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Abstract

Lambert’s model for diffuse reflection is extensively used in computational vision.
It is used explicitly by methods such as shape from shading and photometric stereo, and
implicitly by methods such as binocular stereo and motion detection. For several real-
world objects, the Lambertian model can prove to be a very inaccurate approximation
to the diffuse component. While the brightness of a Lambertian surface is independent
of viewing direction, the brightness of a rough diffuse surface increases as the viewer
approaches the source direction. A comprehensive model is developed that predicts re-
flectance from rough diffuse surfaces. The model accounts for complex geometric and
radiometric phenomena such as masking, shadowing, and interreflections between points
on the surface. Experiments have been conducted on real samples, such as, plaster, clay,
sand, and cloth. All these surfaces demonstrate significant deviation from Lambertian
behavior. The reflectance measurements obtained are in strong agreement with the re-
flectance predicted by the proposed model. The paper is concluded with a discussion on
the implications of these results for machine vision.

i



1 Introduction

One of the primary goals of a machine vision system is to recover physical properties
of a scene from images. Image brightness values are closely related to the reflectance
properties of points in the scene. Hence, accurate reflectance models are fundamental to
the advancement of machine vision. Several mechanisms involved in the reflection process
are reviewed in [Nayar et al-1991b][Tagare and deFigueiredo-1991]. These mechanisms,
or components, can be classified into two broad categories; diffuse and specular . A
surface that obeys Lambert’s Law [Lambert-1760] appears equally bright from all viewing
directions. This model for diffuse reflection was advanced by Lambert over 200 years ago
and remains one of the most widely used models in machine vision. It is used explicitly
by shape recovery techniques such as shape from shading and photometric stereo. It is
also invoked by vision techniques such as binocular stereo and motion detection to solve
the correspondence problem. In the field of remote sensing, the Lambertian model is
often used to apply brightness corrections to images of the same scene obtained under
different illumination conditions. The widespread use of the Lambertian model arises
from its simplicity and because it does reasonably well in approximating reflection from
a wide range of matte surfaces.

For several real-world objects, however, the Lambertian model can prove to be a
poor and inadequate approximation to the diffuse component. Figure 1(a) shows a real
image of a clay vase obtained using a CCD camera. The vase is illuminated by a single
distant light source in the same direction as the sensor. Figure 1(b) shows a rendered
image of a vase with the same shape as the one shown in Figure 1(a). This image is
rendered using the Lambertian model, and the same illumination direction as in the case
of the real vase. As expected, the Lambertian model predicts that the brightness of the
cylindrical vase will decrease as we approach the occluding boundaries on both sides.
However, the real vase is very flat in appearance, image brightness remaining almost
constant over the entire surface. The vase is clearly not Lambertian in reflectance?. The
deviation from Lambertian behavior illustrated above can be significant for a variety of
other real-world materials, such as, concrete, sand, and cloth. An accurate model that
describes diffuse reflectance from such common surfaces is needed for both qualitative
analysis of images as well as accurate estimation of surface properties such as shape and
reflectance.

!The specular components result from the reflection of incident light at the interface between two
media, for instance, air and an object in the scene. This is a surface phenomenon. The diffuse component
results from light rays that penetrate layers of the surface, undergo multiple reflections and refractions,
and re-emerge at the surface. This mechanism is also referred to as body reflection. See [Nayar et
al.-1991b, Tagare and deFigueiredo-1991] for details.

?Note that the real vase does not have any significant specular component, in which case, a vertical
highlight would have appeared in the middle.
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Figure 1: (a) Real image of a cylindrical clay vase. (b) Image of the vase rendered using the

Lambertian reflectance model. In both cases, illumination is from the viewing direction.

What makes the vase shown in Figure 1(a) non-Lambertian? We will show that
the primary cause for this deviation is surface roughness. In the areas of machine vision,
remote sensing, and computer graphics, the magnification of the imaging system used
can vary substantially from one scene to the next. Figure 2 illustrates the relationship
between magnification and reflectance. The surface may be viewed as a collection of
planar facets. At high magnification, each picture element (pixel) includes a single facet.
At lower magnifications (used in the case of outdoor scenes), each pixel can include a large
number of facets. Though the Lambertian assumption is often reasonable when looking
at a single planar facet, the reflectance is not Lambertian when a collection of facets is
imaged onto a single pixel. The deviation from Lambertian behavior is significant for
very rough surfaces, and increases with the angle of incidence. In this paper, we develop
a comprehensive model that predicts reflectance from rough diffuse surfaces, and provide
experimental results that support the model. The Lambertian model is a special case,
or instance, of the proposed model.

The topic of rough diffuse surfaces has been extensively studied in the areas of
applied physics and geophysics. The following is a brief summary of previous results on
the subject. In 1924, Opik [Opik—1924] designed an empirical model to describe the non-
Lambertian behavior of the moon. In 1941, Minnaert [Minnaert-1941] modified Opik’s
model to obtain the following reflectance function:

k+1
27

where, 6; and 0, are the polar angles of incidence and reflection, and & is a measure of

surface roughness. This function was designed to obey Helmholtz’s reciprocity principle

(see [Beckmann and Spizzichino-1963]) but is not based on any theoretical foundation.
It assumes that the radiance of non-Lambertian diffuse surfaces is symmetrical with

fr = (cos 6; cos 0,)F~V) (0<k<1)

respect to the surface normal, an assumption that proves to be incorrect. Hapke and van



Figure 2: The roughness of a surface causes its reflectance properties to vary with image
magnification.

Horn [Hapke and van Horn-1963] also obtained reflectance measurements from rough
diffuse surfaces by varying the source direction for a fixed sensor direction. They found
the peak of the radiance function to be shifted from the peak position expected for a
Lambertian surface. This was interpreted as a minor discrepancy and the Lambertian
model was assumed to be a reasonable approximation. Our measurements show that
non-Lambertian behavior is clearly noticeable and significant when viewer direction is
varied rather than source direction.

The above studies were attempts to design reflectance models based on measured
reflectance data. In contrast, several investigators developed theoretical models for diffuse
reflection from rough surfaces.These efforts were motivated primarily by the reflectance
characteristics of the moon. Infrared emission and visible light reflection from the moon
(see [Orlova-1956, Siegel and Howell—1972]) indicate that the moon’s surface radiates
more energy back in the direction of the source (the sun) than in the normal direction
or in the forward direction. This phenomenon is referred to as backscattering®. Smith
[Smith-1967] modeled the roughness of the moon as a random process and assumed
each point on the surface to be Lambertian in reflectance. Smith’s analysis, however,

3A different backscattering mechanism, called retroreflection or opposition effect, produces a sharp
peak close to the source direction (see [Hapke and van Horn-1963, Kuga and Ishimaru-1984, Tsang and
Ishimaru-1984, Oetking-1966]). This is not the mechanism discussed in this paper. A recent article
by Hapke et al. [Hapke et al.-1993] throws new light on this mechanism. It is seldom encountered in
machine vision since it is observed only when the sensor and source are within a few degrees from each
other; a situation difficult to emulate in practice without the source or the sensor occluding the other.



was confined to the plane of incidence and is not easily extensible to reflections outside
this plane. Further, Smith’s model does not account for interreflection effects. Buhl et
al. [Buhl et al.-1968] modeled the surface as a collection of spherical cavities. They
analyzed interreflections using this surface geometry, but did not present a complete
reflectance model that accounts for masking and shadowing effects for arbitrary angles
of reflection and incidence. Subsequently, Hering and Smith [Hering and Smith-1970]
derived a detailed thermal emission model for surfaces modeled as a collection of V-
cavities. However, all the cavities are assumed to be identical and aligned in the same
direction, namely, perpendicular to the source-viewer plane. This model is also limited
to reflections in the plane of incidence.

Recently, in computer graphics, Poulin and Fournier [Poulin and Fournier-1990]
derived a diffuse reflectance function for anistropic surfaces modeled as a collection of par-
allel cylindrical sections. This result however cannot be applied to surfaces with isotropic
roughness. Other researchers in computer graphics have numerically pre-computed fairly
complex reflectance functions and stored the results in the form of look-up tables (for
examples, see [Cabral et al.-1987] [Kajiya-1991]). While rendering an image, parameters
such as the angles of incidence and reflectance are used to index the table and read sur-
face radiance values. This approach can be effective for graphics rendering but does not
replace the need for accurate reflectance functions.

The model presented is this paper can be applied to isotropic as well as anisotropic
rough surfaces, and can handle arbitrary source and viewer directions. Further, it takes
into account complex geometrical effects such as masking, shadowing, and interreflections
between points on the surface. We begin by modeling the surface as a collection of long
symmetric V-cavities. Each V-cavity has two opposing facets and each facet is assumed
to be much larger than the wavelength of incident light. This surface model was used
by Torrance and Sparrow [Torrance and Sparrow-1967] to describe specular reflection
from rough surfaces. Here, we assume the facets to be Lambertian in reflectance®. First,
a reflectance model is developed for anisotropic surfaces with one type of V-cavities,
and with all cavities aligned in the same direction on the surface plane. This result is
then used to derive a model for the more general case of isotropic surfaces that have
normal facet distributions with zero mean and arbitrary standard deviation (o). The
standard deviation parametrizes the macroscopic roughness of the surface. Figure 3
shows three images of spheres rendered using the proposed reflectance model. In all
three cases, the sphere is illuminated from the viewer direction. In the first case, o = 0,
and hence the sphere is Lambertian in reflectance. As the roughness increases, the sphere
begins to appear flatter. In the extreme roughness case shown in Figure 3(c), the sphere
appears like a flat disc with nearly constant brightness. This phenomenon has been
widely observed and reported in the case of the full moon.

4This assumption does not limit the implications of the reflectance model presented here. The non-
Lambertian behavior reported here is expected for a wide range of local diffuse reflectance models (see
[Chandrasekhar-1960], for example) since surface roughness is shown to play a dominant role.
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Figure 3: Images of spheres rendered using the proposed reflectance model: (a) ¢ = 0 (Lam-
bertian sphere); (b) o = 20°; (¢) o = 40°.

Several experimental results are presented to demonstrate the accuracy of the
derived model. These experiments were conducted on commonplace samples such as
sand, plaster, wood, and cloth. In all cases, reflectance predicted by the model was
found to be in strong agreement with measurements. These results illustrate that the
deviation from Lambertian behavior can be substantial. We conclude with a discussion
on the implications of the proposed model for machine vision. First, we show that images
of rough diffuse objects can be accurately described using the proposed model. Next, we
study reflectance maps generated using the Lambertian model and the proposed model.
As the roughness of the surface increases, the reflectance map varies from Lambertian
to the linear reflectance map [Horn-1986] previously hypothesized for lunar reflectance.
Finally, we demonstrate the application of the model to shape recovery using photometric
stereo. While the new model accurately estimates the shape of a rough object, the
Lambertian model produces large errors in surface orientation.

The results presented in this paper demonstrate two points that are fundamental
to computer vision. (a) Several real-world objects have diffuse components that are signif-
icantly non-Lambertian. The reflectance of such objects cannot be accurately described
using previous models. (b) The model presented in this paper can be used by vision
algorithms to analyze images of diffuse surfaces and recover accurate shape information.

2 Radiometric Definitions

In this section, we define radiometric concepts that are used in the remaining of this
paper. These concepts are discussed in detail in [Nicodemus et al.-1977]. Figure 4 shows
a surface element dA illuminated from the direction § = (6;, ¢;) and viewed by a sensor in
the direction © = (0,, ¢,), where § and ¢ denote polar and azimuth angles, respectively.
The sensor subtends an infinitesimal solid angle dw, from any point on the surface.

The light energy reflected by the surface patch is proportional to the light incident
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Figure 4: Geometry used to define radiometric terms.

on it. [rradiance is defined as the light flux incident per unit surface area:

E(0:,¢:) = — (1)
This is the directional irradiance of the surface as it represents light energy incident from
the direction (6;, ¢;). The total irradiance of the surface is the flux incident from all
directions and may be denoted simply as E£. The brightness measured by the sensor
is proportional to the radiance of the surface patch in the direction (8,,¢,). Surface
radiance is defined as:

d(I)T(HT, ¢7’7 927 ¢2) (2)
dA cos b, dw,

It is the flux radiated by the surface per unit solid angle, per unit foreshortened area.
It depends on the direction of illumination and the sensor direction. The relationship

Lr(gra ¢7’7 9i7 ¢2) =

between irradiance and radiance of a surface is determined by its reflectance properties.
The bi-directional reflectance distribution function (BRDF) is defined as the ratio of
radiance to irradiance:

dLr(07"7¢7’;0i7¢i) (3)

All the above definitions are general, in that, they are valid for surfaces with any re-

fr(grv ¢7’7 0i7 ¢2) =

flectance characteristics. For an isotropic surtace, radiance and BRDF do not change if
the surface is rotated about its normal vector. For such surfaces, the BRDF is simply:

dL'r gragiy r — ¢
fr(graaiv ¢T - ¢2) = ( dE(gf) ¢ ) (4)

A Lambertian surface is an ideal diffuser whose radiance is independent of the viewing
direction of the sensor; it appears equally bright from all directions. Its BRDF'is f, = £

where the albedo p represents the fraction of incident energy that is reflected by the
surface.




3 Surface Roughness Model

There are several ways of modeling surface roughness. The general approach is to select a
model that is capable of representing real surfaces and at the same time easy to use during
the mathematical development of the reflectance model. All surface models found in
applied physics and geophysics literature can be divided into two broad categories. In the
first case, the surface is modeled as a random process (see [Beckmann-1965, Wagner-1966,
Smith-1967]). Using this approach, it is difficult to derive a reflectance model for arbitrary
source and viewer directions, and to analyze interreflections. In the second category,
surfaces are assumed to be composed of several elements with some primitive shape,
for example, spherical cavities, V-cavities, holes, etc (see [Buhl et al.-1968, Torrance
and Sparrow-1967]). As shown in this paper, the effects of shadowing, masking, and
interreflection need to be analyzed in order to obtain an accurate reflectance model.
To accomplish this, we use the roughness model proposed by Torrance and Sparrow
[Torrance and Sparrow-1967] that assumes the surface to be composed of long symmetric
V-cavities (see Figure 5). Each cavity consists of two planar facets. The width of each
facet is assumed to be small compared to its length. The roughness of the surface is
specified using a probability function for the distribution of facet slopes.
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Figure 5: Surface modeled as a collection of V-cavities.

The V-cavity roughness model can be used to describe surfaces with both isotropic
as well as anisotropic (directional) roughness. We assume each facet area da is small
compared to the area dA of the surface patch that is imaged by a single sensor pixel.
Hence, each pixel includes a very large number of facets. Further, the facet area is large
compared to the wavelength A of incident light and therefore geometrical optics can be
used to derive the reflectance model. The above assumptions can be summarized as:

N < da < dA (5)

The facets could be relatively small as in the case of sand and plaster, or large as in the
case of outdoor scenes of terrain.



Slope-Area Probability Distribution:

We denote the slope and orientation of each facet in the V-cavity model as (6,, ¢,).
Torrance and Sparrow have assumed all facets to have equal area da. They use the
distribution N(6,, ¢,) to represent the number of facets per unit surface area that have
the normal @ = (0,, ¢,). Here, we use a distribution function to represent the fraction
of the surface area that is occupied by facets with a given normal. This is referred to as
the slope-area distribution P(0,, ¢,). The facet-number and slope-area distributions are
related as follows:

P(0,,¢.) = N(b,, ¢,) da cos b, (6)

The slope-area distribution is easier to use than the facet-number distribution in the
following model derivation. For isotropic surfaces, N(8,,d,) = N(0,) ° and P(8,,d,) =
P(6,), since the distributions are rotationally symmetric with respect to the global surface
normal 7.

4 Reflectance Model

In this section, we derive a reflectance model for rough diffuse surtaces. The V-cavity
model is used to describe surface geometry and each facet on the surface is assumed to be
Lambertian in reflectance. The following three types of surtaces with different slope-area
distributions are examined. (a) Uni-directional Single-Slope Distribution: This
distribution results in a non-isotropic surface where all facets have the same slope and all
cavities are aligned in the same direction. (b) Isotropic Single-Slope Distribution:
Here, all facets have the same slope but they are uniformly distributed in orientation on
the surface plane. (¢) Gaussian Distribution: This is the most general case examined
where the slope-area distribution is assumed to be normal with zero mean. The roughness
of the surface is determined by the standard deviation of the normal distribution. The
reflectance model obtained for each of the above surface types is used to derive the
succeeding one.

Effect of Roughness on Diffuse Reflectance:

Before we proceed to derive reflectance models for the above-mentioned surface
types, a brief illustration of the effect of roughness on diffuse reflection would be useful.
Consider, for the purpose of discussion, the single V-cavity shown in Figure 6. Both
facets of the cavity are fully illuminated by a distant source on the right side. If the
facets are Lambertian with equal albedo, the left facet appears brighter than the right
one as it receives more incident light. If the V-cavity is viewed from the left side by a
distant observer, a larger fraction of the foreshortened cavity area is dark and a smaller
fraction is bright. As the observer moves to the right, towards the source direction, the
fraction of brighter area increases while that of the darker area decreases. Consequently,

°In [Torrance and Sparrow-1967], N(,) is denoted by p(a) where o = 0,



the total brightness, or radiance, of the cavity increases as the observer approaches the
source direction. Note that this results from the brightness disparity between the two
facets, which increases with the angle of incidence. This effect is in contrast to Lam-
bertian surfaces whose brightness does not vary with the viewing direction. The above
illustration demonstrates that rough Lambertian surfaces are inherently non-Lambertian
in reflectance. Their radiance increases as the viewer approaches the source direction.
Now we present a formal treatment of the above effect.

Source direction

///

Brighter v 27 Darker

Viewer direction -7 Viewer direction

K-

Br\m A(er Brighter Darker

Figure 6: The radiance of the V-cavity increases as the viewer moves towards the illumination

direction.

The Projected Radiance:

Consider surface area dA that is imaged by a single sensor element in the direction
0 = (0., ¢,) and illuminated by a distant point light source in the direction § = (6;, ¢;).
The area dA is composed of a very large number of symmetric V-cavities. Each V-cavity
is composed of two facets with the same slope but facing in opposite directions. Our
approach is to compute the radiance contribution of each facet on the surface. Then, the
total radiance of the surface patch can be determined as an aggregate of the contributions
of all facets. Consider the flux reflected by a facet with area da and normal a = (,, ¢,).
The projected area on the surface occupied by the facet is da cos 8, (see Figure 5). Hence,
while computing the contribution of the facet to the radiance of the surface patch, we
need to use the projected area da cosf, and not the actual facet area da. The radiance



contribution thus determined is what we call the projected radiance of the facet:

dq)r (9117 ¢a)

L'r 9(17 a) —
(0, 9a) (da cos 8,) cos 6, dw, (7)

For ease of description, we have dropped the source and viewing directions from the
notations for projected radiance and flux.

Total Radiance:

Now consider the slope-area distribution of facets given by P(6,, ¢,). The total
radiance of the surface can be obtained as the average of L,,(0,, ¢,) of all facets on the
surface:

L0, 6:50:, i) = /05:0/210 P(0u, ¢a) Lrp(ba, o) sin b, do, db, (8)

Thus, we have decomposed the problem of computing the radiance of any rough surface to
one of computing the projected radiance for each facet on the surface. The total radiance
of the surface is then obtained by integrating the product of the projected radiance and
the slope-area distribution function over all facet normals.

4.1 Model for Uni-directional Single-Slope Distribution

The first surface type we consider has all facets with the same slope #,. Further, all
V-cavities are aligned in the same direction; azimuth angles of all facets are either ¢, or
¢q + 7. The results obtained for this anisotropic surface will be used later in the analysis
of isotropic surfaces.

Radiance from a Lambertian Facet:

Consider a Lambertian facet that is fully illuminated (no shadowing) and is com-
pletely visible (no masking) from the sensor direction. The radiance of the facet is
proportional to its irradiance and is equal to 2£(f,, ¢,). The irradiance of the facet is
E(8,, ¢.) = Eo< $,a>, where, Ej is the irradiance when the facet is illuminated head-on
(i.e. §=a), and <, > denotes the dot product between two vectors. Using the definition
of radiance, the flux reflected by the facet in the sensor direction is obtained as:

db, = £ Ey<$a><b,a>dade, (9)

Substituting the above reflected flux in (7), we get:

>
- (10)

[ Ey cos 8, cos b, (1 tan 6; tan 8, cos(¢; — qba)) (1 + tan 6, tan 8, cos(¢, — qba))

Vs

10



This expression clearly indicates that the projected radiance of a tilted Lambertian facet
is not equal in all viewing directions. Consequently, a rough Lambertian surface com-
prised of tilted facets is non-Lambertian; its radiance varies with the viewing direction.
This phenomenon is observed even in the absence of masking, shadowing, and interreflec-
tion effects.

4.1.1 Geometric Attenuation Factor

If the surface is illuminated and viewed from the normal direction (§ = © = n), all
facets are fully illuminated and visible. For larger angles of incidence and reflection,
however, facets are shadowed and masked by adjacent facets (see Figure 7). In the case
of shadowing, a facet is only partially illuminated as the adjacent facet on the V-cavity
casts a shadow on it. In the case of masking, the facet is only partially visible to the
sensor as its adjacent facet occludes it. Both these geometrical phenomena affect the
projected radiance of the facet and hence must be taken into account. The result is a
geomelrical attenuation factor (GAF) that lies between zero and unity (also see [Torrance
and Sparrow-1967] [Blinn-1977]). It is the reduction in the projected radiance of a facet
due to masking and shadowing effects; it equals the ratio of the facet area that is both
visible and illuminated, to the total facet area.

N>

=>

Figure 7: (a) Shadowing and (b) masking in a V-cavity.

GAF for Perpendicular V-Cavities:

We first restrict ourselves to V-cavities that are oriented perpendicular to the
sensor-source plane. Later, the analysis is extended to arbitrary sensor and source di-
rections. Figure 7 illustrates the masking and shadowing phenomena for the case of
perpendicular V-cavities. Our objective is to determine, for a given source direction 3
and sensor direction v the fraction of facet area that is illuminated and visible. If the
visible area is smaller than the illuminated area, masking dominates. Likewise, if the
illuminated area is smaller than the visible area, shadowing dominates. We denote the
length (extent on the surface plane) and width of the facet by [ and w, respectively.

11



Further, m; and m, are sections of the facet that are shadowed and masked, respectively.
The area of a facet that is both illuminated and visible is [- Min[w — mg, w — m,]. The
GAF is obtained by dividing this expression by the area w ! of the facet:

M

GAF = Min[1 -2 1 -] (11)

w w

We would like to express the GAF in terms of the angles of incidence (source) and
reflection (sensor). From the triangle (w;ms;n) in Figure 7(a), we have:

nsinf; = mscosl, +wcosb, (12)

ncosf;, = —m,sinf, +wsinb,

By multiplying the first expression by cos#f; and the second by —sinf; and adding the
results we get:

ms :_COS(HG—I-HZ') or 1_%=2c0s9acos9¢ (13)
w cos (0, — ;) w cos (6, — 6;)

In the above expression, the angles 8; and 8, are positive in the counter-clockwise direction
and negative in the clockwise direction. It can be easily shown that there is no shadowing
when | 0, +0; |< 7 and | 0, —0; |< 7,i.e. 1—"= > 1. On the other hand, the entire facet
is shadowed if | 6; — 0, |> Zyie. 1 =2 < 0. A similar result is obtained for masking.
All these conditions are included in the following GAF expression for perpendicular
V-cavities °:

(14)

GAF = Max [0, Min [1, 2003 0icos 0 2c0s 0,c08 0 ] ]

cos (6; — 0,) " cos (0, — 0,)

GAF for the General Case:

In the general case, source and sensor directions are arbitrary and can lie outside
the plane perpendicular to the V-cavity. To make the masking/shadowing calculations
tractable, we invoke the assumption that the length of facets is large compared to their
width?, i.e. [ > w. Then, the analysis of masking and shadowing is reduced to the
perpendicular V-cavity case by projecting the source direction § and sensor direction
v onto the plane perpendicular to the cavity. These projections are done using basic
trigonometry as shown in Figure 8. The projected angles are then substituted into (14),

5In the previous version of the paper, the order of the Min and Maxz operators was switched by
mistake. The error was in the printing only and the rest of the equations and results are unchanged.

“When facet length is much larger than facet width, the exact shape of the cast shadow at the two
ends of the facet can be ignored.

12



: sinf, = sin @ cos ¢
_‘ \/c052 0 + sin? § cos? ¢
ep 0 cosl, = cos 6
) A \/c052 0 + sin? § cos? ¢
[0 ” tanf, = tanfcos¢
X

Figure 8: Relationship between projected and actual angles.

in place of 6; and 6,, to obtain the general GAF expression:

2 cos 8; cos 0,

cos 0; cos 0, + sin 0, sin 6, cos (¢; — &,)’

GAF = Max [0, Min [1,

2cos b, cos b, - ] ] (15)

cos 0, cos 0, + sin 6, sin 0, cos (¢, —

Alternatively, the GAF can be expressed in terms of the source, sensor, facet normal,
and surface normal vectors:

(16)

A A 9 A A

. 2<s.n><a,n> 2<v.n><a,n>
GAF = Ma;v[(), Mm[l, ’ ’ ’ ’ H
<s,a> <v,a>

Projected Radiance and GAF:

The projected radiance of a Lambertian facet is obtained by simply multiplying
the geometric attenuation factor with the projected radiance (10) derived under the as-
sumption of no masking and shadowing. Table 1 details the GAF and the corresponding
projected radiance for all cases of shadowing and masking. Note that the projected ra-
diance is denoted as L}p; the superscript is used to indicate that the radiance is due to
direct illumination by the source. In the next section, we will use pr to denote radiance
due to interreflections.

4.1.2 Interreflection Factor

In our reflectance model, we also account for interreflections; light rays bouncing be-
tween adjacent facets. These effects are significant for rough surfaces with relatively high
albedo values. When the surface is illuminated from large angles (;) and viewed from
the opposite side at large angles (6,), none of the facets that are visible to the sensor

13



GAF LL (0, )

No Masking LR <8,a><0,a> _
0<cz,n><v,'n>
or 1 2 By cos B; cos 0, (1 + tan 6; tan 8, cos (¢; — gZ)a))
Shadowing <1 + tan 6, tan 6, cos (¢, — gZ)a))
Masking 2< D, N >< G, N> on 2<§,a> =
<0,a>

2 By cos B; cos 0, 2(1 + tan 6; tan 8, cos (¢; — qba))

Shadowing | 2< 3, L h> pE02<S n><v,a> _

g <v,n>
£ Eo cos 0; cos 0, 2(1 + tan 6, tan 8, cos (¢, — gba))

Table 1: Projected radiance of a facet for different masking/shadowing conditions.

are illuminated by the source. If interreflections are not considered, the radiance of the
surface would be zero in this case. However, the visible facets receive light from their
adjacent facets that face the source and hence are illuminated. These interreflections re-
sult in non-zero surface radiance. Our analysis and experimental results suggest that the
contribution due to interreflections can be significant and cannot in general be ignored.

We have the task of modeling interreflections in the presence of masking and
shadowing effects. In the case of Lambertian surfaces, the energy in an incident light
ray diminishes rapidly with each interreflection bounce. Therefore, we model only two-
bounce interreflections and ignore subsequent bounces. Simulations of the interreflection
process were used to verify that this approximation is a good one.

In the following discussion, we refer to surface radiance due to direct illumination
by the source as L! and radiance due to interreflections as L?. We will use the same
superscripts for projected radiance. The two-bounce interreflection component for a
Lambertian facet can be expressed as [Siegel and Howell-1972] [Koenderink and van

Doorn-1983] [Forsyth and Zisserman-1989] [Nayar et al.-1991a):

1z =" // K(X,3)LMF)dy (17)

where X is a point on the facet whose interreflection component is determined as an
integral of the radiance of all points ¥ on the adjacent facet. K(X,¥) is the kernel and
represents the geometrical relationship between X and y. Since the V-cavity is long
compared to its width, it can be viewed as a one-dimensional shape with translational
symmetry. For such shapes, the interreflection component can be determined as an
integral over the one-dimensional cross-section of the shape. The above interreflection
equation is therefore reduced to:

L2a2)=" / K’ (y)dy (18)
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where z and y are the shortest distances of points X and ¥ from the intersection of the
two facets (see Figure 9). K’ is the kernel for the translational symmetry case and is

derived in [Jakob-1957] and [Forsyth and Zisserman-1989] to be:

7 sin? (26,) Ty

K'(z,y) =
'z, y) 9 (22 + 2zy cos (20,) + y?)3/?

(19)

We know that the normal of the considered facet is @ = (6,, ¢,) and the normal of the

- N\
AU

x>

Figure 9: Interreflections in a V-cavity.

adjacent facet is @' = (04, ¢+ 7). The limits of the integral in the interreflection equation
are determined by the masking and shadowing of these facets. As before, let m, be the
width of the facet which is visible to the viewer. Let m?® be the width of the adjacent
facet that is illuminated. As in Section 4.1.1, expressions can be obtained for the visible
and illuminated sections:

v . <a', o>
m :Max{O,Mm[l,—#H (20)
w <a,v>
m?® <a,s>
= Maz |0, Min|l, ————— 21
p = Maz (0. Min[L, <&’,§>H (21
From the definition of projected radiance (7) and expression (18) we have:
l<a,v> w
L} = : [ 22
T da<ans <0 Jem, ) (22)

l<a'. § a. w w
= &yeE <a’3><a’v>/ / K'(2,y)dy dz
y 8

0 > —
s da <a,n><0,1>Jz=m,

T

Using the following change of variables: ¢ = = ;
interreflections given by (22) can be written as:

r = £, the radiance due to two-bounce

P9 <
L2 —_ E
TP ( ) 0<

o> 1 1
: K'(t,r)dr dt 23
> /t:%/rsz (t,)dr (23)
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Using (19), the above integral is evaluated as:

1 1 m m? m°® m
K, )drdt = 5[d(1, ) +d(1,) — d vy d(1,1 24
i e B 00t = 501, 0) (0L 50— dC T (L] (24)
where:
d(z,y) = \/x2 + 22y cos (20,) + y? (25)

We refer to (24) as the interreflection factor (IF). From (23), the interreflection com-
ponent of the projected radiance of a facet with normal (6,, ¢,) is:

pr((?a,gZ)a) = (%)QEO cos B; cos b, (26)

(1 — tan 6; tan 8, cos (¢; — qba)) (1 + tan @, tan 0, cos (¢, — qba))If('ﬁ, $,a)

The total projected radiance of the facet is the sum of the projected radiance due to
source illumination (given in Table 1) and the above interreflection component:

Lop0060) = Lh(0,60) + L2 (6., 60) (27)

The uni-directional single-slope surface we have considered in this section has only two
types of facets with normals (6,, ¢,) and (8,, ¢, + 7). Hence, the radiance of the surface
for any given source direction and sensor direction is simply the average of the projected
radiances of the two facet types:

L'r 0a7¢a + LT 9a7¢a‘|’77
L0 6010:60,.0,) = Trllnfe) * Lol :

(28)

4.2 Model for Isotropic Single-Slope Distribution

We now consider a surface with V-cavities that have facets with the same slope (4,),
but uniformly distributed in orientation (¢,) in the plane of the surface. The result is a
surface with isotropic roughness. The reflectance model derived for this surface is based
on the results obtained in the previous section for the single-slope surface. The results
obtained in this section are important as they can be used to derive a reflectance model
for any isotropic surface.

From the previous section, we know the radiance L}p(Ga, ¢,) of a facet with normal
a = (0,4, ¢q). Therefore, the radiance of the single-slope isotropic surface due to direct
source illumination is determined as an integral of the projected radiance over ¢,:

1,00 = o [ 1 (6.6.)d6, (29)

27 Jpa=0

Given source direction (6;, ¢;) and sensor direction (6,, ¢, ), we first need to find the ranges
of facet orientation ¢, for which the facets are masked, shadowed, masked and shadowed,
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and neither masked nor shadowed®. The radiance for each range is given in Table 1. The
problem then is to decompose the above integral into different parts, each corresponding
to a different masking/shadowing range. We refer the interested reader to Appendix A.1
for details on the evaluation of integral (29). The final expression for surface radiance is
found to be:

Llp(ea) = LEycosf;cos b, |1 + cos (¢, — qbi)(Al(oz; 6.)tan 8 4+ Ax(B, ¢r — ¢; Ha)) +

(1 = Jeos (6, — 6)[) As(6,, 03 eo] (30)

where, « = Mazl[;,0,] and 8 = Min[0;,0,]. The expressions for the coefficients Ay, A,,
and Ajs are given in Appendix A.1. Note that the above projected radiance is the same
as the total radiance of the surface (L!(0,,0;, ¢, — ¢:;6,) = L}p(ﬁa)) since all facets on
the surface have identical slope, 8,. The derivation in Appendix A.l does not consider
multiple reflections, as the interreflection component (26) is difficult to intergrate over
all cavity orientations ¢,. In Appendix A.2, an approximation to the interreflection
component (LZ(0,,0;, ¢, — ¢i;0.) = L2 (0a)) is given,

Once again, it is important to note that the radiance of the rough surface con-
sidered here is not constant with respect to the viewing direction (6,,¢,); it is non-
Lambertian. We will study this behavior more closely in the following section.

4.3 Model for Gaussian Slope-Area Distribution

The surface considered above consists of V-cavities with equal facet slope. Realistic
surfaces can be modeled only if the slope-area distribution P(6,, ¢,) includes a variety of
different facet slopes. If the surface roughness is isotropic, the slope-area distribution can
be described using a single parameter namely 8, since the facets are uniformly distributed
in ¢,. The radiance of any isotropic surface can therefore be determined as:

ks

Lo(6,,0;, 6, — &) = /05 P(0.)L,,(0,) sin 0, db, (31)

where the source illumination (no interreflection) component of L,,(6,) is given by (30).
We assume the isotropic distribution to be Gaussian with mean p and standard deviation
o,i.e. P(0,;0,u). Reasonably rough surfaces can be described using a zero mean (g = 0)
Gaussian distribution:

6

P(0,) = ce 22 (32)

where the normalization constant c is:

T [T &
1/e :/ / e 2% sinf, do, db,
a=0 =0

8Imagine a V-cavity rotated about the global surface normal for any given source and sensor direction.
Various masking/shadowing scenarios can be visualized.
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The reflectance model is to be obtained by substituting the radiance L;,(6,) given
by (30) and the Gaussian distribution P(6,;0,0) in integral (31). The resulting integral
cannot be easily evaluated. Therefore, we pursued a functional approximation to the
integral that is accurate for arbitrary surface roughness and angles of incidence and
reflection. In deriving this approximation, we carefully studied the functional form of
L}, (0,) given by (30). This enabled us to identify basis functions that can be used in the
approximation. Then, we conducted a large set of numerical evaluations of the integral in
(31) by varying surface roughness o, the angles of incidence (6;, ¢;) and reflection (6,, ¢, ).
These simulations and the identified basis functions were used to arrive at an accurate
functional approximation for surface radiance. This procedure was applied independently
to the direct illumination component as well as the interreflection component.

The final approximation results are given below. Once again, let o« = Maz[6,, 0]
and f = Min[f,,0;]. The direct illumination component of radiance of a surface with
roughness o is:

Ly(0,,0;, ¢, — dis0) = LEg cos b; [CI(U) + (33)

cos (6, — 91)Ca(a; B 6 — Giz0) tan § + (1~ |cos (¢ — 6:)]) Cof e 50 tan (= ; ﬂ)]

where the coefficients? are:

2

o
¢y = 1-05——————
! o2 +0.33
0.45—5%— 2+009 sin a if cos (¢ — i) >0
Cy =

0.45 57— 2+0 55 (sin a— (%)3) otherwise

0125< o )(Mﬁ)Z
' 02 4+ 0.09 T2

Using a similar approach, an approximation to the interreflection component was also

Cy

derived. In this case, the interreflection component for the single-slope isotropic surface
(Appendix A.2) was used to guess the basis functions. The final approximation to the
interreflection component of radiance for a surface with roughness o is:

, L : 26 .
Lr(e’ragi7¢7° - ¢i70-) = 0. 17 EO COSH mll — CO8 (¢ - (/5 )( ) ] (34)

The two components are combined to obtain the total surface radiance:

LT(HTaHiv ¢T - ¢i; U) = Ll(ervaia ¢T - gbi; U) + Lz(gﬁgia ¢)T - gbi; U) (35)

9These coefficients reflect simplifications made to the ones initially presented in [Oren and Nayar-
1993].
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If the surface is extremely rough, causing the zero-mean Gaussian model to be an inac-
curate approximation, an additional parameter can be used to weight the interreflection
component. Our simulations show that this enables the model to stretch a bit beyond
its theoretical limits. Finally, the BRDF of the surface is obtained from its radiance
and irradiance as f.(0,,60;, ¢, — ¢;;0) = L.(0,,0;, ¢, — ¢i;0) ] Egcosb;. 1t is important
to note that the above model obeys Helmholtz’s reciprocity principle (see [Beckmann
and Spizzichino-1963]). Also note that the model reduces to the Lambertian model'® when
o=0.

In the next section, we present several experimental results that verify the derived
diffuse reflectance model. Here, we give a brief illustration of the main characteristics of
the model. Figure 10 shows the reflectance predicted by the model for a very rough surface
with o = 30° and p = 0.9. The radiance L, in the plane of incidence (¢, = ¢;, ¢; + 7) is
plotted as a function of the reflection angle 8, for incidence angle 6; = 75°. Two curves
are shown in the figure, both obtained by numerical evaluation of the integral in (31).
Shortly, we shall examine the accuracy of the functional approximation.

The first curve (solid line) includes both direct illumination and interreflection
components of radiance, while the second (thin line) is only the direct illumination compo-
nent. Notice that these radiance plots deviate substantially from Lambertian reflectance.

L strong

0.125

Lambertian
_____________________ 0_Q75_r

strong
interreflection

-90 -75 -60 -45 -30 -15

forward backward

Figure 10: Diffuse reflectance in the plane of incidence for a surface with ¢ = 30°, p = 0.90,
and incidence angle §; = 75°. The thin line is radiance due to direct illumination (without
interreflections).

Surface radiance increases as the viewing direction approaches the source direction. The
curves can be divided into three sections. In the backward (source) direction, the radiance
is maximum and gets “cut-off” due to strong masking effects when 8, exceeds 6;. This

Y"When ¢ =0, C; =1, C3 =0, and C5 = 0, yielding L; = £ Ej cos 0;.
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cut-off occurs exactly at 8, = 6; and is independent of roughness. In the middle sec-
tion of the plot, radiance varies approximately as a scaled tan 6, function with constant
offset. Finally, interreflections dominate in the forward direction where most facets are
self-shadowed and the visible facets receive light primarily from adjacent facets. This is
illustrated by the difference between the two curves.

Figure 11 shows the effect of varying surface roughness. When ¢ = 0, the model
predicts exactly Lambertian reflectance. The deviation from Lambertian behavior in-
creases dramatically with roughness. In Figure 12(a), the effect of varying the incidence

L
r o
0=40
0.15
O
0=20
0.125
O
0=10
0.1
0 075 o= OO
/&05 |
0. 025
r
-90 -75 -60 -45 -30 -15 15 30 45 60 75 90

Figure 11: Effect of roughness o on surface radiance (6; = 75° and p = 0.9).
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Figure 12: (a) BRDF for different angles of incidence. (b) Radiance outside the plane of
incidence. In both plots, o = 40° and p = 0.9.

angle 0; is shown. Here we have chosen to plot BRDF' rather than radiance to bet-
ter illustrate the effect of varying 6;. It is interesting to note that the model predicts
near-Lambertian behavior for very small incidence angles (6; ~ 0). This results from
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(¢) 0; = 60° (d) 6; = 85°

Figure 13: Comparison between numerical evaluation of the model (thick line) and functional
approximation (thin line) for a surface with o = 30° and p = 0.90.

both facets of a V-cavity having nearly equal irradiance for small angles of incidence. As
the incidence angle increases, the backscatter phenomenon begins to dominate. Figure
12(b) shows the effect of placing the sensor outside the plane of incidence. When the
sensor-normal plane is perpendicular to the source-normal plane, the rough surface again
exhibits near-Lambertian characteristics.

Figure 13 shows comparisons between radiance values computed by numerical
evaluation of (31) (thick line) and the functional approximation (thin line) given by (33)
and (34). Once again, radiance is measured in the plane of incidence (¢, = ¢;, ¢; + 7).
In all cases, the functional approximation proves to be very accurate.

4.4 Qualitative Model

A well-known problem in computer vision involves the use of reflectance models for
computing scene properties, such as, surface orientation, reflectance, and roughness. For
such problems to be tractable, it is necessary to have models with simple mathematical
forms that can be inverted to estimate the parameters of interest. A major reason for the
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Figure 14: Comparison between numerical evaluation (thick line) and the qualitative model
(thin line): (a) in the plane of incidence (¢, — ¢; = 0°), and (b) outside the plane of incidence.
In both cases, o = 30°, p = 0.90, and 8; = 75°.

popularity of the Lambertian model is perhaps its simplicity. In this section, we propose a
further simplification to the reflectance model presented in the previous section. In order
to obtain this simplification, some degree of accuracy must of course be sacrificed. For
the qualitative analysis of shading in images or the rendering of images for graphics and
animation, a reasonably accurate model would suffice. The following simplified model
was arrived at by studying, through numerous simulations, the relative significance of
various terms in the functional approximation given by (33). The simulations showed
that coefficient C'5 makes a relatively small contribution to the total radiance. A simpler
model is thus obtained by discarding C'3 and ignoring interreflections:

L.(0,,0;, ¢, — ¢pi;0) = %EO cos 0;(A+ BMaz |0, cos (¢, — ¢;)| sinatan 3) (36)

2

o
A = 10-05——7
o? 4+ 0.33
2
o
B = 04h———
c?+0.09

The two coeffcients A and B are obtained directly from C; and C,, respectively. Note
that the qualitative model also reduces to the Lambertian model when o = 0. In Figure
14, we have compared the qualitative model with the numerical evaluation of the model®!.
This model can be of significant practical value in applications where high accuracy is
not critical.

HUDiscrepancies caused by the lack of the interreflection component in the qualitative model can be
partially compensated by replacing the constant 0.33 in coefficient A with 0.57.

22



5 Experiments

We have conducted several experiments to verify the accuracy of the diffuse reflectance
model. In the case of outdoor scenes, each sensor element (pixel) typically includes a
large surface area (several inches in dimensions and often more). Commercially available
reflectance measurement devices are applicable only to small samples. Consequently, we
developed our own measurement device (see Figure 15). Each sample is approximatedly
2x2 inches. It is imaged using a 512x480 pixel CCD camera that is mounted at the
end of a 6 foot long beam. The other end of the beam is attached to a rotary stage
to facilitate precise variation of the viewing angle #,.. The sample is illuminated using
a 300 Watt incandescent light source. The solid angles subtended by the sensor and
source from the sample are approximately dw; = 0.003 steradians and dw, = 0.0009
steradians, respectively. The illumination direction (6;, ¢;) is adjusted manually. Images
of the sample are digitized and radiance is computed as the average brightness over all
pixels within an image window that lies on the sample. The image window size is varied
as a function of sensor direction to ensure that the same area on the sample is always
used.

Q
light source

(a)

Figure 15: (a) Sketch and (b) photograph of the set-up used to measure reflectance.

Figure 16 shows results obtained for a sample of wall plaster. The sample has
matte local reflectance properties but is very rough; it is exactly the type of surface that
our diffuse reflectance model characterizes. Reflectance is represented by the normalized
radiance L,(6,)/L,(0) where L,(0) is the radiance measured when the sample is viewed
from the normal direction. The normalized radiance is also equal to the normalized
BRDF f.(0,)/f,(0). The radiance of each sample is plotted as a function of sensor
direction 6, for different angles of incidence ;. These measurements are made in the
plane of incidence (¢, = ¢; = 0). The dots represent measured radiance values while
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Wall Plaster

Figure 16: Reflectance measurement and reflectance model (using o = 30°, p = 0.90) plots for
wall plaster (sample A). Radiance is plotted as a function of sensor direction (6, ) for different
angles of incidence (§; = 30°,45°,60°).

Sand Paper

Figure 17: Reflectance measurement and reflectance model (using o = 40°, p = 0.80) plots for
painted sand-paper (sample B).

Figure 18: Reflectance measurement and reflectance model (using o = 35°, p = 0.80) plots for
white sand (sample C).
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Figure 19: Reflectance measurement and reflectance model plots for sample C. These
measurements were obtained for sensor directions outside the plane of incidence: (a)

0; = 60° and ¢, = 45° ; and (b) 6; = 75° and ¢, = 60°.

the solid lines are predictions obtained using the reflectance model for Gaussian surface
roughness. In these initial experiments, o was selected empirically to obtain the best
match between measured and predicted reflectance. Here, we have used the numerical
evaluation of the model (31). This was done to demonstrate not only the accuracy of the
model but also the validity of all the assumptions made while developing the model.

Similar results are presented in Figures 17 and 18 for sample B (painted sand pa-
per) and sample C (white sand). For all three samples, radiance increases as the viewing
direction @, approaches the source direction §; (backward reflection). This is in contrast
to the behavior of rough specular surfaces that reflect more in the forward direction, or
Lambertian surfaces where radiance does not vary with viewing direction. For all three
samples, the model predictions and experimental measurements match remarkably well.
In all cases, a small peak is noticed near the source direction. This phenomenon was
discussed earlier in the paper and is different from the one described by our model; it
is the backscatter peak studied by several researchers [Oetking-1966] [Hapke and van
Horn-1963] [Hapke et al-1993] [Kuga and Ishimaru-1984] [Tsang and Ishimaru-1984]
and discussed in the context of machine vision in [Tagare and deFigueiredo-1991]. Dis-
crepancies between the model and measured data found in the forward direction can be
attributed partly to the long V-cavity assumption. In the case of sample C (sand), we see
a small specular component in the forward direction. This is due to the specular charac-
teristics of individual sand particles. For sample C, we have also included measurements
obtained outside the plane of incidence (Figure 19). These measurements are a critical
measure of the accuracy of any reflectance model but are seldom found in reflectance
literature. Once again, the model and measured data are in strong agreement.

Figures 20 through 22 show results for samples that have not only a diffuse com-
ponent but also a significant specular component. In these experiments, the reflectance
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Figure 20: Reflectance measurement and reflectance model (¢ = 20°, p = 0.8, ks/kg = 0.019)
plots for foam (sample D).

Figure 21: Reflectance measurement and reflectance model (o = 42°, p = 0.75, ks /kq = 0.085)
plots for a cotton towel (sample E).

Wood Shaving

-90 -75 -60 -45 -30 -15 15 30 45 60 75 90

Figure 22: Reflectance measurement and reflectance model (using o = 26°, p = 0.7, ks/kq =
0.043) plots for fine wood shavings (sample F).
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model used is a linear combination of new model and the Torrance-Sparrow model [Tor-
rance and Sparrow-1967] that describes specular, or surface, reflection from rough sur-
faces. We selected this model as it is based on exactly the same surface roughness
assumptions (symmetric, long V-cavities) as the present model. The radiance predicted
by the model is:

F(n A

Ly = cos(HT)i;leZ ce s (37)
where, F'is the Fresnel reflection coefficient, and n is the refractive index of the surface
medium. The cosf, in the denominator results from using the slope-area distribution
instead of the facet-number distribution (see Section 3). This model predicts a peak in
the forward direction (close to the specular direction) and the distribution of the reflected
radiance gets wider with increase in surface roughness . The total radiance is expressed
as a linear combination of the diffuse and specular components:

L, = kgL + k, L? (38)

where the diffuse component L¢ is predicted by the model proposed in this paper. In
these experiments, we used the functional approximation (33) instead of the numerical
evaluation of integral (31). Moreover, the reflectance parameters o, p, kq, and ks were
estimated by fitting, using non-linear optimization, the above model to measured data.
Since it is difficult to obtain meaningful estimates of n for the samples we have used,
the effect of the Fresnel coefficient was ignored by assuming F' = 1. Note that for all
three samples, the diffuse model does very well in describing the increase in radiance
as the viewer approaches the source, as well as the cut-off in radiance at the source
direction. This despite the fact that the three samples have roughness characteristics
that differ from the V-cavity model. For the foam sample, the specular component
(radiance increase in the forward direction) is described well by the Torrance-Sparrow
model. The Torrance-Sparrow model does only reasonably well for the cloth towel and
not very well for the wood-shaving sample. The main reason for this is the following:
While the Gaussian roughness model appears explicitly in the Torrance-Sparrow model,
it is integrated over all facet orientations in our case. As a result, the diffuse model is less
sensitive to the actual surface roughness distribution than the Torrance-Sparrow model.
However, it is important to note that the combined model (38) attempts to describe
very complex reflectance properties, diffuse and specular reflectance mechanisms in the
presence of substantial surface roughness. Given this, the overall performance of the
combined model is encouraging.

6 Implications for Machine Vision

Several algorithms in computer vision make assumptions regarding reflectance properties
of objects in the scene. Incorrect modeling of reflectance naturally leads to inaccurate
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results. The reflectance model presented here clearly demonstrates that rough diffuse
surfaces cannot be assumed to be Lambertian in reflectance. Further, this deviation
from Lambertian behavior increases with the roughness of the surface and the angle of
incident light. The model can therefore be used to improve the performance of vision
algorithms ranging from shape recovery to estimation of surface properties. We start by
studying real and rendered images of a diffuse object. Next, we use reflectance maps
to illustrate that the proposed model is, in fact, an important generalization of the
Lambertian model. The model is then used to recover accurate shape information by
photometric stereo. Recovered shape is compared with the shape obtained using the
Lambertian model. We also discuss how diffuse reflection from non-Lambertian surfaces
can affect vision algorithms for binocular stereo and motion estimation.

6.1 Real and Rendered Images

Figure 23(a) shows an image of the rough cylindrical clay vase discussed in the intro-
duction. The image was obtained using a CCD camera. The vase is illuminated by a
single light source from the sensor direction. For clarity of display, we have removed
the background region from the image. Figure 23(b) shows a rendered image that is
generated using the known geometry of the vase and the Lambertian model. Clearly, the
real vase appears much flatter, with less brightness variation along its cross-section, than
the Lambertian vase. Figure 23(c) shows an image that is rendered using the proposed
reflectance model with ¢ = 40° and p = 0.70. Note that the proposed model does very
well in predicting the appearance of the vase. The roughness value was selected empir-
ically. Since roughness models of actual surfaces can deviate from the V-cavity model
assumed here, o, at times, only parametrizes surface roughness and may not correspond
to the actual roughness.

s

(a) Real image (b) Lambertian model (c) Proposed model

Figure 23: Real image of a cylindrical clay vase compared with images rendered using the
Lambertian and proposed models. Illumination is from the direction 8; = 0°.

Figure 24(a) compares brightness values along a cross-section of the three vase
images shown in Figure 23. It is interesting to note that the brightness of the real vase
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Figure 24: Comparison between image brightness along the cross-section of the real vase, and
vases rendered using the Lambertian and proposed models.

remains nearly constant over most of the cross-section and drops quickly to zero very
close to the limbs. The proposed model does very well in predicting this behavior, while
the Lambertian model produces large brightness errors. Figure 24(b) shows similar plots
for illumination from 20° to the right of the sensor. In this case, brightness variation on
the real vase is asymmetric. Once again, the proposed model closely matches the real
image. However, the Lambertian model forces the brightness close to the right limb of
the vase to drop much faster than in the real image. As a result, the brightness peak
predicted by the Lambertian model is way off from the actual peak.

6.2 Reflectance Maps

Reflectance maps are widely used in vision for obtaining shape information from bright-
ness images [Horn and Brooks-1989]. For a given reflectance model and source direction,
the reflectance map establishes the relationship between surface orientation, given by the
gradient space parameters (p, ¢), and image brightness. Figure 25(a) shows the reflectance
map of a Lambertian surface for illumination from the direction (§; = 10°, ¢; = 45°).
The same map is obtained using the proposed model with roughness o = 0. Figure 25(b)
shows the reflectance map of a rough diffuse surface with ¢ = 60°. Interestingly, the
rough surface produces a map that appears very similar to the linear reflectance map
[Horn and Brooks-1989] hypothesized for the lunar surface. The proposed reflectance
model therefore establishes a continuum from pure Lambertian to lunar-like reflectance.
Further, the model predicts that the linearity in the reflectance map occurs only when
the viewer is close to the source.
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Figure 25: Reflectance maps for (a) Lambertian surface (p = 0.9), and (b) rough diffuse surface
(o = 60°, p = 0.9). For both maps the angles of incidence are 8; = 10° and ¢; = 45°. Note
the similarity between the second map and the well-known linear reflectance map previously
suggested for lunar reflectance.

6.3 Photometric Stereo

The problem of recovering shape from brightness images has been intensely researched
in the past two decades. Several algorithms have been proposed, the most notewor-
thy of these being shape from shading [Horn and Brooks-1989] and photometric stereo
[Woodham-1980]. In order to constrain the recovery problem, these techniques assume
that the reflectance properties of the objects are known a-priori. For these methods to
produce meaningful shape estimates, it is imperative that accurate reflectance models
be used. Here, we present results obtained by applying photometric stereo to the clay
vase shown in Figure 23. Photometric stereo uses multiple light sources to obtain a set
of image intensities at each surface point. These intensities are used with the known
source directions to compute surface orientation. Since the geometry of the vase has
translational symmetry (along the cylindrical axis), only two sources are needed to com-
pute shape. The sources were positioned at —10° and 10° angles with respect to the
sensor direction. Figure 26(a) shows the shape of the vase recovered using the Lamber-
tian model. Figure 26(b) shows the shape computed using the proposed model and the
roughness value used to render the image in Figure 23(c). Figure 27 compares height
values computed along the vase cross-section using the two models. It is evident from
this plot that the Lambertian model results in large errors in computed orientation and
hence also in computed height. Similar errors are expected in the case of shape from

shading.

In the context of visual inspection, roughness of a surface is often a measure of its
quality (finish). In such cases, a radiance plot, similar to the ones shown in Figuresl6-
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18 can be used to estimate the macroscopic roughness of the surface. Note that the
source direction is known in each radiance plot. Roughness can therefore be estimated
by finding the o value for which the measured radiance data best fits the model. Due
to the functional form of the model, the fitting is non-linear and an iterative technique
such as the Levenberg-Marquandt [Press et al-1989] method can be used. In fact, we
adopted exactly this approach in fitting the combined model (38) to experimental data

in Section 5.
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Figure 26: Shape of the vase in Figure 23(a) determined by photometric stereo using (a) the
Lambertian model, and (b) the proposed model. In both cases, images were obtained using two

light sources at angles —10°,10° with respect to the sensor direction.
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Figure 27: Actual profile of the vase compared with profiles computed using the Lambertian
and proposed model (¢ = 40°, p = 0.70). The Lambertian model produces large errors in

computed shape.
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6.4 Binocular Stereo and Motion Estimation

Binocular stereo algorithms reconstruct the shape of a scene from two or more images.
The images are obtained by varying the viewing direction of the sensor. In order to com-
pute three-dimensional coordinates of points in the scene, the correspondence between
points in the different images must be established. In the case of motion estimation,
objects in the scene move with respect to a stationary or moving sensor. Again, corre-
spondence between points in consecutive images must be determined to compute optical
flow estimates. There are several algorithms for matching small areas in one image with
areas in other images. These algorithms assume that brightness values of points in the
scene do not vary with viewing direction, i.e. a scene point has the same brightness in
all images. This assumption is valid only if the scene is Lambertian. Our results shows
that real objects can deviate substantially from Lambertian behavior; their brightness
will vary with viewing direction. An interesting problem would involve developing sim-
ilarity measures for correspondence that are insensitive to brightness variations due to
non-Lambertian reflectance.

7 Summary

In conclusion, we have developed a comprehensive model for diffuse reflectance. A model
was first derived for anisotropic surfaces that have facets with only one slope. This result
was used to develop a model for isotropic surfaces with Gaussian slope-area distribution.
We have also presented a qualitative model for diffuse reflection that has a simple func-
tional form. Numerous experiments were conducted to verify the reflectance mechanism
described in this paper. The results presented here have serious implications for machine
vision; they show that vision algorithms based on the Lambertian assumption will not
produce reliable results for a variety of real-world diffuse surfaces. We demonstrated
some of these implications by using the model for rendering images of diffuse objects,
studying reflectance maps of rough diffuse surfaces, and recovering shape by photometric
stereo.
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A Radiance of Isotropic Surface with Single-Slope
Distribution

In this appendix, we outline derivations for the direct illumination and interreflection
components of projected radiance for the isotropic surface discussed in Section 4.2. These
results are used in Section 4.3 to derive the reflectance model for a surface with Gaussian
slope-area distribution.

A.1 Radiance due to Direct Illumination

Our objective here is to evaluate the integral in (29). For any given source direction
(0;, ;) and sensor direction (6,,¢,), facets on the isotropic surface could be masked,
shadowed, masked and shadowed, or neither masked nor shadowed. The radiance for
each of these cases is given in Table 1. The problem therefore is to decompose the integral
in (29) into parts, each corresponding to a different masking/shadowing range. Using
basic geometry, we have identified the limits of the integrals corresponding to different
ranges of shadowing/masking. These limits are represented by the critical angles ¢! (for
shadowing) and ¢" (for masking). The critical angle ¢' is related to the slope 6, of surface
facets:

. cos™! (m) if (tan @, tan6;) > 1 (39)

0 otherwise

The angle ¢7 is determined using the same expression by replacing 6; with 6,. These
critical angles are related to the masking/shadowing ranges as shown in Table 2.

Partial Shadow | No Shadow Complete Self-Shadow
|[¢a — ¢4l < &L ¢t <o — dil < — L | ¢ — (6i +7)| < 60
Partial Masking | No Masking Complete Self-Masking
[$a = & <L | SLS|pa — ¢ S =00 | [$a — (dr +7)| < 4

Table 2: Masking/shadowing and the critical angles.

Using the above critical angle expressions, Table 2, and Table 1, we decompose
(29) into the sum of several integrals. Each integral can be evaluated for any fixed viewer
direction. However, for arbitrary directions several cases arise and the results are not
easy to use in practice. Therefore, we have chosen to express the radiance of the surface

for any arbitrary viewing direction (6,, ¢,) as a weighted sum of the radiance L}pH in the

plane of incidence (¢, = ¢;, ¢; + 7), and the radiance L}pL in the perpendicular plane
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Radiance in the Plane of Incidence:

There are two cases to consider. In the first, ¢, = ¢;. Without loss of generality,
we can assume ¢, = ¢; = 0. When 6; > 6., radiance is obtained as:

¢:
L} (0,) = Z£E;cosb;cos Gai[/ - 2(1 + tan 0, tan 0, cos ¢, )d¢, +
g - 27 g

7

7T—¢c
2 /(/5Z (1 + tan 6, tan 6; cos ¢, )(1 + tan 6, tan 8, cos qba)dqba]

[

= £E0 cos 6, cos b, [1 + 2tan d, tan 9, sin ¢ +
s

s

1 2¢4° + sin (2!

) tan® 0, tan 0; tan 0,(1 — 9% + sin (20%) )] (40)
When 0, > 60;, the sensor and source directions are simply switched in the expression
inside the square brackets.

In the second case, ¢, = ¢; + 7. Again, without loss of generality, we can assume

¢; =0, ¢, = 7. When 0; > 0,, we get:

1, %
L}np”(@a) = LFycosb;cos 49@2—[2 /¢T 2(1 4 tand, tané, cos (v — ¢,))d¢, +
T C

7

7T—¢c
2 /¢2 (1 + tan 6, tan 6; cos ¢,)(1 + tan 8, tan 6, cos (7 — qba))dqba]

24" : (. 7
= ZFycosb;cosb, [1 - o + 2tan 4, tan GTM -

T T

§tan2 ,tanf;tan 6,(1 — ¢+ sin ( ¢c))]

s

(41)

Once again, when 6, > 0;, the sensor and source directions are switched in the term
inside the square brackets.

Radiance in the Perpendicular Plane:

We now calculate radiance for the case where the viewer is in the plane perpen-
dicular to the plane of incidence; i.e. ¢, = ¢; & 7. Again, there are two cases to be
considered. In the first case, ¢. + ¢. < 7. Here, the regions of shadowing and masking
do not overlap. Using these limits, the integral in (29) is evaluated as:

LY (0,) = 2 Fio cos B cos 0, (42)

TPl
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In the second case, we have ¢ + ¢" > 7. Here, the regions of masking and shadowing
do overlap. Without loss of generality, we can choose ¢; = 0 and ¢, = 7. We define the
angle 7, 0 < v < 7, that separates the regions of shadowing (=7 + ¢. < ¢, < 7) and
masking (7 < ¢, < 7 — ¢). 7 is determined as: tan6; cosy = tan@, cos (3 — ). Then,
the expression for radiance is:

1
L}«pL(@a) = ZFycosb;cos 49@% [/—%-Hﬁz 2(1 + tan 0, tan 0, cos (¢, — §))dos +

o
/ 2(1 4 tan §; tan 8, cos qba)dgba]
-

1 bt
- oncosﬁicosﬁa[1+§_M+
7

\/tan2 0,tan%0, — 1 + \/tan2 0, tan’ 0, — 1 — tand, \/tan2 0; + tan? 4,

T

J13)

Radiance in Arbitrary Azimuth Angles:

We have determined via simulations that the radiance of the isotropic surface in
any arbitrary direction is well-approximated by the following weighted sum of LlpH(Ga)
and L}pL(Ha):

Lip(0a) = [ cos(@r — i) | Lupy(a) + (1= [ cos (6r — i) |) Lrp  (0a) (44)

This approximation was obtained by studying the expressions for the radiance compo-
nents in the two planes. It is in general very accurate, with a slight over-estimation only

for 0, ~ 6; and 0; — = /2.

Using the above linear combination of radiance in the two planes, we obtain the
final expression for projected radiance. The following notation is used: a = Maz[6;,0,]
and B3 = Minl[0;,0,]; if a = 0;, ¢°= ¢, else p°= ¢"; and the same rules apply to ¢7.

c? c?

(0,) =" —Fig cos b cos 0, ll + cos (¢, — qbi)(Al(oz; 0,)tan 8+ A2(8, ¢ — ¢i; Qa)) +

(1= Jeos (6, — 6)]) As(6,, 03 9»] (15)

where the coeflicients are:

2sin @Y 1 205 4 sin (292

s

Ai(a;0,) = tanb, )
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A2(67 ¢T - ¢i; Ha) =

8 in ¢
2:{)6 — tand, tan % if cos (¢, — ¢i) <0
if cos (¢, — ¢;) >0

o

S+l

ks

As(0,,0,;0,) =

N [ =

\/tan2 0, tan? 8,—1 —I—\/tan2 0; tan? 0, —1 —tan 6, \/tan? §; +tan? 4, . i r
if ¢, + &7

ks

A.2 Radiance due to Interreflections:

To calculate the radiance component due to interreflections, we need to evaluate the
following integral:

2,00 = o [ 146,640, (16)

27 Jpa.=0

In Section 4.1.2, we found the interreflection factor (ZF) to be :

IF =Z|d(1,

My m m® m,
2 w

d(1 —d —d(1,1 A7
) (1, ™) a5 ) (a7)
The above factor cannot be easily integrated. Therefore, we use the following approxi-
mation:

IF ~7n(l—cosb,)(1 —m®)(1—m,) (48)

As in Appendix A.l, the regions of shadowing and masking were identified and the
above approximation to ZF was used to evaluate (46). The final expression for projected
radiance of the isotropic surface due to interreflections is:

2

pr((?a) ~ p—EO cos B; cos O,(1 — cosb,)|1 —

T

if %+ 7

IN
[T

V
[T

(49)

248 ing% sing? 1
i + 2tand, tanﬁsmgﬁ sin ¢ + —tan? 6, tan a tan B(
T T 2 T

cos (6, = 60
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