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Abstract

The histogram of image intensities is used extensively for
the retrieval of images from visual databases. An obvious
way to extend this feature is to compute the histograms of
multiple resolutions of an image. Both this extension and the
plain histogram are fast to compute, space efficient, invariant
to rigid motions, and robust to noise. In addition, the his-
tograms over multiple image resolutions directly encode tex-
ture information. We describe a simple yet novel matching
algorithm based on this extension. We evaluate it on two tex-
ture databases against algorithms based on five widely used
texture features. We show that with our simple algorithm,
we achieve or exceed the performance, robustness, and effi-
ciency of more complicated features.

1 The Multiresolution Histogram

The histogram of image intensities has proven to be a ro-
bust and efficient representation for indexing visual databases
[15]. Histograms, however, don’t encode texture informa-
tion. The multiresolution decomposition of an image does
encode texture information.

The histograms of Gaussian blurred versions of an image,
as shown in Fig. 1, encode the interactions between intensi-
ties of neighboring parts of the image. We call this sequence
of histograms the multiresolution histogram. This represen-
tation retains many important properties of the histogram. It
is fast to compute, space efficient, and invariant to rigid mo-
tions. The inherent blurring also makes it robust to noise. All
these properties make this an effective texture feature.

In this work we make the following contributions: (1) We
present a simple yet novel texture feature based on the mul-
tiresolution histogram. (2) We evaluate the performance of
our feature. It gives excellent results on two texture databases
while maintaining considerable robustness to illumination.
(3) We compare our feature with five of the most commonly
used texture features. We show that our simple feature is
comparable or better in terms of discriminability, robustness,
and efficiency.

2 Prior Work

Two approaches to incorporate texture information into
the histogram is to compute the histograms of image blocks
[3], or the set of locally orderless histograms [7]. These ap-
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Figure 1. The left column shows the original image and
two images resulting from blurring with a Gaussian filter.
The right column shows the multiresolution histogram, which
is the sequence of histograms of the filtered images.

proaches do not directly provide a single global feature en-
coding texture. Texture features have been obtained by tak-
ing the histogram of the output of a derivative filter applied to
the image. Two filters that have been used are differences of
Gaussians [16], and Gabor filters [6]. Derivative filters have
been preferred because there has been a general belief that
Gaussian filtering introduces an erroneous bias [16]. Deriva-
tive filtering, however, is notoriously sensitive to noise. Also,
the sensitivity of derivative filtering to texel and texture pa-
rameters has only been examined to a very limited extent.

The histogram of lower resolutions of an image suffers
from the same inability to encode texture as that suffered by
the histogram of the original image [13]. Heeger [9] used his-
tograms of multiple resolutions of an image sequentially for
texture synthesis. Hadjidemetriou et al performed a sensitiv-
ity analysis of the multiresolution histogram with respect to
parameters of synthetic texels and textures [8]. This analysis



demonstrated that the multiresolution histogram is a robust
texture representation.

3 Properties of Multiresolution Histograms
The multiresolution histogram is a family of histograms

hτ for different image resolutions τ . We obtain the mul-
tiresolution histogram from an image L by convolving the
image with a Gaussian filter1 G(τ), followed by taking the
histogram to obtain hτ (L) = h(L ∗ G(τ)), for several τ .
The multiresolution histogram is invariant to translation, ro-
tation, and is robust to noise. We make the multiresolution
histogram robust to changes in illumination by equalizing the
histogram of the initial image.

To examine analytically the sensitivity of the multiresolu-
tion histogram we consider a weighted average of incremen-
tal changes of histogram bin counts with respect to the image
resolution τ , which gives the Fisher information measure, J :

J(L) =
σ2

2

m−1∑
j=0

(−vj ln vj)
dhj(L ∗ G(τ))

dτ
, (1)

where vj is the intensity value of bin j [8]. The Fisher infor-
mation can also be written in terms of the image gradient:

J(L) =
∫

D

∣∣∣∣∇L(x)
L(x)

∣∣∣∣
2

L(x)d2x, (2)

where x = (x, y) is a point in the domain D of the image
[17]. In images that contain parameterized texels or textures
the Fisher information measure becomes a function of these
parameters. The dependence of the Fisher information on
some of these parameters has been examined [8].

A simple parameter of a texel is its elongation. The elon-
gation is a linear stretching ρ of one of the axes while con-
tracting the other axis by 1/ρ. Elongating an image preserves
its histogram. Fig. 2 (a) shows one image from a family
of elongated images. A strongly elongated texel blurs faster
with respect to resolution. A plot of the Fisher information
vs. elongation shown in Fig. 2 (b) confirms this. It can be
shown that the Fisher information satisfies J ∝ (ρ + 1/ρ)
[8].

The multiresolution histogram is also sensitive to the com-
plexity of the texel boundary. When a boundary of a texel has
a sharp corner it blurs more rapidly than when it is smooth.
This is confirmed for a family of parametric superquadric tex-
els, normalized to have the same area and thus histogram.
Three instances of this family are shown in Fig. 2 (c) with η
the family’s parameter. A plot of the Fisher information as
a function of this parameter is shown in Fig. 2 (d). The plot
shows that the change in the histogram with image resolution
is minimized for a circle, η = 2.

A simple texture parameter is the number of texels. The
Fisher information is proportional to this parameter [8].
Fig. 2 (e) shows images of textures with p×p texels, for three

1The filter is defined G(τ) = 1
2πτσ2 exp−x2−y2

2τσ2 , with the st. dev. σ.
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Figure 2. Examples of the Fisher information as a function
of texel and texture parameters.

values of p. The histogram is independent of the number of
texels. The plot in Fig. 2 (f) shows that the multiresolution
histogram is sensitive to this parameter.

Another texture parameter is the randomness of the place-
ment of the texels [19]. The left image in Fig. 2(g) shows a
texture whose texels are placed at regular intervals. As we
move to the right, the placement of the texels in the image is
perturbed using Gaussian noise with increasing standard de-
viation, σP . The histogram of the image is not significantly
affected. Fig. 2 (h) shows a plot of the Fisher information as
a function of σP . Increasing the standard deviation of this
perturbation decreases monotonically the change of the his-
togram with image resolution. This shows, along with the
examples above, that the multiresolution histogram is sensi-
tive to both texel and texture parameters.

4 Matching Algorithm
The properties we have described make the multiresolu-

tion histogram a good basis for a texture feature. The steps
of the algorithm are shown in Fig. 3. (1) We implement
the Burt-Adelson image pyramid [2]. It involves Gaussian
smoothing sufficient for a pyramid subsampling factor of
four. (2) We compute the histograms. (3) The histograms
of each level of the pyramid are smoothed and normalized
to have unit L1 norm. (4) We then compute the cumula-
tive histograms. This makes the feature more robust to noise.
(5) Next we compute the differences between cumulative his-
tograms of consecutive levels. This makes the feature inde-
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Figure 3. The steps of our matching algorithm.

pendent of the original histogram. (6) To improve the match-
ing, the difference histograms are subsampled and normal-
ized to make them independent of the subsampling factor.
The results are concatenated to form a feature vector. (7) Fi-
nally, the distance between two feature vectors is given by
the L1 norm. The L1 norm is commonly used with image
histograms and statistical distributions [5, 13].

The performance depends on the choice of the histogram
bin widths in step (6) of our algorithm. The bin width which
gives the best performance depends mainly on the number
of pixels and on the standard deviations of the histograms
[5]. If there are l levels in the pyramid, then let S be the
pyramid subsampling factor, and σ̂0, . . . σ̂l−1 be the standard
deviations of the histograms for each level. It can be shown
that the optimal bin widths w0, . . . , wl−1 have ratios given by

wi+1/wi = (S1/3)(σ̂i+1/σ̂i), (3)

where S is the ratio of image sizes between consecutive pyra-
mid levels [5]. Thus, we can adaptively determine the bin
widths2 for subsampling given the image pyramid. Prior to
subsampling, the histograms are smoothed with a Gaussian
to prevent aliasing.

The cost of computing the multiresolution histograms is
dominated by the cost of computing the Burt–Adelson pyra-
mid. The latter cost is of order O(nr), where n is the number
of pixels, and r is the width of the separable Gaussian filter.

5 Matching Performance
We evaluated the matching performance of the algorithm

given in Fig. 3 using two databases: a database of 91 Brodatz
textures [1], and a database of 8,046 CUReT textures [4].
Both databases consist of 8-bit images of natural textures
which we histogram equalized. Each databases is divided

2If the sequence σ̂0, . . . σ̂l−1 decreases monotonically, σ̂i+1/σ̂i ≤ 1,
then the ratio of bin widths is bounded above by S1/3.

into several image classes. Each class contains different in-
stances of the same texture.

We tested using both constant bin widths, as well as bin
widths chosen adaptively using Eq. (3). We used a single es-
timate of the standard deviations σ̂i for each database. We
tried two subsampling factors in the experiments, the maxi-
mum possible, S1/3 = 22/3 ≈ 1.59, and 21/2 ≈ 1.41. The
subsampling factors were combined with an initial intensity
resolution of 256 bins.

Matching with noise was implemented by superimposing
zero-mean Gaussian noise to a test image from the database.
In a correct match the closest match to the test image was
another database image of the same class.

The first database consists of 13 Brodatz textures [1].
Each texture is scanned under seven rotation angles. The im-
ages are 179 × 179 pixels. Some of the database textures are
shown in Fig. 4.

Fig. 5 shows plots of the percentage of correct matches vs.
the standard deviation of Gaussian noise. One of the plots in
Fig. 5 was obtained with constant bin width of 8 bit/pixel and
the other two plots were obtained with the two subsampling
factors. The matching without noise is perfect since the mul-
tiresolution histogram is invariant to rotations. The matching
is robust under noise. The highest histogram subsampling
had the highest performance. Thus, the adaptive bin width
improves performance, in addition to reducing cost.

The second database is a random subset of the CUReT
database [4] consisting of 61 physical textures under 131 or
132 instances of each physical texture under different illumi-
nation and viewing conditions. The total number of images
is 8,046. The image size was 100 × 100 pixels. Some of the
database textures are shown in Fig. 6.

The percentages of correct matches as a function of Gaus-
sian noise are shown in Fig. 7. To compute the matching
percentage for a specific level of noise 100 images were ran-

Bark Brick Bubbles Grass

Leather Pigskin Raffia Sand

Straw Weave Wood Wool

Figure 4. Samples from the database of Brodatz textures
[1]. All the images are histogram equalized.
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Figure 5. Plots of the percentage of correct matches using
our algorithm vs. the standard deviation of Gaussian noise
for the Brodatz textures database [1].

Figure 6. Samples from the database of CUReT textures
[4]. All the images are histogram equalized.

domly selected from the database and used as test images.
The matching rates in Fig. 7 were obtained with either con-
stant or adaptive bin widths. The plots for adaptive bin width
performed as well as and even better than those with constant
bin width.

The high matching performance of the multiresolution
histograms for this database demonstrates the robustness of
our matching algorithm to database size, number of database
classes, and changes in illumination. It also demonstrates the
algorithm is robust to image noise.

6 Texture Features used for Comparison
We compare the multiresolution histogram against five

other commonly used features. These features were: (1)
Fourier power spectrum annuli: The Fourier power spectrum
is segmented into annuli of constant thickness. The feature
vector consists of the sum of the values over the different
annuli [18]. (2) Gabor wavelet features: The components
of the feature vector are the L1 norms of the band–pass im-
ages [11]. (3) Daubechies wavelet packets features: The fea-

ture vector consists of the L2 norms of images resulting from
the wavelets packets transform [12]. (4) Auto–cooccurrence
matrices: The matrices are computed over a square window
around a pixel of size 11 × 11 pixels. The feature is the en-
tire matrix [10]. (5) Markov random field parameters: Each
pixel is assumed to be a linear combination of the intensities
in a 3 × 3 window surrounding it [14]. The parameters are
computed with minimum norm least squares.

The distance between all feature vectors was computed
with the L1 norm, except the wavelet packets features whose
distance was computed with L2 as described in the literature
[12]. The only features invariant to rotation are the multires-
olution histograms.

7 Evaluation of Features and Discussion

The experimental setup and the databases were described
in the previous section. To make the comparison meaningful
the best performing parameters were selected for each feature
and for each database. The parameters for our algorithm were
the same for both databases. We used an adaptive bin width
with a subsampling factor of 21/2 ≈ 1.41.

We first evaluated all the algorithms on the database of
Brodatz textures. The plots of the matching rates as a function
of noise are shown in Fig. 8 (a). The matching rate without
noise in Fig. 8 (a) is an indication of the sensitivity to rota-
tions. The noise free matching rate of the multiresolution his-
tograms and Fourier power spectrum features is 100%. The
performance of the remaining features is lower.

Our second evaluation compared all the algorithms on the
CUReT database. Fig. 8 (b) shows the percentage of cor-
rect matches vs. standard deviation of noise. We achieved
the best results in the noise free case with the multiresolu-
tion histograms, the wavelet packets features, and the Gabor
features. These features are robust with respect to database
size and number of database classes. The remaining features
are sensitive to these parameters. The two databases demon-
strated our algorithm to be the most robust to image noise,
image rotation, changes in illumination, and database size.
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Figure 7. Plots of the percentage of correct matches using
our algorithm vs. the standard deviation of Gaussian noise
for the CUReT textures database [4].
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Figure 8. The percentage of correct matches vs. noise
added to a test image for each algorithm applied to the Bro-
datz database [1] in (a) and the CUReT database [4] in (b).

The most expensive feature to compute are the Markov
random field parameters, since they involve the computation
of a least squares pseudoinverse. The Gabor features become
the most expensive to compute for large images. The cost of
the Fourier power spectrum feature follows. Both the cost of
auto-cooccurence matrices, and the cost of the wavelet fea-
tures is moderate. The least expensive feature to compute is
the multiresolution histogram, since it is computed over an
image pyramid.

Many common texture features involve derivative filtering
or the use of a template. Such features are intuitive but very
sensitive. The multiresolution histograms implicitly incorpo-
rates a derivative as the integrand of Eq. (2) shows. The same
equations, however, also shows that our feature involves spa-
tial integration which increases its robustness. This work
could be extended to further determine the types of textures
that have similar multiresolution histograms. Also, it would

be very useful to apply our algorithm over a limited image
region.
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