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Abstract. The appearance of an outdoor scene depends on a variety of
factors such as viewing geometry, scene structure and reflectance (BRDF
or BTF), illumination (sun, moon, stars, street lamps), atmospheric con-
dition (clear air, fog, rain) and weathering (or aging) of materials. Over
time, these factors change, altering the way a scene appears. A large set
of images is required to study the entire variability in scene appearance.
In this paper, we present a database of high quality registered and cal-
ibrated images of a fixed outdoor scene captured every hour for over 5
months. The dataset covers a wide range of daylight and night illumi-
nation conditions, weather conditions and seasons. We describe in detail
the image acquisition and sensor calibration procedures. The images are
tagged with a variety of ground truth data such as weather and illumi-
nation conditions and actual scene depths. This database has potential
implications for vision, graphics, image processing and atmospheric sci-
ences and can be a testbed for many algorithms. We describe an example
application - image analysis in bad weather - and show how this method
can be evaluated using the images in the database. The database is avail-
able online at http://www.cs.columbia.edu/CAVE/. The data collection
is ongoing and we plan to acquire images for one year.

1 Variability in Scene Appearance

The appearance of a fixed scene depends on several factors - the viewing ge-
ometry, illumination geometry and spectrum, scene structure and reflectance
(BRDF or BTF) and the medium (say, atmosphere) in which the scene is im-
mersed. The estimation of one or more of these appearance parameters from one
or more images of the scene has been an important part of research in computer
vision. Several researchers have focused on solving this inverse problem under
specific conditions of illumination (constant or smoothly varying), scene struc-
ture (no discontinuities), BRDF (lambertian) and transparent media (pure air).
Images captured to evaluate their methods adhere to the specific conditions.
While understanding each of these specific cases is important, modeling scene
appearance in the most general setting is ultimately the goal of a vision system.
To model, develop and evaluate such a general vision system, it is critical to
collect a comprehensive set of images that describes the complete variability in
the appearance of a scene. Several research groups have collected images of a
scene (for example, faces, textures, objects) under varying lighting conditions
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and/or viewpoints in controlled lab environments. The CMU-PIE database [1]
has 40000 facial images under different poses, illumination directions and fa-
cial expressions. The FERET [2] database consists of 1196 images of faces with
varying facial expressions. Similarly, the Yale Face database [3] has around 165
images taken under different lighting, pose and occlusion configurations. The
SLAM database [4] provides a set of 1500 images of toy objects under different
poses. The color constancy dataset collected by Funt et al. [5] provides a large set
of images of objects (boxes, books and so on) acquired under different poses and
with different illuminants (fluorescent, halogen, etc). The CURET database [6]
provides a set of 12000 images of real world textures under 200 illumination and
viewing configurations. It also provides an additional set of 14000 Bi-directional
Texture Function (BTF) measurements of 61 real world surfaces.

Several databases of images of outdoor scenes have also been collected. The
“natural stimuli collection” [7] has around 4000 images of natural scenes taken
on clear, foggy and hazy days. Parraga et al. [8] provide a hyperspectral dataset
of 29 natural scenes. The MIT city scanning project [9] provides a set of 10000
geo-referenced calibrated images acquired over a wide area of the MIT campus.
These databases, however, do not cover the complete appearance variability (due
to all outdoor illumination and weather conditions) in any one particular scene.
Finally, web-cams [10] used for surveillance capture images regularly over long
periods of time. However, they are usually low quality, non-calibrated, not tagged
with ground truth data and focus only on activity in the scene. Note that the
references we have provided for various databases are by no means complete. We
refer the reader to [11] for a more comprehensive listing.

In this paper, we present a set of very high quality registered images of an
outdoor scene, captured regularly for a period of 5 months. The viewpoint (or
sensor) and the scene are fixed over time. Such a dataset is a comprehensive
collection of images under a wide variety of seasons, weather and illumination
conditions. This database serves a dual purpose; it provides an extensive testbed
for the evaluation of existing appearance models, and at the same time can
provide insight needed to develop new appearance models. To our knowledge,
this is the first effort to collect such data in a principled manner, for an extended
time period. The data collection is ongoing and we plan to acquire images for
one year.

We begin by describing the image acquisition method, the sensor calibration
procedures, and the ground truth data collected with each image. Next, we
illustrate the various factors that effect scene appearance using images from our
database captured over 5 months. We demonstrate thorough evaluation of an
existing model for outdoor weather analysis, using the image database.

2 Data Acquisition

2.1 Scene and Sensor

The scene we image is an urban scene with buildings, trees and sky. The distances
of these buildings range from about 20 meters to about 5 kilometers. The large
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Fig. 1. Acquisition setup

distance range facilitates the observation of weather effects on scene appearance.
See figure 5 for the entire field of view. The digital camera we use for image
capture is a single CCD KODAK Professional DCS 315 (see figure 1). As usual,
irradiance is measured using 3 broadband R, G, and B color filters. An AF
Nikkor 24 mm - 70 mm zoom lens is attached to the camera.

2.2 Acquisition Setup

The setup for acquiring images is shown in figure 1. The camera is rigidly
mounted over a pan-tilt head which is fixed rigidly to a weather-proof box (see
black box in figure 1). The weather-proof box is coated on the inside with two
coats of black paint to prevent inter-reflections within the box. An anti-reflection
glass plate is attached to the front of this box through which the camera views
the scene. Between the camera and the anti-reflection plate, is a filter holder
(for, say, narrow band spectral filters). The entire box with the camera and the
anti-reflection glass plate is mounted on a panel rigidly attached to a window.

2.3 Image Quality and Quantity

Images are captured automatically every hour for 20 hours each day (on an
average). The spatial resolution of each image is 1520 × 1008 pixels and the
intensity resolution is 10 bits per pixel per color channel. Currently, we have
acquired images for over 150 days. In total, the database has around 3000 images.
Due to maintainance issues that arise from prolonged camera usage (camera
power failures and mechanical problems in controlling camera shutter), we have
had to remove the camera twice from the enclosure. We believe the resulting
loss of few days in the database can be tolerated since the dataset has enormous
redundancy. The new image sets are registered with existing ones using the
matlab image registration utility.

To capture both subtle and large changes in illumination and weather, high
dynamic range images are required. So, we acquire images with multiple expo-
sures (by changing the camera shutter speed while keeping the aperture con-
stant) and apply prior techniques to compute a high dynamic range image (≈ 12
bits per pixel) of the scene. Since the illumination intensity is expected to vary
with time, the set of exposures are chosen adaptively. First, an auto-exposure
image is taken and its shutter speed is noted. Then 4 more images are captured
with exposures around this auto-exposure value. This type of adaptive exposure
selection is commonly used by photographers and is called exposure bracketing.
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Fig. 2. Geometric calibration using planar checkerboard patterns. Table shows esti-
mated intrinsic parameters. The distortion parameters not shown are set to zero.

3 Sensor Calibration

3.1 Geometric Calibration

Geometric calibration constitutes the estimation of the geometric mapping be-
tween 3D scene points and their image projections. Since the calibration was
done in a location different from that used for image acquisition, we estimate
only the intrinsic parameters of the camera. Intrinsic parameters include the
effective focal length, f , skew, s, center of projection (u0, v0) and distortion pa-
rameters, C1...Cn (radial) and P1, P2 (tangential). Then, the relation between
observed image coordinates and the 3D scene coordinates of a scene point is:
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version factors from pixels to millimeters. See [12] for more details. We captured
the images of a planar checkerboard pattern under various orientations (see figure
2). The corresponding corners of the checkerboard patterns in these images were
marked. These corresponding corner points were input to a calibration routine
[13] to obtain the intrinsic parameters. Figure 2 shows the estimated intrinsic
parameters. The CCD pixels are square and hence skew is assumed to be 1.
The deviation of the principal point from the image center is given by ∆u0, ∆v0.
Only the first radial distortion parameter, C1, is shown. The remaining distortion
parameters are set to zero.

3.2 Radiometric Calibration

Analysis of image irradiance using measured pixel brightness requires the radio-
metric response of the sensor. The radiometric response of a sensor is the map-
ping, g, from image irradiance, I, to measured pixel brightness, M : M = g(I) .
Then, the process of obtaining I from M : I = g−1(M) , upto a global scale
factor, is termed as radiometric calibration.
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(d) Radiometric Response (e) Computed High Dynamic Range Image (Histogram Equalized)

R
G

B

I

M

0

1

0.5

0 10.5

Image
Irradiance

Measured
Intensity

1 2

3

1 2

3 1

Fig. 3. Radiometric Self-Calibration. (a) - (c) Three images (10 bits per pixel per RGB
channel) captured with different camera exposures. (d) Computed radiometric response
functions of the 3 RGB channels. The response functions are linear with slopes 1.5923,
1.005 and 0.982 for R, G, and B respectively. The colors can be balanced by normalizing
the slope of each response function. (e) Histogram equalized high dynamic range image
irradiance map obtained by combining images taken with multiple exposures. Insets
indicate that the dynamic range in this image is much higher than the dynamic range
in any image captured using a single exposure.

The response functions of CCD cameras (without considering the gamma or
color corrections applied to the CCD readouts) are close to linear. We computed
the response functions of the 3 RGB channels separately using Mitsunaga and
Nayar’s [14] radiometric self-calibration method. In this method, images cap-
tured with multiple exposures and the their relative exposure values are used
to estimate the inverse response function in polynomial form. The results of the
calibration are shown in the plots of figure 3(d). Notice that the response func-
tions of R, G, and B are linear and they have different slopes - 1.5923, 1.005
and 0.982 respectively. To balance the colors, we normalize the response func-
tions by the respective slopes. The images taken with different exposures are
linearized using the computed response function. A high dynamic range image
irradiance map (see figure 3) is obtained by using a weighted combination of the
linearized images. This image has significantly more dynamic range then any of
the original images taken with single exposures [15]. The high dynamic range
can prove very useful when analyzing both subtle and large changes in weather
and illumination.

4 Ground Truth Data

Any database is incomplete without the accompanying ground truth. We have
tagged our images with a variety of ground truth information. Most important
categories of the ground truth we collected are scene depth and weather infor-
mation. The depths of scene points are mainly obtained using satellite digital
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Conditions at 2001.03.06 11:51am

Wind NNW (340 ) 10 MPH

Visibility 1 1/4 mile(s)

Sky conditions Overcast

Weather Light snow, Mist

Precipitation last hour A trace

Temperature 32.0 F (0.0 C)

Dew Point 32.0 F (0.0 C)

Relative Humidity 100%

O

FOV

Fig. 4. Sample ground truth data. [Left] A satellite digital orthophoto of a portion of
the scene. The red spot indicates the position of the sensor and bright region indicates
the field of view. Arcview [17] is used to measure the orthographic distance between any
two scene points (seen in top view) with an accuracy of 1 meter. [Right] The weather
data obtained from National Weather Service websites [18].

orthophotos supplied by the United States Geological Survey [16]. Arcview [17]
is a mapping software that is used to measure the orthographic distance between
two scene points (visible in the orthophotos) up to an accuracy of 1 meter. See
figure 4 for an example of a satellite orthophoto. Note that accurate depth is not
available at all pixels. However, since the field of view consists of mainly vertical
buildings, rough planar models can be used. The position (longitude, latitude
and altitude) of the sensor is included in the database. This information along
with the date and time of day, can be used to accurately compute sun and moon
orientation relative to the sensor. For exact equations, see [19,20].

Every hour we automatically collect standard weather information from the
National Weather Service web sites [18]. This includes information about sky
condition (sunny, cloudy), weather condition (clear, fog, haze, rain), visibility,
temperature, pressure, humidity and wind (see figure 4). Such information can
be used to estimate the scattering coefficient of the atmosphere [21].

5 WILD: Weather and ILlumination Database
We illustrate the variability in scene appearance due to weather, illumination,
season changes, and surface weathering using images from our dataset captured
over five months.

5.1 Variation in Illumination

The distribution of environmental illumination on a scene produces a wide va-
riety of scene appearances. Commonly noticed effects include shadows, colors of
sunrise and sunset, and illumination from stars and moon at night. The human
visual system relies on illumination in the scene to perceive scene reflectance
(retinex and color constancy [22]) and shape [23] correctly. As a result, ren-
dering a scene with consistent illumination is critical for realism in graphics.
Considerable amount of effort has been put into modeling outdoor illumination.
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The book “Daylight and its Spectrum” [24] provides a compendium of color and
intensity distributions of skylight for many years of the 20th century. Daylight
spectrum has also been represented using a set of linear bases [25]. Works that
model clouds and their effect on the ambient illumination also exist in literature
[26,27]. In graphics, scenes have been rendered under different daylight [28] and
night illuminations [29]. Shadows are a powerful cue for shape and illumination
perception. Rendering shadows and extracting shape information from shadows
[30,31] are also important problems.

Let us consider the various sources of illumination in any outdoor scene. The
primary sources (self-luminous) include the sun during the day, the stars and
lamps during night. There are numerous other secondary illumination sources
such as skylight, ground light, moonlight, airlight [32] (due to scattering of light
by the atmosphere), and scene points themselves (inter-reflections [33]). Our goal
is to include the effects of all these sources in one comprehensive database. Figure
5 shows 6 images from our database illustrating the various shadow configura-
tions on a sunny day. Figure 6 shows different illumination colors and intensities
at sunrise, noon, sunset and night. Figure 7 depicts the variations in ambient
lighting due to varying cloud covers.

When viewed up-close, rough surfaces appear to have 3D textures (due to
surface height variations) rather than 2D textures. The appearance of 3D tex-
tures has been modeled in [6]. Figure 8 shows the appearance of a rooftop with
ridges at different times of the day. Notice the change in appearance of cast
shadows due to surface height variations.

The above variability in a single database facilitates research groups to study
the illumination effects individually as well as simultaneously. For instance, one
may use just sunny day images at one particular time of day, when the sun
position remains constant and shadows do not change. In another instance, one
can consider images captured only on cloudy days to model scenes under ambient
lighting.

5.2 Variation in Weather Conditions

Most vision algorithms assume that light travels from a scene point to an ob-
server unaltered. This is true only on clear days. In bad weather, however, the
radiance from a scene point is severely scattered and thus, the appearance of a
scene changes dramatically. The exact nature of scattering depends on a variety
of factors such as shapes, orientations and densities of atmospheric particles and
the colors, polarizations, and intensities of incident light [34]. Recently, there has
been work on computing scene depths from bad weather images [35] as well as to
remove weather effects from images. Some works extract structure and clear day
scene colors using images of a scene taken under different weather conditions [36]
or through different polarizer orientations [37]. Other works use pre-computed
or measured distances to restore scene contrast [38,39]. In graphics, scenes (in-
cluding skies) have been rendered considering multiple scattering of light in the
atmosphere [28,40].
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09/07/2001, 3 PM
Clear and Sunny

09/07/2001, 10 AM
Clear and Sunny

09/07/2001, 12 Noon
Clear and Sunny

09/07/2001, 11 AM
Clear and Sunny

09/07/2001, 1 PM
Clear and Sunny

09/07/2001, 2 PM
Clear and Sunny

Fig. 5. Images illustrating different shadow configurations on a clear and sunny day.
Shadows provide cues for illumination direction and the scene structure. Notice the
positions of the sharp shadows on the buildings.

09/05/2001, 6 AM
Sun Rise

09 / 05/2001, 10 PM
Night

09/05/2001, 7 PM
Sun Set

09/05/2001, 12 noon
Noon

Fig. 6. Images illustrating the various colors and intensities of illumination at sunrise,
noon, sunset and night. Notice the significant change in the colors of the sky.

7 AM, Partly Cloudy, Partly Sunny 7 AM, Increased Cloud Cover 7 AM, Overcast Sky

Fig. 7. Images showing various levels of cloud cover. The image on the left shows the
appearance of the scene with a few scattered clouds. The two images on the right were
taken under mostly cloudy and completely overcast conditions. Notice the soft shadows
due to predominant ambient lighting.
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9 AM 12 Noon 3 PM

Fig. 8. When viewed at close proximity (fine scale), the appearances of surfaces should
be modeled using the bi-directional texture function (BTF) instead of the BRDF.
Notice the change in cast shadows due to the ridges on the rooftop. All images are
histogram equalized to aid visualization.

06/08/2001, 1 PM
Clear and Sunny

09/14/2001, 1 PM
Foggy

06/14/2001, 1 PM
Hazy

06/02/2001, 1 PM
Light Mist and Rain

Fig. 9. Images taken at the same time of day but under different weather conditions.
Notice the degradation in visibility, especially, of far away scene points in bad weather.

05/28/01, 11 PM
Clear Night

05/26/01, 11 PM
Misty Night

Fig. 10. Night images showing light sources under clear and misty conditions. The
sources appear like specks of light on a clear night. Notice the light spreading due to
multiple scatterings on a misty night.

How can the above models for weather analysis be evaluated? Under what
conditions do these models fail or perform well? To satisfactorily answer such
questions, we need to evaluate the performance of such models and algorithms
on images of a scene captured under a wide variety of illumination and weather
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conditions. Our database includes images of the scene under many atmospheric
conditions including clear and sunny, fog, haze, mist, rain and snow. Figure 9
shows 4 images of the same scene captured under different weather conditions.
Notice the significant reduction in contrast (and increase in blurring) in far
away buildings. Broadening of light beams due to multiple scatterings in the
atmosphere is clearly illustrated by the lamps imaged at night (see figure 10).

Consider the event of mild fog setting in before sunrise, becoming dense
as time progresses and finally clearing by noon. We believe that such lengthy,
time varying processes can be studied better using our database. Study of such
processes have potential implications for image based rendering.

5.3 Example Evaluation: Weather Analysis

Consider images taken under different weather conditions. The observed color,
E, of a scene point in bad weather is linearly related to its clear day color
direction, D̂, and the color of the weather condition (say, fog or haze), Â, by the
dichromatic model of atmospheric scattering [35]:

E = m D̂+ n Â . (2)
So, E, Â, and D̂ lie on the same “dichromatic plane” (see figure 11). Here,
m = E∞ρe−βd, n = E∞(1 − e−βd), d is the depth of the scene point from the
observer, β is called the scattering coefficient of the atmosphere [41], E∞ is the
brightness at the horizon, and ρ is a function of the scene point BRDF [36].
Under what weather conditions is the dichromatic model valid? How well does
the dichromatic model describe the colors of scene points under a particular
weather condition (say, mist)? Figure 11 shows the results of evaluating the
model for fog, haze, mist and rain using multiple (5 in this case) images taken
under each weather condition.

Based on the dichromatic model, Narasimhan and Nayar [36] developed con-
straints on changes in scene colors under different atmospheric conditions. Using
these constraints, they developed algorithms to compute 3D structure and clear
day colors of a scene from two or more images taken under different but unknown
weather conditions. How do we evaluate the performance of such an algorithm?
Figure 12 shows the comparison of the defogged image with the actual clear
day image of the scene under similar illumination spectra (overcast skies). The
accuracy of the computed scaled depth, βd, is compared against the ground
truth relative depth values obtained from the satellite orthophotos. This demon-
strates that models and algorithms pertaining to weather can be evaluated more
thoroughly using images from this database.

Narasimhan and Nayar’s algorithm described above shows that clear day
images can be obtained using two images taken under different weather (say,
foggy) conditions. Given two foggy images, can we generate novel foggy images?
We show this is possible using the defogged color ρ D̂, fog color Â, and optical
depth βd, at each pixel. Note that these quantities can be computed using the
above algorithm. Scattering coefficient β is a measure of the density of fog. Thus,
the density of fog can either be increased or decreased by appropriately scaling
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Fig. 11. Dichromatic plane geometry and its evaluation. (a) Dichromatic Model [35].
(b) The observed color vectors Ei of a scene point under different (two in this case)
weather conditions (say, mild fog and dense fog) lie on a plane called the dichromatic
plane. (c) Experimental verification of the dichromatic model with the scene imaged
5 times under each of the different foggy, misty, rainy and hazy conditions. The third
column is the mean angular deviation (in degrees) of the observed scene color vectors
from the estimated dichromatic planes, over 1.5 megapixels in the images. The fourth
column provides the percentage of pixels whose color vectors were within 3 degrees
of the estimated dichromatic plane. Note that the dichromatic model works well for
fog, mist, rain and dense haze under overcast skies. For mild haze conditions under
sunny skies, the model does not perform well. Such evaluation is possible only since
our database has several images under each weather condition.

the optical depth βd. Substituting the scaled optical depth k βd, clear day color
ρD̂, and fog color Â, into equation 2, we compute the colors of scene points
under novel fog conditions. The horizon brightness E∞ is kept constant since
it is just a global scale factor. Figure 13 shows 4 novel images generated with
increasing fog densities.

5.4 Seasonal Variations

The types of outdoor illumination and weather conditions change with seasons.
For instance, the intensity distribution of sunlight and skylight differ from sum-
mer to winter [24]. Similarly, the atmospheric conditions that manifest in fall are
significantly different from those that occur in winter. Models of the atmosphere
in different seasons can be found in [21] and other related papers [42]. Since we
acquire the images for over a year, changes in scene appearance due to changes
in seasons can be studied. For instance, one might easily compare the images
taken on a clear day in spring with images taken on a clear day in winter under
identical sensor settings. Figure 14 shows 2 images taken at the same time of
day in summer and fall.

5.5 Surface Weathering

Over substantial periods of time, we commonly see oxidation of materials (rust-
ing), deposition of dirt on materials and materials becoming wet or dry. These
effects are important for realistic scene rendering and have been modeled by
Dorsey and Hanrahan [43]. Since our images have high spatial resolution, por-
tions of the image corresponding to small regions in the scene (say, a portion of
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Computed Depth Map
(Brightened)

Relative Depth Verification
using Satellite Orthophoto Data

Computed Defogged Image Actual clear day image
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Fig. 12. Computing structure and defogging from two foggy images. Table comparing
the computed relative depths with ground truth relative depths (obtained using satel-
lite orthophotos) of 5 different regions, d1 − d5, in the scene. The relative depths are
averaged over small neighborhoods. The window regions do not remain constant and
thus produce erroneous depth values. All the images are contrast stretched for display
purposes.
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Fig. 13. Generation of novel images with increasing fog densities (or scattering coef-
ficients). The relative scattering coefficients used in this case are β, 2β, 3β and 4β
respectively.

Summer Season, 06/15/2001, 11 AM Fall Season, 09/15/2001, 11 AM

Fig. 14. Images taken at the same time of day but on days in summer and fall. Both
the images were taken on clear and sunny days. Notice the subtle differences in colors
and the positions of shadows.

Fig. 15. Portions of a rooftop in the scene when it is dry, partly and completely wet.

a wall) can be analyzed. Figure 15 shows a small patch in the scene when it is
dry and wet.
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6 Summary

The general appearance of a scene depends on a variety of factors such as illu-
mination, scene reflectance and structure, and the medium in which the scene is
immersed. Several research groups have collected and analyzed images of scenes
under different configurations of illuminations (both spectrum and direction),
and viewpoints, in controlled lab environments. However, the processes that ef-
fect outdoor scene appearance such as climate, weather and illumination are
very different from indoor situations. Ultimately, vision algorithms are expected
to work robustly in outdoor environments. This necessitates a principled collec-
tion and study of images of an outdoor scene under all illumination and weather
conditions. We have collected a large set of high quality registered images of
an outdoor urban scene captured periodically for five months. We described the
acquisition process, calibration processes and ground truth data collected. The
utility of the database was demonstrated by evaluating an existing model and
algorithm for image analysis in bad weather. This dataset has potential used in
vision, graphics and atmospheric sciences.
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manID Contract (N00014-00-1-0916) and an NSF Award (IIS-99-87979). The
authors thank E. Rodas for building the weather-proof camera enclosure.

References

1. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination and expression (PIE)
database of faces. Tech Report CMU-RI-TR-01-02 (2001)

2. Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The feret database and evaluation
procedure for face-recognition algorithms. Image and Vision Computing 16 (1998)

3. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces:
Recognition using class specific linear projection. PAMI 19 (1997) 711–720

4. Murase, H., Nayar, S., Nene, S.: Software library for appearance matching (slam).
In: ARPA94. (1994) I:733–737

5. Funt, B., Barnard, K., Martin, L.: Is machine colour constancy good enough? In:
Proc ECCV. (1998)

6. Dana, K., Nayar, S., van Ginneken, B., Koenderink, J.: Reflectance and texture of
real-world surfaces. In: Proc CVPR. (1997) 151–157

7. van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural
images compared with simple cells in primary visual cortex. In Proc. Royal Society
of London B 265 (1998) 359 – 366

8. Parraga, C.A., Brelstaff, G.J., Troscianko, T., Moorhead, I.: Color and illumination
information in natural scenes. JOSA A 15 (1998) 563–569

9. Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., Master, N.:
Calibrated registered images of an extended urban area. In: Proc. CVPR. (2001)

10. Hazecam: A live webcam. (In: http://www.hazecam.net)
11. CMUPage: The computer vision home page. (In: http://www.cs.cmu.edu/

cil/vision.html)
12. Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit

image correction. In: Proc. CVPR. (1997) 1106–1112



162 S.G. Narasimhan, C. Wang, and S.K. Nayar

13. Bouguet, J.Y.: Camera calibration toolbox. (In: http://www.vision.caltech.edu/
bouguetj/calib doc)

14. Mitsunaga, T., Nayar, S.: Radiometric self calibration. In: CVPR. (1999) I:374–380
15. Nayar, S., Mitsunaga, T.: High dynamic range imaging: Spatially varying pixel

exposures. In: Proc. CVPR. (2000) I:472–479
16. USGS: U.S. Geological Survey Mapping home page. (In: http://mapping.usgs.gov)
17. ESRI: The ESRI home page. (In: http://www.esri.com)
18. NWS: The national weather service home page. (In: http://www.nws.noaa.gov)
19. Aurora: Sun angle basics. (In: http://aurora.crest.org/basics/solar/angle/)
20. Naval-Observatory: The Astronomical Alamanac for the Year 2001. US R. G. O

Government Printing Office (2001)
21. Acharya, P.K., Berk, A., Anderson, G.P., Larsen, N.F., Tsay, S.C., Stamnes, K.H.:

Modtran4: Multiple scattering and BRDF upgrades to modtran. SPIE Proc. Op-
tical Spectroscopic Techniques and Instrumentation for Atmospheric and Space
Research III 3756 (1999)

22. Land, E., McCann, J.: Lightness and retinex theory. JOSA 61 (1971)
23. Ramachandran, V.: Perceiving shape from shading. SciAmer 259 (1988) 76–83
24. Henderson, S.T.: Daylight and its Spectrum. New York : Wiley (1977)
25. Slater, D., Healey, G.: What is the spectral dimensionality of illumination functions

in outdoor scenes? In: Proc. CVPR. (1998) 105–110
26. Moon, P., Spencer, D.: Illumination from a non-uniform sky. Illum Engg 37 (1942)
27. Gordon, J., Church, P.: Overcast sky luminances and directional luminous re-

flectances of objects and backgrounds under overcast skies. App. Optics 5 (1966)
28. Tadamura, K., Nakamae, E., Kaneda, K., Baba, M., Yamashita, H., Nishita, T.:

Modeling of skylight and rendering of outdoor scenes. In: Eurographics. (1993)
29. Jensen, H.W., Durand, F., Stark, M.M., Premoze, S., Dorsey, J., Shirley, P.: A

physically-based night sky model. In Proc. SIGGRAPH (2001)
30. Kender, J., Smith, E.: Shape from darkness. In: Proc. ICCV. (1987) 539–546
31. Kriegman, D., Belhumeur, P.: What shadows reveal about object structure. JOSA-

A 18 (2001) 1804–1813
32. Koschmieder, H.: Theorie der horizontalen sichtweite. Beitr. Phys. freien Atm.,

12 (1924) 33–53,171–181
33. Nayar, S., Ikeuchi, K., Kanade, T.: Shape from interreflections. IJCV 6 (1991)
34. Hulst, V.D.: Light Scattering by small Particles. John Wiley and Sons (1957)
35. Nayar, S., Narasimhan, S.: Vision in bad weather. In Proc. ICCV (1999)
36. Narasimhan, S., Nayar, S.: Chromatic framework for vision in bad weather. In

Proc. CVPR (2000)
37. Schechner, Y., Narasimhan, S., Nayar, S.: Instant dehazing of images using polar-

ization. In Proc. CVPR (2001)
38. Oakley, J., Satherley, B.: Improving image quality in poor visibility conditions

using a physical model for degradation. IEEE Trans. on Image Processing 7 (1998)
39. Yitzhaky, Y., Dror, I., Kopeika, N.: Restoration of altmospherically blurred images

according to weather-predicted atmospheric modulation transfer function. Optical
Engineering 36 (1998)

40. T. Nishita, Y. Dobashi, E.N.: Display of clouds taking into account multiple
anisotropic scattering and sky light. SIGGRAPH (1996)

41. McCartney, E.: Optics of the Atmosphere: Scattering by molecules and particles.
John Wiley and Sons (1975)

42. AFRL/VSBM: Modtran. (In: http://www.vsbm.plh.af.mil/soft/modtran.html)
43. Dorsey, J., Hanrahan, P.: Digital materials and virtual weathering. Scientific

American 282 (2000)


	Variability in Scene Appearance
	Data Acquisition
	Scene and Sensor
	Acquisition Setup
	Image Quality and Quantity

	Sensor Calibration
	Geometric Calibration
	Radiometric Calibration

	Ground Truth Data
	WILD:Weather and ILlumination Database
	Variation in Illumination
	Variation in Weather Conditions
	Example Evaluation:Weather Analysis
	Seasonal Variations
	Surface Weathering

	Summary
	References

