. In general, it is
not valid when the surface roughness is comparable to the
wavelength of incident light.

In this section, we present the Torrance—Sparrow reflectance
model. This model uses geometrical optics to describe the
specular reflection mechanism. Torrance and Sparrow have
appended the Lambertian model to their reflectance model
to account for the internal scattering mechanism. We briefly
describe the Lambertian model® and then proceed to describe
the Torrance—Sparrow model. Once again, our intention is
to highlight the main steps in the derivation of the model
and clearly state the assumptions made during the derivation.
In the next section, reflectance plots predicted using the
Torrance—Sparrow model are presented. On the basis of these
reflectance plots, the Torrance—Sparrow model is compared
with the Beckmann-Spizzichino physical optics model.

1) Lambertian Model: Lambert [19] was the first to inves-
tigate the mechanism underlying diffuse reflection. Surfaces
that satisfy Lambert’s law appear equally bright from all
directions. In other words, the radiance of a Lambertian surface
is independent of the viewing direction. The main mechanism
that produces Lambertian reflection is called internal scatter-
ing. Incident light rays penetrate the surface and encounter
microscopic inhomogeneities in the surface medium (Fig. 6).
The rays are repeatedly reflected and refracted at boundaries
between regions of differing refractive indices. Some of the
scattered rays find their way to the surface with a variety of
directions, resulting in diffuse reflection. When the internal
scattering mechanism produces constant surface radiance in
all directions, we have Lambertian reflection.

The radiance of a Lambertian surface is proportional to
its irradiance. Consider an infinitesimal surface arca dA,
illuminated by an infinitesimal source area dA;, as shown
in Fig. 7. The flux incident on dA, is determined from the
source radiance L; as:

d®; = Lidw, dA;. (30)

®Lambertian reflection is normally categorized as “body” reflection rather
than surface reflection. The model is discussed here only because it is used
later to represent one of the primary reflection components.
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Fig. 6. Diffuse reflection resulting from the internal scattering mechanism.

Fig. 7. Solid angles subtended by the surface element and the source.

From the solid angles subtended by the surface and source
areas, we obtain:

dA; = dw;r? 31
duy = LA c08b: 32)
T
Substituting (31) and (32) into (30), we obtain:
d(I)l = Lz dwidAs CcoSs 91'. (33)
Surface irradiance is determined as:
d®;
==, 34
L dA, (34)

As stated earlier, the radiance L, of a Lambertian surface is
proportional to its irradiance I;. Note that I, is zero when the
angle of incidence exceeds /2. Hence, surface radiance may
be written as:

LT = Kdiff max[O, {Lidwi COs 0,)] (35)

where x4; determines the fraction of the incident energy that
is diffusely reflected by the surface. The above expression for
radiance represents the Lambertian reflectance model.

1) Torrance—Sparrow Model: The Torrance—Sparrow model
describes single reflection of incident light rays by rough
surfaces [38]. Based on geometrical optics, the model is valid
only when the wavelength of light is much smaller than the
roughness of the surface, i.e., A < o,. Torrance and Sparrow
have used the slope distribution model (Section II) to represent
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the profile of the surface. The surface is assumed to be a
collection of planar micro-facets. The micro-facets are much
larger in dimensions than the wavelength of incident light. The
facets are also perfectly smooth, i.e., they are specular (mirror-
like) in reflectance. The orientation of each facet deviates
from the mean orientation of the surface by an angle o; « is
referred to as the facet slope and is a random variable. Torrance
and Sparrow have assumed « to be normally distributed. The
surface is also assumed to be isotropic. Hence, the distribution
function is rotationally symmetric and can be represented by

a one-dimensional normal distribution function:

o2

pala) = ce %

(36)

where ¢ is a constant, and the facet slope o has mean value
<a> = 0 and standard deviation o,. As we have stated
earlier, for this surface model, roughness is represented by
the parameter o,,. Noting that « can only vary between 0 and
7 /2, the constant ¢ is determined as:

T/2 _ a2
c:l// e *a da.
0

Consider the geometry shown in Fig. 8. The surface area
dA, is located at the origin of the coordinate frame, and
its normal vector points in the direction of the z axis. The
surface is illuminated by a beam of light that lies in the
x — 2z plane and is incident on the surface at an angle 6;.
We are interested in determining the radiance of the surface in

. the direction (., ¢, ). Only those planar micro-facets whose
normal vectors lie within the solid angle dw’ are capable of
specularly reflecting light into the infinitesimal solid angle
dw, . Using spherical trigonometry, the local angle of incidence
6’ and slope o of the reflecting facets can be determined from
the angles 6;,0,, and ¢;:

(37

1
o= 5 cos™(cos 8, cos §; — sin b, sin f; cos ér) (38)
o = cos™ ! (cos §; cos 8} + sin 6; sin 8 cos
- (sin"Y(sin ¢, sin 6, /sin 267))).  (39)

The number of facets per unit surface area whose normal
vectors lic within the solid angle dw’ is equal to po()dw’. Let
as be the area of each facet. Then, the area of points on dA,
that reflect light from the direction 6; into the solid angle dw, is
equal t0 ap, (@)dw'dA,. All the reflecting facets are assumed
to have the same local angle of incidence ;. From (33), the
flux incident on the set of reflecting facets is determined as:

d2®; = L; dw;lajpale) dw'dAS] cos 8. (40)

The fraction of incident light that is reflected by a facet is
determined by the Fresnel reflection coefficient. As described
in the previous section, the Fresnel coefficients Foaxa(05: 1)
and Fperp(0;,7') represent the electromagnetic field reflected
in the specular direction by a planar surface when the in-
cident wave is of parallel and perpendicular polarization,
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incident beam

reflected beam

Fig. 8. Coordinate system used to derive the Torrance —Sparrow model.

respectively. In this section, however, we are interested in the
reflected flux, i.e., the energy flowing through unit area. The
Fresnel coefficients for energy reflectance can be determined
from those for field reflectance as:

F;l)am(eév"ll) = IFpara(ogyn’)F

F{)erp(eg'rn/) = leerp(gll'a 711){2- 41

Assume that the polarization vector e; of the incident light
wave lies outside the plane of incidence. Let  and v represent
the magnitudes of the resolved components of e; in the
parallel and perpendicular polarization planes, respectively.
The Fresnel coefficient F'(6},7') can be expressed as a
linear combination of the Fresnel coefficients for parallel and
perpendicular incident waves [30]:

F'(0;,1) = hF'para(8;,n') + 'UFlgerp(&;’ ') (42)

where
h,v>0 and h4+v=1 43)
Torrance and Sparrow have also considered the masking

and shadowing of micro-facets by adjacent facets. Adjacent
facets may obstruct flux incident upon a given facet or the
flux reflected by it. In order to compensate for these effects,
the geometrical attenuation factor” G(8;, 0., ¢-) is introduced.
The obstruction of incident or reflected light depends on the
angle of incidence and the angles of reflection. Each facet is
assumed to be one side of a V-groove cavity, and light rays
are assumed to be reflected only once. A detailed derivation
of G(0;,0,,r) is given in [38]. The result is:

2 cos a cos b;
cost,

0,
G(6:, 00, 6) = mm<17 2cos a:cos b

/
cos®;

(44)

Taking the Fresnel reflection coefficient and the geometrical
attentuation factor into account, the flux d?®,. reflected into

7This factor plays the role of the shadowing function S(r, y) mentioned

in Section III-A-2.
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the solid angle dw, may be determined from the flux d2®,
incident on the reflecting facets as:

d*®, = F'(8], 7)G(8;,0,, $,)d>®;. (45)

The radiance of the surface element dA, in the direction
(0, ¢y) is defined as:

_ &2®,
" dw,dA, cosb,’

r

(46)

Substituting (40) and (45), into (46), we obtain:

I - F'(0;,1)G(0:, 6, 7 ) L; dwiagpa(a)dw'dA, cos b}
T dw, dA4 cos 8, )

“7

Earlier, we stated that only facets with normals that lie
within the solid angle dw' are capable of reflecting light into
the solid angle dw,.dw’ and dw, are related to one another
as:

= dw,
4cos @’

(48)

Torrance and Sparrow have only used the above relation and
have not derived it. However, this relation is a very important
one as it provides insight into the reasons for which the
model is not applicable to perfectly smooth surfaces. For the
interested reader, a derivation of the above relation is provided
in Appendix D.

Substituting (36) and (48) into (47), we obtain:

Lidwi

__a?
e ZUQE
cos b,

L‘r‘ = H/spec

(49)

where

_casF'(0;,7)G(6;,0., ¢.)

spec — 4

. (50)

Note the similarity between the above equation and the
expression for the specular lobe component of the Beck-
mann—Spizzichino model [see (29)]. It is clear that the Tor-
rance—Sparrow model describes only the lobe component of
specular reflection; there is no term in the above equation
that represents the spike component. Surface radiance is de-
termined only by the roughness parameter o,, and unlike
the Beckmann-Spizzichino model, there is no dependence
on the wavelength A of incident light. However, from the
physical optics model we have seen that the spike component
is significant only when o3, /A < 1.5. Torrance and Sparrow
have clearly stated that their model is, in general, valid only
when o5, /X > 1.0. Therefore, this model must not be used
to predict or interpret reflections from very smooth surfaces,
i.e., when o4 /)\ < 1.0. To make their model more general,
Torrance and Sparrow have appended the Lambertian model to
their model to account for diffuse reflections that may result
from internal scattering. Thus, for an angle of incidence 6;,
the radiance in the direction (6., ¢,.) of a rough surface whose
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facet slopes are normally distributed with standard deviation
T4 IS:
a2
L, = kqig max|0, (L; dw; cos 6;)] + nspecwe_ﬁ 51
cos b,

where kg;g and Kspec TEpresent the fractions of incident energy
that are reflected by the diffuse and specular mechanisms,
respectively. Once again, we summarize the assumptions made
during the derivation of this model and discuss the restrictions
imposed by these assumptions.

3) Assumptions and Related Comments:

* The surface is modeled as a collection of planar micro-
facets, and the facet slopes are assumed to be nor-
mally distributed. Note that the slope distribution function
pa(cx) appears explicitly in the final expression for surface
radiance, (51). Therefore, any distribution function can be
used in place of the normal distribution without having
to re-derive the reflectance model.

* The size of the planar facets is much greater than the
wavelength of incident light, i.e., o5 > A. Therefore, it
can be assumed that the incident light rays are reflected
by each facet in its specular direction only. Furthermore,
or > A implies that the spike component of reflection
is zero and that the model represents only the lobe
component of reflection.

* The model takes the Fresnel reflection coefficient F’
into account. Therefore, no assumptions need to be made
regarding the polarization of incident light and the con-
ductivity of the surface medium. As a result, the model
is capable of predicting reflections from both conductors
and dielectrics.

* Each facet is one side of a symmetric V-groove cavity.
With this assumption, the shadowing and masking effects
are accounted for by using the geometrical attenuation
factor G.

* The source is assumed to be at a great distance from the
surface so that all light rays incident on the surface area
dA, are nearly parallel to one another. This assumption
simplifies the relationship between the solid angles dw’
and dw,, [see (48)].

* The final model includes the Lambertian model to account
for diffuse reflection resulting from internal scattering.

IV. A UNIFIED PERSPECTIVE

We have described reflectance models based on both phys-
ical optics and geometrical optics and stated the assumptions
under which they are valid. Physical optics models are derived
using electromagnetic wave theory. They are more general
than models based on geometrical optics in that they can
describe reflection from smooth and rough surfaces. However,
physical models are often inappropriate for use in machine
vision as they have functional forms that are difficult to
manipulate. Geometrical models, on the other hand, are de-
rived by analyzing the surface and illumination geometry and
have simpler functional forms. These models, however, are
approximations to physical models and in general are not
capable of describing reflection from smooth surfaces.
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In this section, we compare the Beckmann-—Spizzichino
(physical optics) and Torrance—Sparrow (geometrical optics)
reflectance models on the basis of reflectance plots predicted
by them. By studying the reflectance plots, we identify the
primary components of reflection. We then propose a unified
reflectance framework for machine vision that has the func-
tional simplicity of a geometrical reflectance model as well as
the completeness of a physical reflectance model. Two repre-
sentations for the reflectance framework are presented that are
important from the perspective of vision. In the first case, the
primary components are plotted as a function of the angle of
reflection (sensor direction) for a given angle of incidence
(source direction). In the second case, the components are
plotted as a function of the angle of incidence for a given angle
of reflection. We conclude this section with a brief discussion
on how the unified reflectance framework may be used, and
we show that several shape recovery methods used in vision
are based on reflectance models that fall within the proposed
framework.

A. Physical Optics Model versus Geometrical Optics Model

The Beckmann-—Spizzichino and Torrance—Sparrow models
are compared by studying reflectance plots predicted by the
two models for different surface roughness values. Tradition-
ally, the bidirectional reflectance distribution function (BRDF)
has been used to represent surface reflectance. The BRDF
is the radiance of the surface normalized by its irradiance.
In machine vision, we are interested in interpreting image
irradiance (intensity) values. Horn [14] showed that image
irradiance is proportional to surface radiance. For this reason,
and others that will be given shortly, we use radiance as
measure of the reflectance of the surface. Radiance is plotted
as a function of the viewing angles (6,, ¢.) and the incidence
angle ;. We refer to these plots as radiance diagrams. For
each of the two models, radiance diagrams are generated
for different values of the surface roughness parameters. The
radiance diagrams are then used to analyze and compare the
behavior of the two models.

1) Radiance Diagrams for Beckmann—Spizzichino Model:
The radiance diagrams presented here are generated using
following radiance expressions for the Beckmann—Spizzichino

model.
_ z2\2dA;mcoSY o
g —_ —_—
€ (( f ) cos2 6, Po

27)2 M=
xT“D g"" e—v,fT"/Alm) 52)
m

cos 0, i m!
exp ey *T”
4!/220'}12

=1
(g>1)

I = &Eofcoszt?i
" € 222

L _ E,_ Eol2 COSzgi’IFT2D2
rrough e 2A2cosf,.v,2042

(3)

where L, and Lyough are the general expression for radiance
and its approximation for rough surfaces, respectively. A is the
wavelength of incident light, o, is the standard deviation of
the surface height, T is the correlation distance for the surface
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variations, ; is the angle of incidence, and 6, is the angle
of reflection. For simplicity it is assumed that the observation
point lies in the plane of incidence, ie., ¢, = 0. In each
diagram, radiance is plotted as a function of 6, for fixed values
of 9,

The reflectance characteristics of the surface depend on its
roughness with respect to the wavelength of incident light and
the frequency of its spatial variation. The roughness of the
surface is determined by the factor g which in turn is a function
of the optical roughness o5 /X [see (19)]. The frequency of
spatial variation is determined by the ratio o4 /T (Section 10).
We are interested in studying how the radiance diagrams are
affected by the two ratios o, /X and 04 /T. The two ratios
are varied by keeping o constant and varying A and T,
respectively. Fig. 9 shows radiance diagrams for different
values of o5/X. All the diagrams are generated using the
general radiance expression given by (52). The specular lobe
component of radiance was computed by summing the first
100 terms of the exponential series.

In Fig. 9@a), on/A = 0.002, ie., g = 0. From (52) we
see that, when g = 0, the lobe component is near zero and the
spike component is dominant. The surface behaves in a mirror-
like manner and reflects light only in the specular direction
#, = #6;. Also note that the radiance in the specular direction
is constant for different values of ;. This is consistent with
our real-world experience; when we look at a perfect mirror
from the specular angle, we see a virtual image of the source.
Further, the image appears the same irrespective of the angle
of incidence. Through numerous simulations, we have found
that this mirror-like behavior is observed when o/ < 0.025.
In Fig. 9a, the spike component looks like a delta function.
However, the spike component is really the square of a sinc
function [see (20)]. This is seen in Fig. 9(b), where one of the
radiance plots in Fig. 9(a) is rescaled and plotted.

As op/A is increased above 0.025 [Fig. 9(c) and (d)}.
the spike component decreases rapidly in magnitude. How-
ever, the spike component is still strong for large values
of 6, and 0;.This is because g is a function not only of
on/X but also of (cosf; + cosf,). Hence, for large val-
ues of 8; and 6,,g approaches zero, the spike component
increases, and the surface tends to behave like a mirror.
However, when oy, /) is increased further [(Fig. 9(e) and (f)],
the spike component fades away, and the lobe component
begins to dominate the radiance value. We have observed
that, when o, /A > 1.5, the spike component disappears
for incidence angles that are not close to the grazing angle,
and the radiance value is determined solely by the lobe
component. '

Fig. 10 shows that the shape and magnitude of the lobe com-
ponent are greatly affected by the ratio op /T. In Fig. 10(a),
radiance diagrams generated by using the general expres-
sion (52) and the approximate radiance expression for rough
surfaces (53) are compared. Lyrough Seems 10 provide a
good approximation to the lobe component of L,. Hence,
Ly rough may be used instead of L, when the spike component
is negligible. In Fig. 10(b), the lobe component is sharp
and concentrated around the specular direction. We have
observed that when oy/T < 0.02, the shape of the lobe
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Fig. 9. Radiance diagrams for the Beckmann—Spizzichino model: an /A equals (a) 0.002; (c) 0.05; (d) 0.1; (e) 0.33; ) 0.5.

component resembles that of the spike component. However,
the magnitude of the lobe peak increases with the incidence
angle ;. This effect results from the term 1/ cos#, in (53).
As the ratio 04 /T increases, the lobe gets wider and the
lobe peak decreases in magnitude. In fact, for o,/T <
0.05, the lobes may be approximated by Gaussian functions
with mean values corresponding to the specular direction
(6; = 6,). For larger values of o, /T, however, the lobe

begins to peak at viewing angles greater than the specular
angle; these are called off-specular peaks. Also note that as 6,
approaches 90 degrees, the radiance values approach infinity.
By using a shadowing function, this effect can be avoided
while preserving the shape of radiance curve for lower values
of 0,.

2) Radiance Diagrams for Torrance—Sparrow Model: Tor-
rance and Sparrow have evaluated the performance of their
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model by plotting the ratio of the BRDF in viewing direction using the expression:

to the BRDF in the specular direction. The normalized BRDF Lidw; _ =
distributions predicted by the model for a dielectric (MgO) L, = Kspec e el G4
and a conductor (Al) were found to fit experimental data

very well [38]. Here, we once again plot radiance diagrams
to study the behavior of the model. Our main objective is (55)
to compare the Torrance—Sparrow model with the Beck-

mann—Spizzichino model. Hence, the Lambertian component o, is the standard deviation of the slope (a) of individual
of the Torrance—Sparrow is ignored. Radiance is computed micro-facets, ; is the angle of reflection, . is the angle of re-

cos B,

where

Kspec =

CafF'(eivﬂ/)G(ei, 97‘7 ¢r)
1 .
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Typical plot of the Fresnel reflection coefficient for a metal.
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Fig. 12. Geometrical attentuation factor plotted as a function

flection, F'(¢', 7'} is the Fresnel coefficient, and G(8;, 9, é,)
is the geometric attentuation factor.

Two assumptions are made with respect to the Fresnel
coefficient F'(6;, n’) and the geometrical attentuation factor
G(6;, 8., ¢,) in (55). A typical plot of F(#, 7'} as a function
of §; for a metal is shown in Fig. 11. For both metals and
non-metals, it is observed [26] that F” is nearly constant until
the local angle of incidence 6] approaches around 75 degrees.
Therefore, we assume that F’ is constant with respect to
6; and 6,. Fig. 12 shows G(0;, 0., ¢.) plotted as a function of
8., for different values of 8;. Note that for angles of incidence
away from the grazing angle, G equals unity over a large range
of 6, values. In the following radiance diagrams, we will see
that it is within these ranges of §,. that surface radiance attains
maximum values. Therefore, we assume that G = 1 for all
values of §; and 6,.. With the above two assumptions, Kspec 18
constant for all values of 6; and ..

Fig. 13 shows radiance diagrams for different values of the
roughness parameter o,. Very small values of o, correspond

Io°

0° 60°

of the viewing angle for different values of the incidence angle.

to smooth surfaces. For smooth surfaces, the spike component
is much stronger than the lobe component. However, the
Torrance—Sparrow model represents only the specular lobe
and not the specular spike. The specular lobes in Fig. 13(a)
are sharp and similar in appearance to the specular spikes
predicted by the Beckmann—Spizzichino model [Fig. 9(a)].
However, the peak values of the lobes in Fig. 13(a) increase
with the angle of incidence while the peak values of the spikes
predicted by the Beckmann-Spizzichino model [Fig. 9(a)] are
constant. If the normalized BRDF is plotted rather than the
radiance, the lobe peaks would also have constant values for
all angles of incidence. As a result, the above mentioned
difference in the spike and lobe component would not be
apparent. It is for this reason that we have chosen to plot
radiance rather than normalized BRDF.

In all the radiance diagrams in Fig. 13, the peak value of
the specular lobe increases in magnitude with the angle of
incidence §;. As with the Beckmann-Spizzichino model, this
effect results from the term 1/ cos 8, [see (54)]. It is also clear
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Fig. 13. Radiance diagrams for the Torrance-Sparrow model: ¢, equals (a) 0.01; (b) 0.1; (¢) 0.5; (d) 1.0: (¢) 2.0: (f) 3.0

that the width of the lobe increases with the roughness param-
eter o,,. In fact, for relatively small values of o, the lobe may
be approximated by a Gaussian function that is symmetric with
respect to the specular direction. However, for higher values of
oo (Fig. 14), the lobe peak occurs at reflection angles greater
than the specular angle. As with the Beckmann—Spizzichino
model, these off-specular peaks result from the term 1/ cos 6
in (54). For large values of §; and near-grazing values of 8.,
the radiance values approach infinity. However, from Fig. 12

we see that the geometrical attentuation factor G approaches
zero as 8, approaches the grazing angle. Torrance and Sparrow
have shown that G approaches zero at a faster rate than the
rate at which the plotted radiance approaches infinity. Hence,
in practice, surface radiance approaches zero as #,- approaches
90 degrees.

In Fig. 14(d), radiance diagrams predicted by the Torrance—
Sparrow model and the Beckmann—Spizzichino model (ap-
proximation for rough surfaces) are shown together. Though
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Fig. 14. Radiance diagrams for the Torrance-Sparrow model: o equals (a) 5.0; (b) 7.0; (c) 9.0; (d) 13.0: (e) 15.0: (f) 17.0.

the two models were developed using different approaches and
different surface models, there is a remarkable resemblance
between the two radiance diagrams.

3) Radiance Diagrams for Moving Source and Fixed View: In
all the radiance diagrams presented thus far, surface radiance
is plotted as a function of viewing angle 6, for fixed values
of the source angle #;. We now plot radiance diagrams for
both models by varying the source angle for fixed values of
the viewing angle. We will show that by considering the fixed

view case, the roughness parameters of the two models can
be related. This relation is later used to compare the specular
lobes of the two models.

Note that when viewing angle is fixed, the term 1/ cos 8, in
the specular component of the Torrance—Sparrow model (54)
is constant, and the shape of the specular lobe is dependent

solely on the term:
a2
eXp<_—20§ ) (56)
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Since o = 0 when 6, = 8;, the specular lobe is found to be
symmetric with respect to the specular direction. A similar
analysis is applicable to the Beckmann—Spizzichino model for
rough surfaces (53). The only term that is si gniﬁcantly affected
by variations in §; is the term e ~"=v *T*/4v o} Further, it can
be shown [1] that

Foy (57)

v,

where, as with the slope distribution model, « is the angle
between the bisector of the incident and viewing directions and
the surface normal vector n. Assume that tana, = 20,/T.

Then
exn( — ve T2\ exol — tan? o
P w2a2) P\ " tan? ay )
When a rough surface is gently varying, the slopes (a) of

most micro-facets are small. Therefore, tangents in (58) can
be approximated by their arguments, obtaining:

( e ) ( ;. »
expl —————= ]| =exp|l —————= | .
p 40,2042 exp 2(a0/\/§)2) (59

From (59) and (56), we see that the roughness parameters
of the Torrance—Sparrow and Beckmann—Spizzichino models
can be related as:

tana =

(58)

[’ 1

— = —tan~ .
V2 V2 T

1 20’h

Oq =

(60)

Fig. 15 shows radiance diagrams plotted for surfaces with
different roughness values using the Beckmann—Spizzichino
model (left column) and the Torrance—Sparrow model (right
column). Here again, only the specular lobe component is
considered. Note that these radiance diagrams differ from all
of the previous ones in that radiance is plotted as a function of
the source angle 6; for fixed values of the viewing angle 6,
rather than vice-versa. Once again we assume that ¢, = 0,
the geometrical attenuation factor equals unity, and the Fresnel
reflection coefficient is constant. For each o3, /7T ratio in the left
column, (60) is used to find o, for the corresponding diagram
in the right column. Three important observations can be made
from these radiance diagrams:

« When the source direction, viewing direction, and sur-
face normal are coplanar, the radiance curves can be
represented by Gaussian functions. This can be proved
analytically by setting ¢, = 0 in the specular lobe com-
ponent of both models.

+ The peak for each radiance curve is observed at the
specular angle, ie., §; = 6,. Varying source direction,
rather than viewing direction, prevents off-specular peaks
from occurring. In addition, the radiance values exhibit
reflection symmetry with respect to the viewer-normal
plane.

+ The radiance diagrams predicted by the physical optics
and the geometrical optics models resemble each other
strongly. Though the two models use two different surface
modeling parameters (height and slope, respectively), (60)
does well in relating their roughness parameters.
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Fig. 16. Polar plots of the three reflection components as functions of

the sensor direction for a fixed source direction.

B. A Unified Reflectance Framework for Machine Vision

Based on the above analysis, we propose a unified re-
flectance framework for machine vision. This framework de-
scribes the reflection of monochromatic light from smooth
and rough surfaces. We now define the primary reflection
components of the unified framework.

Primary Reflection Components: From the radiance dia-
grams for the Beckmann—Spizzichino and Torrance—Sparrow
model, we conclude that, in general, surface radiance is
comprised of three primary reflection components: the diffuse
lobe, specular lobe, and specular spike. Polar plots of these
three components are illustrated in Fig. 16. The components
are plotted as a function of the angle of reflection (sensor
direction) for a fixed angle of incidence (source direction).
The radiance of the surface in the sensor direction is the
sum of the three components in the sensor direction. The
diffuse lobe represents the internal scattering mechanism. It is
distributed around the surface normal direction. The specular
lobe represents single reflection of incident light. It tends to be
distributed around the specular direction and has off-specular
peaks for relatively large values of surface roughness. The
specular spike represents mirror-like reflection that is dominant
in the case of smooth surfaces. It is concentrated in a small
region around the specular direction. The magnitude of the
specular lobe and specular spike components are determined
by the roughness of the surface. For a very smooth surface,
the specular spike component is many orders of magnitude
greater than the specular lobe component. As the surface
roughness increases, the spike component shrinks rapidly, and
the specular lobe begins to dominate. We have seen from
the radiance diagrams for the physical optics models that,
for a given wavelength of incident light, the spike and lobe
components are comparable to one another only for a small
range of roughness values.

The Lambertian model may be used to represent the diffuse
lobe component. This model has been used extensively to test
shape-from-shading and photometric stereo techniques, and the
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Fig. 15. Radiance diagrams for Beckmann-Spizzichino and Torrance—Sparrow models. In these diagrams, radiance is plotted as a function of 8;
for fixed values of 6.

results indicate that it performs reasonably well. More accurate
models [18] [9] may be used at the cost of functional complex-
ity. The specular component of the Torrance—Sparrow model
can be used to approximate the specular lobe component. The
Torrance—Sparrow model is simple and has been shown to
conform with experimental data [38]. However, this model
does not have a specular spike component. Hence, the spike

component of the Beckmann—Spizzichino model may be used.
We see from (52) that the shape of the spike component is
determined by the term p,. Since p, is a very sharp function
of §; and @, the spike can be approximated by a Gaussian
function with very small width or by a double-delta function.
Using the above approximations, the image irradiance equation
for fixed source direction and varying sensor direction can
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be written as a linear combination of the three reflection
components:

Iy = Ca1 +

Cat o C.y6(8; — 6,)5
cos b, P\ "5, 2 + Cesd(6: = 6,)5(¢r)
(61)

where the constants Cy;, Cy;5, and C,, represent the strengths
of the diffuse lobe, specular lobe, and specular spike
components, respectively. The ratio Cy/C,s is dependent
on the surface roughness. The radiance expression for the
Beckmann - Spizzichino model (52) indicates that a closed-
form relation between Cy; and C,, is difficult to establish.
However, from the radiance diagrams for the Beckmann-—
Spizzichino model the following assumptions can be made:
Cy = 0 when o,/ < 0.025, and C,s = 0 when o1,/ > 1.5.
Therefore, it is only for a small range of roughness values that
C, and C,; are both significant.

2) Moving Source and Fixed View Representation: In the case
of shape recovery methods such as photometric stereo [40],
multiple measurements of the observed object are obtained by
varying the source direction while keeping the sensor direction
constant. We can illustrate the difference between varying
source direction and varying sensor direction by introducing
a new representation for the reflection components. Fig. 17
shows polar plots of the diffuse lobe, specular lobe, and
specular spike. This time, however, the magnitudes of the three
components of radiance in the sensor direction are determined
by intersections made by the lobes with the line joining the
source and the origin. In this case, the diffuse component
varies with the source direction since it is proportional to the
surface irradiance. Note- that the specular lobe is symmetric
with respect to the specular source direction 6; = 0., and the
spike is concentrated around the same angle. From the above
observations, the image irradiance equation for fixed sensor
direction and varying source direction, may be written as:

2
Iim = K cos 0i+Ksl exp(_2: 2) +Kssé(9i - GT)6(¢T)

(62)

where the constants K g, Ko, and K, represent the strengths
of the diffuse lobe, specular lobe, and specular spike
components, respectively. Once again, the ratio K /K5 is
dependent on the surface roughness. Ky /Kss are seldom
comparable in magnitude to one another. In most instances,
one of the two specular components is significant while the
other is negligible.

3) The Reflectance Framework and Existing Shape Recovery
Methods: For a particular machine vision task, the class of
surfaces involved may be known a priori. In such cases, the
proposed reflectance framework may be used to arrive at an
appropriate reflectance model for the given task. For instance,
if the surfaces are homogeneous, the diffuse lobe may be
ignored. If the surface roughness is small compared to the
wavelength of incident light, the specular lobe component is

8We assume that @, is not close to the grazing angle (90°). As 6
approaches the grazing angle, the geometrical attenuation factor rapidly
approaches zero and C'y; is no longer a constant.
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Fig. 17. Polar plots of the three reflection components as functions of
the source angle for a fixed sensor direction.

negligible. For surfaces that are very rough, the specular spike
component is nonexistent. We have provided several threshold
values for the surface roughness parameters that may be used
to determine which components of the reflectance framework
are dominant for a given surface.

Several shape recovery techniques used in machine vision
are based on reflectance models that fall within the proposed
framework. Shape-from-shading [15] and photometric stereo
[40] [6] methods are often based on the assumption that the
surface is Lambertian in reflectance. Hence, these algorithms
use the diffuse lobe component and ignore the specular lobe
and spike components. The specular spike model has been
used to develop techniques based on photometric stereo [17]
and structured highlight [29] to recover the shape of  very
smooth surfaces. The photometric sampling method [21] uses
a combination of the diffuse lobe and the specular spike to
recover the shape and reflectance of Lambertian, specular, and
hybrid surfaces. The shape-from-specularity method [10] uses
the specular lobe component to recover local shape of glossy
surfaces. More recently, a combination of the diffuse lobe and
the specular lobe has been used [36] to recover the shape and
reflectance of surfaces by photometric stereo.

C. Remarks

We summarize this section with the following remarks:

+ We compared the Beckmann—Spizzichino (physical
optics) and Torrance—Sparrow (geometrical optics)
models on the basis of their radiance diagrams. The
effects of surface roughness on the radiance of the surface
were studied in detail.

« We proposed a reflectance framework that has three
primary components: the diffuse lobe component, the
specular lobe component, and the specular spike com-
ponent.

+ The Lambertian model may be used to represent the
diffuse lobe component. This model has been used exten-
sively to test shape-from-shading and photometric stereo
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techniques, and the results indicate that it performs rea-
sonably well.

* The Beckmann-Spizzichino physical optics model pre-
dicts both the specular lobe and spike components. For
a very smooth surface (o, < ), the spike component
dominates and the surface behaves like a mirror. As
the roughness increases, the spike component shrinks
rapidly, and the lobe component begins to dominate. The
two components are simultaneously significant for only a
small range of roughness values.

* A sharp specular component may result from the specular
spike component when the surface is smooth (o4/) <
1.5), and/or from the specular lobe component when the
surface is gently undulating (o), /T < 0.02).

* The Torrance—Sparrow geometrical optics model pro-
vides a good approximation for the specular lobe compo-
nent of the Beckmann-Spizzichino model. Both models
are successful in predicting off-specular peaks in the
specular lobe component. In view of its simpler mathe-
matical form, the Torrance—Sparrow model may be used
to represent the specular lobe component.

* The Torrance—Sparrow model is not capable of describing
the mirror-like behavior of smooth surfaces and, hence,
should not be used to represent the specular spike com-
ponent.

* The specular lobes of both Torrance—Sparrow and Beck-
mann-—Spizzichino models tend to have specular peaks,
rather than off-specular peaks, when the viewing direction
is fixed and the source direction is varied.

* Though the two models were derived using different
surface modeling approaches, their roughness parameters
can be related to one another by comparing the equations
that describe their specular lobe components.

V. SUMMARY

We have studied in detail reflectance models based on
physical optics and geometrical optics. Assumptions made
during the derivations of these models were clearly stated
and discussed. By analyzing the reflectance plots predicted
by physical optics and geometrical optics based models, we
identified the different mechanisms involved in the reflection
process. A reflectance framework was then proposed that
has three primary components of reflection: diffuse lobe,
specular lobe, and specular spike. This framework describes
the reflection of monochromatic light from surfaces that vary
from smooth to rough.

Previously, specular reflection was thought of as having a
single component. This paper brings to the attention of the
vision research community the existence of two components
of specular reflectance: the specular lobe and specular spike
components. The strengths of the two components are closely
related to the physical roughness of the surface. Through
our radiance diagrams, we have determined several roughness
threshold values that may be used to determine when the
specular spike and lobe components are significant.

We have presented two representations for the primary
reflection components: one for the moving sensor and fixed

source case, and the second for the moving source and
fixed sensor case. The functional forms of the reflection
components for the moving source case are different from
those for the moving sensor case. We have shown, for instance,
that the specular lobe component tends to be symmetrical
with respect to the specular direction for the moving source
case, while it produces off-specular peaks for the moving
sensor case. Such observations regarding the distributions of
the reflection components can prove useful while developing
surface recovery methods.

APPENDIX A
ELECTROMAGNETIC WAVES

In the atomic theory of matter, electromagnetic effects are
considered to arise from the forces exerted on each other
by elementary charged particles. The elementary positive and
negative particles are the proton and electron, respectively.
Consider two charged particles placed in the vicinity of each
other. Due to their respective charges, the particles exert a
force on each other. If the particles are at rest, they experience
a constant electrostatic force resulting from the electric field
generated by them. However, if the particles have different rel-
ative velocities with respect to a common frame of reference,
the force acting between them differs from the electrostatic
force. This statement can be verified by simple experiments
[4]. The discrepancy between the forces experienced when
the particles are at rest and when they are in relative motion
suggests the presence of another field, namely, the magnetic
field, in addition to the electric field. In fact, Maxwell’s
equations may be interpreted as a mathematical formalization
of the following physical phenomenon: Associated with a
time-varying electric field is a magnetic field. Therefore, the
forces experienced by a moving charge can be conveniently
represented by means of electromagnetic field vectors; the
electric field intensity E and the magnetic field intensity H.
Conversely, an electromagnetic field may be generated by
applying forces and physically moving charges in some region
of space. The electromagnetic field does not require a medium
for its existence. Therefore, electromagnetic energy can be
radiated from the space in which the charged particles are
moving, to form a traveling electromagnetic wave. The field
equations for the electromagnetic wave can be derived directly
from Maxwell’s equations.

Consider the light waves radiated by a point source of light.
When the source is at a large distance from the point of
observation, the spherical waves radiated by the source may
be assumed to be plane waves, like the one shown in Fig. 18.
The electric and magnetic field vectors of the plane wave may
be expressed as follows:

E = Eoee—zk-Tezmt

H= Hohe‘ik'rei“" (63)

where k is the wave propagation vector, r is the displacement
vector that determines the observation point in space, and the
unit vectors e and k correspond to the directions of the electric
and magnetic fields, respectively. The complex coefficients E,,
and H, represent the strengths of the electric and magnetic
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Fig. 18. An electromagnetic plane wave.

fields, respectively. It is important to note that in general the
above expressions give E and H complex values. However, the
actual field is determined only by the real components of the
field vectors, i.e., Re[E] and Re[H], and the complex notation
is used only for ease of mathematical manipulation.

The first exponential term in the above field equations
implies that the magnitudes of electric and magnetic fields vary
sinusoidally as a function of the distance along the direction
of propagation. The direction of the vector k corresponds to
the direction of propagation of the wave, while its magnitude
k, called the propagation constant, determines the spatial
frequency of the wave. The propogation constant is related
to the wavelength A of the plane wave as:

o

k=3 (64)

If the wavelength lies between 400 and 700 nm, the wave can
be detected by the human eye and is called monochromatic
light.

The second exponential term in the field equations indicates
that the field intensities also vary sinusoidally as a function
of time at a radian frequency of oscillation w. The functions
that describe the spatial and temporal field variations are
dependent on the function that represents the forces applied
to the charged particles to generate the wave. In most en-
gineering applications dealing with plane waves, the field is
considered to be sinusoidal steady state. Using Maxwell’s
equations, it can be shown that the unit vectors e and h are
orthogonal to each other and both these vectors are orthogonal
to the propagation vector k. The direction of either e or h
determines the polarization of the plane wave. In Fig. 18,
the plane wave is shown at a particular instant in time. At
that instant, all points on the plane P experience the same
electric and magnetic field intensities, namely, E’ and H i
respectively.

Since time variations in the electric field are caused by the
magnetic field, and vice-versa, the amplitudes E, and H, of
the two ficlds are dependent on each other, and are related as:

H,=,/<E,
n

(65)
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where € and p are the permittivity and permeability of the
medium, respectively. The coefficient y/e/p is often referred
to as the wave impedance of the medium. Due to the above
stated dependencies between the electric and magnetic field
vectors, we see that an electromagnetic wave is completely
defined by either of the two field vectors, E or H.

The rate of flow of complex energy per unit area in an
electromagnetic wave can be described by a vector S called
the complex Poynting vector [4]. § is defined as:

S=ExH (66)

and the quantity

S. = Re[S] = —;— Re[E x H+| 67)
defines the time-averaged rate of flow of physical energy pet
unit area and has dimensions in watts per square meter. Let
E, H and S, be the scalar values of the E,H, and S,
respectively. Then the average rate of flow of energy per unit
area is determined from (67) and (65) as:

1 /p 1 [e
S,=—=4/—EE*=—,/— .
« 2‘/EE'E' 21/uHH

This equation is used in Appendix C to determine the radiance
of a surface from the electromagnetic field scattered by the
surface.

(68)

APPENDIX B
RADIOMETRIC DEFINITIONS

We present definitions of radiometric terms that are used
throughout this paper. Detailed derivations of these terms
are given by Nicodemus et al [23]. Fig. 19 shows a surface
element illuminated by a source of light. The irradiance® I of
the surface is defined as the incident flux density (W/m?):

_dd;
T dA
where d®; is the flux incident on the area dA of the surface
element. The radiance L of the surface is defined as the
flux emitted per unit foreshortened area per unit solid angle
(W/m2.sr'1). The surface radiance in the direction (6, ¢r) is
determined as:

I

(69)

d2®,

L= dA cos O.dw,

(70)
where d2®, is the flux radiated within the solid angle dw;.
The bi-directional reflectance distribution function (BRDF) of
a surface is a measure of how bright the surface appears when
viewed from one direction while it is illuminated from another
direction. The BRDF is determined as:

= % (1)

9The symbol E is 'generally used to denote irradiance [12]. In Appendix
A, we have used the symbol E to denote electric field intensity. Hence, we
denote irradiance by I to avoid confusion. ’
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source

Fig. 19. Basic geometry used to define radiometric terms.

APPENDIX C
SURFACE RADIANCE FROM SCATTERED POWER

The Beckmann—Spizzichino reflectance model predicts the
electromagnetic power scattered by a surface. Here, we derive
an expression for the radiance of the surface from the scattered
power. Surface radiance is defined in Appendix B as the flux
emitted per unit foreshortened area per unit solid angle:

d*e,
dw,dA; cosb,’
Consider the image formation geometry shown in Fig. 20. For
convenience, we will use the areas and solid angles shown in
the figure to determine surface radiance. The surface element
dAs; is projected by the lens onto an area dA;,,, on the image

plane. Since dA; and dA;,, subtend the same solid angle from
the center P of the lens, they can be related as:

dAs =

dA;m cosy ( z )2. 73)

cosf,

f

For a given sensor (e.g., CCD camera), dA;,, is the area of
the smallest sensor element (pixel). Since dA;,, is constant
for a given sensor, dA, must be determined from dA;,, using
the above equation.

All light rays radiated by dA, that are incident on the lens
area dA; are projected onto the image area d A;,,,. Hence, dw,
in (72) is the solid angle subtended by the lens when viewed
from dA,:

dA; cos v
R?

dw, =

(74)

The flux d?®, in (72) is the energy of light received by the
lens area dA;. It can be determined from the scattered power
<EyFE;3*> by using (68) in Appendix A as:

d*®, = S, dA; cos, = %, / % <E2E3> dA; cosy. (75)

By substituting (73), (74) and (75) into (72), we obtain:

2f <E2E2
T 22dA;, cos, COS,

7‘_—

(76)

It is not possible to determine the exact value of the radiance
from the statistics of the scattered power. The radiance L, in

\% plane

Fig. 20. Image formation: Light waves radiated by the surface area dA, and
gathered by the lens are projected onto an area dA;,, on the image plane.

the above equation is actually the mean (expected) radiance
<L,>. In the case of the Beckmann—Spizzichino model, the
mean scattered power <E;FE,*> (18) is determined as an
integral over the entire area of the surface. In Fig. 20, we
see that the sensor element dA;,, receives light radiated
only by the surface element dA,. Hence, the mean scattered
power must be computed as an integral over the surface area
A = dA,. Since dA;,, is constant, A is determined by (73).
Substituting the expression for <E5 E,*> derived by Beckmann
and Spizzichino (18) in (76), the radiance of a surface whose
height & is normally distributed with mean value <A> = 0,
standard deviation o}, and correlation distance T, is obtained
as:
L, = [ Bot’ cos’6: e-g<(2)2414w .2
€ 2)2 f cos20,
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L, is the sum of two components: the specular spike and the
specular lobe. From (77) and (73) we note that the specular
spike component is proportional to the viewed area dA,.
However, it can be shown that the integral of po? is inversely
proportional to dA;. In other words, though the magnitude
of the spike component is proportional to dA,, the energy
contained in the spike component is independent of it.
Radiance expressions for the special cases of smooth and
rough surfaces also can be determined from the corresponding
expressions for scattered power, [(23) and (24)] derived by

Beckmann and Spizzichino:
2\ 2
e~ 9 [ £
((5)

L = " E,1 2 cos?6;
TSIMOoo’ -
Ve 2)\?

"T°D% I;’T“)

cos 6,
L _/u E,1 %2 cos?6,7T2D? exp _Vl‘y2T2
rrough = A/ 9N cos 0.v,20p 2 4v,20p2

(g>1). (79 .

dAimcosy
cos20,

(< 1), (78)
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The irradiance of the surface is the light energy incident per
unit area. If F; is the scalar value of the incident field E, the
irradiance can be obtained by once again using (68):

I, = S,cos6; = %\/g <E1E{*> cosb; (80)
where the term cosf; accounts for the fact that the same
amount of incident energy is received by a larger surface area
when the angle of incidence 8; is increased. The BRDF of the
surface is determined using (77) and (80) as f, = L./I,.

Using the imaging geometry shown in Fig. 20, Horn [14]
derived a relationship between surface radiance L, and image
irradiance I;,,. Image irradiance is found to be proportional
to surface radiance and is given by:

T [d\
Izm =L,—| — 4 .
4 (f) Cos 7y

When the image covers only a narrow angle of the scene,
v = 0, and it is reasonable to assume that cos v = 1 in the
above equations.

81

APPENDIX D
RELATING dw’ TO dw,

The Torrance—Sparrow reflectance model is described in
Section III-B. The reflecting surface is modeled as a large col-
lection of planar (ideal specular) micro-facets. While deriving
the radiance of the surface, (48) is used to determine the range
(dw') of planar facets that reflect incident light into a given
solid angle (dw, ). Here, we derive the relation between dw’
and dw,.

Fig. 21 shows the plane that includes the incident and
reflected light rays. The light rays incident on the surface
are assumed to be parallel. This assumption if valid when
the source is at a large distance from the surface. Only
those facets whose normal vectors lie within the solid
angle dw’ can reflect light into the solid angle dw,. The
infinitesimal areas dA, and dA; subtend the same solid angle
from the point I. Since dA, and dA, are parallel to one
another and the distance TR = 2IP, only those facets
whose normal vectors pass through dA2 can reflect incident
light into dw,. The areas dA, and dA; can be related as
dAy; = dA,/4. Similarly, dA, and dAy subtend the same
solid angle (dw’) from the point O. Noting that OP = cos 8},
the two areas can be related as dA; = dA,/ cos?6.. Further,
the area dA’ is a projection of the area dA; onto the unit
sphere, i.e., dA’ = dA;/cos@.. Further, the area dA’ is
a projection of the area dA; onto the unit sphere, ie.,
dA’ = dA;/cosb;. Using the above equations, we can relate
dA’ to dA, as dA’ = dA,/4cosb.. Since dw' = dA’ and
dw, = dA, (areas on the unit spheres), we have:

dw,

do' = ——.
w 4cosb,

(82)
Hence, for a given dw,, the shape and size of the corre-
sponding dw’ is dependent on the local angle of incidence
6, which is in turn dependent on the angle of incidence 6
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incident beam reflected beam

Fig. 21.

The source-viewer plane used to relate dw’ and dw,..

and the angles of reflectance (6., ¢.) (38). Note that, for a
perfectly smooth surface, the parallel incident rays will be
reflected in a single direction (the specular direction) and will
not be scattered into a cone as shown in Fig. 21. Hence, for this
limiting case, the above relationship between dw’ and dw, is
not valid. Consequently, the Torrance—Sparrow model is not
applicable to perfectly smooth surfaces.
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